|
@@ -0,0 +1,182 @@
|
|
|
+Regulator Consumer Driver Interface
|
|
|
+===================================
|
|
|
+
|
|
|
+This text describes the regulator interface for consumer device drivers.
|
|
|
+Please see overview.txt for a description of the terms used in this text.
|
|
|
+
|
|
|
+
|
|
|
+1. Consumer Regulator Access (static & dynamic drivers)
|
|
|
+=======================================================
|
|
|
+
|
|
|
+A consumer driver can get access to it's supply regulator by calling :-
|
|
|
+
|
|
|
+regulator = regulator_get(dev, "Vcc");
|
|
|
+
|
|
|
+The consumer passes in it's struct device pointer and power supply ID. The core
|
|
|
+then finds the correct regulator by consulting a machine specific lookup table.
|
|
|
+If the lookup is successful then this call will return a pointer to the struct
|
|
|
+regulator that supplies this consumer.
|
|
|
+
|
|
|
+To release the regulator the consumer driver should call :-
|
|
|
+
|
|
|
+regulator_put(regulator);
|
|
|
+
|
|
|
+Consumers can be supplied by more than one regulator e.g. codec consumer with
|
|
|
+analog and digital supplies :-
|
|
|
+
|
|
|
+digital = regulator_get(dev, "Vcc"); /* digital core */
|
|
|
+analog = regulator_get(dev, "Avdd"); /* analog */
|
|
|
+
|
|
|
+The regulator access functions regulator_get() and regulator_put() will
|
|
|
+usually be called in your device drivers probe() and remove() respectively.
|
|
|
+
|
|
|
+
|
|
|
+2. Regulator Output Enable & Disable (static & dynamic drivers)
|
|
|
+====================================================================
|
|
|
+
|
|
|
+A consumer can enable it's power supply by calling:-
|
|
|
+
|
|
|
+int regulator_enable(regulator);
|
|
|
+
|
|
|
+NOTE: The supply may already be enabled before regulator_enabled() is called.
|
|
|
+This may happen if the consumer shares the regulator or the regulator has been
|
|
|
+previously enabled by bootloader or kernel board initialization code.
|
|
|
+
|
|
|
+A consumer can determine if a regulator is enabled by calling :-
|
|
|
+
|
|
|
+int regulator_is_enabled(regulator);
|
|
|
+
|
|
|
+This will return > zero when the regulator is enabled.
|
|
|
+
|
|
|
+
|
|
|
+A consumer can disable it's supply when no longer needed by calling :-
|
|
|
+
|
|
|
+int regulator_disable(regulator);
|
|
|
+
|
|
|
+NOTE: This may not disable the supply if it's shared with other consumers. The
|
|
|
+regulator will only be disabled when the enabled reference count is zero.
|
|
|
+
|
|
|
+Finally, a regulator can be forcefully disabled in the case of an emergency :-
|
|
|
+
|
|
|
+int regulator_force_disable(regulator);
|
|
|
+
|
|
|
+NOTE: this will immediately and forcefully shutdown the regulator output. All
|
|
|
+consumers will be powered off.
|
|
|
+
|
|
|
+
|
|
|
+3. Regulator Voltage Control & Status (dynamic drivers)
|
|
|
+======================================================
|
|
|
+
|
|
|
+Some consumer drivers need to be able to dynamically change their supply
|
|
|
+voltage to match system operating points. e.g. CPUfreq drivers can scale
|
|
|
+voltage along with frequency to save power, SD drivers may need to select the
|
|
|
+correct card voltage, etc.
|
|
|
+
|
|
|
+Consumers can control their supply voltage by calling :-
|
|
|
+
|
|
|
+int regulator_set_voltage(regulator, min_uV, max_uV);
|
|
|
+
|
|
|
+Where min_uV and max_uV are the minimum and maximum acceptable voltages in
|
|
|
+microvolts.
|
|
|
+
|
|
|
+NOTE: this can be called when the regulator is enabled or disabled. If called
|
|
|
+when enabled, then the voltage changes instantly, otherwise the voltage
|
|
|
+configuration changes and the voltage is physically set when the regulator is
|
|
|
+next enabled.
|
|
|
+
|
|
|
+The regulators configured voltage output can be found by calling :-
|
|
|
+
|
|
|
+int regulator_get_voltage(regulator);
|
|
|
+
|
|
|
+NOTE: get_voltage() will return the configured output voltage whether the
|
|
|
+regulator is enabled or disabled and should NOT be used to determine regulator
|
|
|
+output state. However this can be used in conjunction with is_enabled() to
|
|
|
+determine the regulator physical output voltage.
|
|
|
+
|
|
|
+
|
|
|
+4. Regulator Current Limit Control & Status (dynamic drivers)
|
|
|
+===========================================================
|
|
|
+
|
|
|
+Some consumer drivers need to be able to dynamically change their supply
|
|
|
+current limit to match system operating points. e.g. LCD backlight driver can
|
|
|
+change the current limit to vary the backlight brightness, USB drivers may want
|
|
|
+to set the limit to 500mA when supplying power.
|
|
|
+
|
|
|
+Consumers can control their supply current limit by calling :-
|
|
|
+
|
|
|
+int regulator_set_current_limit(regulator, min_uV, max_uV);
|
|
|
+
|
|
|
+Where min_uA and max_uA are the minimum and maximum acceptable current limit in
|
|
|
+microamps.
|
|
|
+
|
|
|
+NOTE: this can be called when the regulator is enabled or disabled. If called
|
|
|
+when enabled, then the current limit changes instantly, otherwise the current
|
|
|
+limit configuration changes and the current limit is physically set when the
|
|
|
+regulator is next enabled.
|
|
|
+
|
|
|
+A regulators current limit can be found by calling :-
|
|
|
+
|
|
|
+int regulator_get_current_limit(regulator);
|
|
|
+
|
|
|
+NOTE: get_current_limit() will return the current limit whether the regulator
|
|
|
+is enabled or disabled and should not be used to determine regulator current
|
|
|
+load.
|
|
|
+
|
|
|
+
|
|
|
+5. Regulator Operating Mode Control & Status (dynamic drivers)
|
|
|
+=============================================================
|
|
|
+
|
|
|
+Some consumers can further save system power by changing the operating mode of
|
|
|
+their supply regulator to be more efficient when the consumers operating state
|
|
|
+changes. e.g. consumer driver is idle and subsequently draws less current
|
|
|
+
|
|
|
+Regulator operating mode can be changed indirectly or directly.
|
|
|
+
|
|
|
+Indirect operating mode control.
|
|
|
+--------------------------------
|
|
|
+Consumer drivers can request a change in their supply regulator operating mode
|
|
|
+by calling :-
|
|
|
+
|
|
|
+int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
|
|
|
+
|
|
|
+This will cause the core to recalculate the total load on the regulator (based
|
|
|
+on all it's consumers) and change operating mode (if necessary and permitted)
|
|
|
+to best match the current operating load.
|
|
|
+
|
|
|
+The load_uA value can be determined from the consumers datasheet. e.g.most
|
|
|
+datasheets have tables showing the max current consumed in certain situations.
|
|
|
+
|
|
|
+Most consumers will use indirect operating mode control since they have no
|
|
|
+knowledge of the regulator or whether the regulator is shared with other
|
|
|
+consumers.
|
|
|
+
|
|
|
+Direct operating mode control.
|
|
|
+------------------------------
|
|
|
+Bespoke or tightly coupled drivers may want to directly control regulator
|
|
|
+operating mode depending on their operating point. This can be achieved by
|
|
|
+calling :-
|
|
|
+
|
|
|
+int regulator_set_mode(struct regulator *regulator, unsigned int mode);
|
|
|
+unsigned int regulator_get_mode(struct regulator *regulator);
|
|
|
+
|
|
|
+Direct mode will only be used by consumers that *know* about the regulator and
|
|
|
+are not sharing the regulator with other consumers.
|
|
|
+
|
|
|
+
|
|
|
+6. Regulator Events
|
|
|
+===================
|
|
|
+Regulators can notify consumers of external events. Events could be received by
|
|
|
+consumers under regulator stress or failure conditions.
|
|
|
+
|
|
|
+Consumers can register interest in regulator events by calling :-
|
|
|
+
|
|
|
+int regulator_register_notifier(struct regulator *regulator,
|
|
|
+ struct notifier_block *nb);
|
|
|
+
|
|
|
+Consumers can uregister interest by calling :-
|
|
|
+
|
|
|
+int regulator_unregister_notifier(struct regulator *regulator,
|
|
|
+ struct notifier_block *nb);
|
|
|
+
|
|
|
+Regulators use the kernel notifier framework to send event to thier interested
|
|
|
+consumers.
|