|
@@ -1,7 +1,7 @@
|
|
|
/*
|
|
|
* Physical mapping layer for MTD using the Axis partitiontable format
|
|
|
*
|
|
|
- * Copyright (c) 2001, 2002, 2003 Axis Communications AB
|
|
|
+ * Copyright (c) 2001-2007 Axis Communications AB
|
|
|
*
|
|
|
* This file is under the GPL.
|
|
|
*
|
|
@@ -10,9 +10,6 @@
|
|
|
* tells us what other partitions to define. If there isn't, we use a default
|
|
|
* partition split defined below.
|
|
|
*
|
|
|
- * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5
|
|
|
- * with minor changes.
|
|
|
- *
|
|
|
*/
|
|
|
|
|
|
#include <linux/module.h>
|
|
@@ -27,7 +24,8 @@
|
|
|
#include <linux/mtd/mtdram.h>
|
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
|
|
-#include <asm/arch/hwregs/config_defs.h>
|
|
|
+#include <linux/cramfs_fs.h>
|
|
|
+
|
|
|
#include <asm/axisflashmap.h>
|
|
|
#include <asm/mmu.h>
|
|
|
|
|
@@ -37,16 +35,24 @@
|
|
|
#define FLASH_UNCACHED_ADDR KSEG_E
|
|
|
#define FLASH_CACHED_ADDR KSEG_F
|
|
|
|
|
|
+#define PAGESIZE (512)
|
|
|
+
|
|
|
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
|
|
|
#define flash_data __u8
|
|
|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
|
|
|
#define flash_data __u16
|
|
|
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
|
|
|
-#define flash_data __u16
|
|
|
+#define flash_data __u32
|
|
|
#endif
|
|
|
|
|
|
/* From head.S */
|
|
|
-extern unsigned long romfs_start, romfs_length, romfs_in_flash;
|
|
|
+extern unsigned long romfs_in_flash; /* 1 when romfs_start, _length in flash */
|
|
|
+extern unsigned long romfs_start, romfs_length;
|
|
|
+extern unsigned long nand_boot; /* 1 when booted from nand flash */
|
|
|
+
|
|
|
+struct partition_name {
|
|
|
+ char name[6];
|
|
|
+};
|
|
|
|
|
|
/* The master mtd for the entire flash. */
|
|
|
struct mtd_info* axisflash_mtd = NULL;
|
|
@@ -112,32 +118,20 @@ static struct map_info map_cse1 = {
|
|
|
.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
|
|
|
};
|
|
|
|
|
|
-/* If no partition-table was found, we use this default-set. */
|
|
|
-#define MAX_PARTITIONS 7
|
|
|
-#define NUM_DEFAULT_PARTITIONS 3
|
|
|
+#define MAX_PARTITIONS 7
|
|
|
+#ifdef CONFIG_ETRAX_NANDBOOT
|
|
|
+#define NUM_DEFAULT_PARTITIONS 4
|
|
|
+#define DEFAULT_ROOTFS_PARTITION_NO 2
|
|
|
+#define DEFAULT_MEDIA_SIZE 0x2000000 /* 32 megs */
|
|
|
+#else
|
|
|
+#define NUM_DEFAULT_PARTITIONS 3
|
|
|
+#define DEFAULT_ROOTFS_PARTITION_NO (-1)
|
|
|
+#define DEFAULT_MEDIA_SIZE 0x800000 /* 8 megs */
|
|
|
+#endif
|
|
|
|
|
|
-/*
|
|
|
- * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
|
|
|
- * size of one flash block and "filesystem"-partition needs 5 blocks to be able
|
|
|
- * to use JFFS.
|
|
|
- */
|
|
|
-static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
|
|
|
- {
|
|
|
- .name = "boot firmware",
|
|
|
- .size = CONFIG_ETRAX_PTABLE_SECTOR,
|
|
|
- .offset = 0
|
|
|
- },
|
|
|
- {
|
|
|
- .name = "kernel",
|
|
|
- .size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
|
|
|
- .offset = CONFIG_ETRAX_PTABLE_SECTOR
|
|
|
- },
|
|
|
- {
|
|
|
- .name = "filesystem",
|
|
|
- .size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
|
|
|
- .offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
|
|
|
- }
|
|
|
-};
|
|
|
+#if (MAX_PARTITIONS < NUM_DEFAULT_PARTITIONS)
|
|
|
+#error MAX_PARTITIONS must be >= than NUM_DEFAULT_PARTITIONS
|
|
|
+#endif
|
|
|
|
|
|
/* Initialize the ones normally used. */
|
|
|
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
|
|
@@ -178,6 +172,56 @@ static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
|
|
|
},
|
|
|
};
|
|
|
|
|
|
+
|
|
|
+/* If no partition-table was found, we use this default-set.
|
|
|
+ * Default flash size is 8MB (NOR). CONFIG_ETRAX_PTABLE_SECTOR is most
|
|
|
+ * likely the size of one flash block and "filesystem"-partition needs
|
|
|
+ * to be >=5 blocks to be able to use JFFS.
|
|
|
+ */
|
|
|
+static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
|
|
|
+ {
|
|
|
+ .name = "boot firmware",
|
|
|
+ .size = CONFIG_ETRAX_PTABLE_SECTOR,
|
|
|
+ .offset = 0
|
|
|
+ },
|
|
|
+ {
|
|
|
+ .name = "kernel",
|
|
|
+ .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
|
|
|
+ .offset = CONFIG_ETRAX_PTABLE_SECTOR
|
|
|
+ },
|
|
|
+#define FILESYSTEM_SECTOR (11 * CONFIG_ETRAX_PTABLE_SECTOR)
|
|
|
+#ifdef CONFIG_ETRAX_NANDBOOT
|
|
|
+ {
|
|
|
+ .name = "rootfs",
|
|
|
+ .size = 10 * CONFIG_ETRAX_PTABLE_SECTOR,
|
|
|
+ .offset = FILESYSTEM_SECTOR
|
|
|
+ },
|
|
|
+#undef FILESYSTEM_SECTOR
|
|
|
+#define FILESYSTEM_SECTOR (21 * CONFIG_ETRAX_PTABLE_SECTOR)
|
|
|
+#endif
|
|
|
+ {
|
|
|
+ .name = "rwfs",
|
|
|
+ .size = DEFAULT_MEDIA_SIZE - FILESYSTEM_SECTOR,
|
|
|
+ .offset = FILESYSTEM_SECTOR
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
|
|
|
+/* Main flash device */
|
|
|
+static struct mtd_partition main_partition = {
|
|
|
+ .name = "main",
|
|
|
+ .size = 0,
|
|
|
+ .offset = 0
|
|
|
+};
|
|
|
+#endif
|
|
|
+
|
|
|
+/* Auxilliary partition if we find another flash */
|
|
|
+static struct mtd_partition aux_partition = {
|
|
|
+ .name = "aux",
|
|
|
+ .size = 0,
|
|
|
+ .offset = 0
|
|
|
+};
|
|
|
+
|
|
|
/*
|
|
|
* Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
|
|
|
* chips in that order (because the amd_flash-driver is faster).
|
|
@@ -191,7 +235,7 @@ static struct mtd_info *probe_cs(struct map_info *map_cs)
|
|
|
map_cs->name, map_cs->size, map_cs->map_priv_1);
|
|
|
|
|
|
#ifdef CONFIG_MTD_CFI
|
|
|
- mtd_cs = do_map_probe("cfi_probe", map_cs);
|
|
|
+ mtd_cs = do_map_probe("cfi_probe", map_cs);
|
|
|
#endif
|
|
|
#ifdef CONFIG_MTD_JEDECPROBE
|
|
|
if (!mtd_cs)
|
|
@@ -204,7 +248,7 @@ static struct mtd_info *probe_cs(struct map_info *map_cs)
|
|
|
/*
|
|
|
* Probe each chip select individually for flash chips. If there are chips on
|
|
|
* both cse0 and cse1, the mtd_info structs will be concatenated to one struct
|
|
|
- * so that MTD partitions can cross chip boundaries.
|
|
|
+ * so that MTD partitions can cross chip boundries.
|
|
|
*
|
|
|
* The only known restriction to how you can mount your chips is that each
|
|
|
* chip select must hold similar flash chips. But you need external hardware
|
|
@@ -216,9 +260,8 @@ static struct mtd_info *flash_probe(void)
|
|
|
{
|
|
|
struct mtd_info *mtd_cse0;
|
|
|
struct mtd_info *mtd_cse1;
|
|
|
- struct mtd_info *mtd_nand = NULL;
|
|
|
struct mtd_info *mtd_total;
|
|
|
- struct mtd_info *mtds[3];
|
|
|
+ struct mtd_info *mtds[2];
|
|
|
int count = 0;
|
|
|
|
|
|
if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)
|
|
@@ -226,12 +269,7 @@ static struct mtd_info *flash_probe(void)
|
|
|
if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)
|
|
|
mtds[count++] = mtd_cse1;
|
|
|
|
|
|
-#ifdef CONFIG_ETRAX_NANDFLASH
|
|
|
- if ((mtd_nand = crisv32_nand_flash_probe()) != NULL)
|
|
|
- mtds[count++] = mtd_nand;
|
|
|
-#endif
|
|
|
-
|
|
|
- if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) {
|
|
|
+ if (!mtd_cse0 && !mtd_cse1) {
|
|
|
/* No chip found. */
|
|
|
return NULL;
|
|
|
}
|
|
@@ -245,9 +283,7 @@ static struct mtd_info *flash_probe(void)
|
|
|
* So we use the MTD concatenation layer instead of further
|
|
|
* complicating the probing procedure.
|
|
|
*/
|
|
|
- mtd_total = mtd_concat_create(mtds,
|
|
|
- count,
|
|
|
- "cse0+cse1+nand");
|
|
|
+ mtd_total = mtd_concat_create(mtds, count, "cse0+cse1");
|
|
|
#else
|
|
|
printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
|
|
|
"(mis)configuration!\n", map_cse0.name, map_cse1.name);
|
|
@@ -255,61 +291,162 @@ static struct mtd_info *flash_probe(void)
|
|
|
#endif
|
|
|
if (!mtd_total) {
|
|
|
printk(KERN_ERR "%s and %s: Concatenation failed!\n",
|
|
|
- map_cse0.name, map_cse1.name);
|
|
|
+ map_cse0.name, map_cse1.name);
|
|
|
|
|
|
/* The best we can do now is to only use what we found
|
|
|
- * at cse0.
|
|
|
- */
|
|
|
+ * at cse0. */
|
|
|
mtd_total = mtd_cse0;
|
|
|
map_destroy(mtd_cse1);
|
|
|
}
|
|
|
- } else {
|
|
|
- mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand;
|
|
|
-
|
|
|
- }
|
|
|
+ } else
|
|
|
+ mtd_total = mtd_cse0 ? mtd_cse0 : mtd_cse1;
|
|
|
|
|
|
return mtd_total;
|
|
|
}
|
|
|
|
|
|
-extern unsigned long crisv32_nand_boot;
|
|
|
-extern unsigned long crisv32_nand_cramfs_offset;
|
|
|
-
|
|
|
/*
|
|
|
* Probe the flash chip(s) and, if it succeeds, read the partition-table
|
|
|
* and register the partitions with MTD.
|
|
|
*/
|
|
|
static int __init init_axis_flash(void)
|
|
|
{
|
|
|
- struct mtd_info *mymtd;
|
|
|
+ struct mtd_info *main_mtd;
|
|
|
+ struct mtd_info *aux_mtd = NULL;
|
|
|
int err = 0;
|
|
|
int pidx = 0;
|
|
|
struct partitiontable_head *ptable_head = NULL;
|
|
|
struct partitiontable_entry *ptable;
|
|
|
- int use_default_ptable = 1; /* Until proven otherwise. */
|
|
|
- const char *pmsg = KERN_INFO " /dev/flash%d at 0x%08x, size 0x%08x\n";
|
|
|
- static char page[512];
|
|
|
+ int ptable_ok = 0;
|
|
|
+ static char page[PAGESIZE];
|
|
|
size_t len;
|
|
|
+ int ram_rootfs_partition = -1; /* -1 => no RAM rootfs partition */
|
|
|
+ int part;
|
|
|
+
|
|
|
+ /* We need a root fs. If it resides in RAM, we need to use an
|
|
|
+ * MTDRAM device, so it must be enabled in the kernel config,
|
|
|
+ * but its size must be configured as 0 so as not to conflict
|
|
|
+ * with our usage.
|
|
|
+ */
|
|
|
+#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
|
|
|
+ if (!romfs_in_flash && !nand_boot) {
|
|
|
+ printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
|
|
|
+ "device; configure CONFIG_MTD_MTDRAM with size = 0!\n");
|
|
|
+ panic("This kernel cannot boot from RAM!\n");
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef CONFIG_ETRAX_VCS_SIM
|
|
|
+ main_mtd = flash_probe();
|
|
|
+ if (main_mtd)
|
|
|
+ printk(KERN_INFO "%s: 0x%08x bytes of NOR flash memory.\n",
|
|
|
+ main_mtd->name, main_mtd->size);
|
|
|
+
|
|
|
+#ifdef CONFIG_ETRAX_NANDFLASH
|
|
|
+ aux_mtd = crisv32_nand_flash_probe();
|
|
|
+ if (aux_mtd)
|
|
|
+ printk(KERN_INFO "%s: 0x%08x bytes of NAND flash memory.\n",
|
|
|
+ aux_mtd->name, aux_mtd->size);
|
|
|
+
|
|
|
+#ifdef CONFIG_ETRAX_NANDBOOT
|
|
|
+ {
|
|
|
+ struct mtd_info *tmp_mtd;
|
|
|
|
|
|
-#ifndef CONFIG_ETRAXFS_SIM
|
|
|
- mymtd = flash_probe();
|
|
|
- mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page);
|
|
|
- ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET);
|
|
|
+ printk(KERN_INFO "axisflashmap: Set to boot from NAND flash, "
|
|
|
+ "making NAND flash primary device.\n");
|
|
|
+ tmp_mtd = main_mtd;
|
|
|
+ main_mtd = aux_mtd;
|
|
|
+ aux_mtd = tmp_mtd;
|
|
|
+ }
|
|
|
+#endif /* CONFIG_ETRAX_NANDBOOT */
|
|
|
+#endif /* CONFIG_ETRAX_NANDFLASH */
|
|
|
|
|
|
- if (!mymtd) {
|
|
|
+ if (!main_mtd && !aux_mtd) {
|
|
|
/* There's no reason to use this module if no flash chip can
|
|
|
* be identified. Make sure that's understood.
|
|
|
*/
|
|
|
printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
|
|
|
- } else {
|
|
|
- printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
|
|
|
- mymtd->name, mymtd->size);
|
|
|
- axisflash_mtd = mymtd;
|
|
|
}
|
|
|
|
|
|
- if (mymtd) {
|
|
|
- mymtd->owner = THIS_MODULE;
|
|
|
+#if 0 /* Dump flash memory so we can see what is going on */
|
|
|
+ if (main_mtd) {
|
|
|
+ int sectoraddr, i;
|
|
|
+ for (sectoraddr = 0; sectoraddr < 2*65536+4096;
|
|
|
+ sectoraddr += PAGESIZE) {
|
|
|
+ main_mtd->read(main_mtd, sectoraddr, PAGESIZE, &len,
|
|
|
+ page);
|
|
|
+ printk(KERN_INFO
|
|
|
+ "Sector at %d (length %d):\n",
|
|
|
+ sectoraddr, len);
|
|
|
+ for (i = 0; i < PAGESIZE; i += 16) {
|
|
|
+ printk(KERN_INFO
|
|
|
+ "%02x %02x %02x %02x "
|
|
|
+ "%02x %02x %02x %02x "
|
|
|
+ "%02x %02x %02x %02x "
|
|
|
+ "%02x %02x %02x %02x\n",
|
|
|
+ page[i] & 255, page[i+1] & 255,
|
|
|
+ page[i+2] & 255, page[i+3] & 255,
|
|
|
+ page[i+4] & 255, page[i+5] & 255,
|
|
|
+ page[i+6] & 255, page[i+7] & 255,
|
|
|
+ page[i+8] & 255, page[i+9] & 255,
|
|
|
+ page[i+10] & 255, page[i+11] & 255,
|
|
|
+ page[i+12] & 255, page[i+13] & 255,
|
|
|
+ page[i+14] & 255, page[i+15] & 255);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ if (main_mtd) {
|
|
|
+ main_mtd->owner = THIS_MODULE;
|
|
|
+ axisflash_mtd = main_mtd;
|
|
|
+
|
|
|
+ loff_t ptable_sector = CONFIG_ETRAX_PTABLE_SECTOR;
|
|
|
+
|
|
|
+ /* First partition (rescue) is always set to the default. */
|
|
|
+ pidx++;
|
|
|
+#ifdef CONFIG_ETRAX_NANDBOOT
|
|
|
+ /* We know where the partition table should be located,
|
|
|
+ * it will be in first good block after that.
|
|
|
+ */
|
|
|
+ int blockstat;
|
|
|
+ do {
|
|
|
+ blockstat = main_mtd->block_isbad(main_mtd,
|
|
|
+ ptable_sector);
|
|
|
+ if (blockstat < 0)
|
|
|
+ ptable_sector = 0; /* read error */
|
|
|
+ else if (blockstat)
|
|
|
+ ptable_sector += main_mtd->erasesize;
|
|
|
+ } while (blockstat && ptable_sector);
|
|
|
+#endif
|
|
|
+ if (ptable_sector) {
|
|
|
+ main_mtd->read(main_mtd, ptable_sector, PAGESIZE,
|
|
|
+ &len, page);
|
|
|
+ ptable_head = &((struct partitiontable *) page)->head;
|
|
|
+ }
|
|
|
+
|
|
|
+#if 0 /* Dump partition table so we can see what is going on */
|
|
|
+ printk(KERN_INFO
|
|
|
+ "axisflashmap: flash read %d bytes at 0x%08x, data: "
|
|
|
+ "%02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
|
+ len, CONFIG_ETRAX_PTABLE_SECTOR,
|
|
|
+ page[0] & 255, page[1] & 255,
|
|
|
+ page[2] & 255, page[3] & 255,
|
|
|
+ page[4] & 255, page[5] & 255,
|
|
|
+ page[6] & 255, page[7] & 255);
|
|
|
+ printk(KERN_INFO
|
|
|
+ "axisflashmap: partition table offset %d, data: "
|
|
|
+ "%02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
|
+ PARTITION_TABLE_OFFSET,
|
|
|
+ page[PARTITION_TABLE_OFFSET+0] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+1] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+2] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+3] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+4] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+5] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+6] & 255,
|
|
|
+ page[PARTITION_TABLE_OFFSET+7] & 255);
|
|
|
+#endif
|
|
|
}
|
|
|
- pidx++; /* First partition is always set to the default. */
|
|
|
|
|
|
if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
|
|
|
&& (ptable_head->size <
|
|
@@ -322,7 +459,6 @@ static int __init init_axis_flash(void)
|
|
|
/* Looks like a start, sane length and end of a
|
|
|
* partition table, lets check csum etc.
|
|
|
*/
|
|
|
- int ptable_ok = 0;
|
|
|
struct partitiontable_entry *max_addr =
|
|
|
(struct partitiontable_entry *)
|
|
|
((unsigned long)ptable_head + sizeof(*ptable_head) +
|
|
@@ -346,104 +482,170 @@ static int __init init_axis_flash(void)
|
|
|
ptable_ok = (csum == ptable_head->checksum);
|
|
|
|
|
|
/* Read the entries and use/show the info. */
|
|
|
- printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
|
|
|
+ printk(KERN_INFO "axisflashmap: "
|
|
|
+ "Found a%s partition table at 0x%p-0x%p.\n",
|
|
|
(ptable_ok ? " valid" : "n invalid"), ptable_head,
|
|
|
max_addr);
|
|
|
|
|
|
/* We have found a working bootblock. Now read the
|
|
|
- * partition table. Scan the table. It ends when
|
|
|
- * there is 0xffffffff, that is, empty flash.
|
|
|
+ * partition table. Scan the table. It ends with 0xffffffff.
|
|
|
*/
|
|
|
while (ptable_ok
|
|
|
- && ptable->offset != 0xffffffff
|
|
|
+ && ptable->offset != PARTITIONTABLE_END_MARKER
|
|
|
&& ptable < max_addr
|
|
|
- && pidx < MAX_PARTITIONS) {
|
|
|
+ && pidx < MAX_PARTITIONS - 1) {
|
|
|
|
|
|
- axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0);
|
|
|
- axis_partitions[pidx].size = ptable->size;
|
|
|
-
|
|
|
- printk(pmsg, pidx, axis_partitions[pidx].offset,
|
|
|
- axis_partitions[pidx].size);
|
|
|
+ axis_partitions[pidx].offset = offset + ptable->offset;
|
|
|
+#ifdef CONFIG_ETRAX_NANDFLASH
|
|
|
+ if (main_mtd->type == MTD_NANDFLASH) {
|
|
|
+ axis_partitions[pidx].size =
|
|
|
+ (((ptable+1)->offset ==
|
|
|
+ PARTITIONTABLE_END_MARKER) ?
|
|
|
+ main_mtd->size :
|
|
|
+ ((ptable+1)->offset + offset)) -
|
|
|
+ (ptable->offset + offset);
|
|
|
+
|
|
|
+ } else
|
|
|
+#endif /* CONFIG_ETRAX_NANDFLASH */
|
|
|
+ axis_partitions[pidx].size = ptable->size;
|
|
|
+#ifdef CONFIG_ETRAX_NANDBOOT
|
|
|
+ /* Save partition number of jffs2 ro partition.
|
|
|
+ * Needed if RAM booting or root file system in RAM.
|
|
|
+ */
|
|
|
+ if (!nand_boot &&
|
|
|
+ ram_rootfs_partition < 0 && /* not already set */
|
|
|
+ ptable->type == PARTITION_TYPE_JFFS2 &&
|
|
|
+ (ptable->flags & PARTITION_FLAGS_READONLY_MASK) ==
|
|
|
+ PARTITION_FLAGS_READONLY)
|
|
|
+ ram_rootfs_partition = pidx;
|
|
|
+#endif /* CONFIG_ETRAX_NANDBOOT */
|
|
|
pidx++;
|
|
|
ptable++;
|
|
|
}
|
|
|
- use_default_ptable = !ptable_ok;
|
|
|
}
|
|
|
|
|
|
- if (romfs_in_flash) {
|
|
|
- /* Add an overlapping device for the root partition (romfs). */
|
|
|
+ /* Decide whether to use default partition table. */
|
|
|
+ /* Only use default table if we actually have a device (main_mtd) */
|
|
|
|
|
|
- axis_partitions[pidx].name = "romfs";
|
|
|
- if (crisv32_nand_boot) {
|
|
|
- char* data = kmalloc(1024, GFP_KERNEL);
|
|
|
- int len;
|
|
|
- int offset = crisv32_nand_cramfs_offset & ~(1024-1);
|
|
|
- char* tmp;
|
|
|
-
|
|
|
- mymtd->read(mymtd, offset, 1024, &len, data);
|
|
|
- tmp = &data[crisv32_nand_cramfs_offset % 512];
|
|
|
- axis_partitions[pidx].size = *(unsigned*)(tmp + 4);
|
|
|
- axis_partitions[pidx].offset = crisv32_nand_cramfs_offset;
|
|
|
- kfree(data);
|
|
|
- } else {
|
|
|
- axis_partitions[pidx].size = romfs_length;
|
|
|
- axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
|
|
|
- }
|
|
|
+ struct mtd_partition *partition = &axis_partitions[0];
|
|
|
+ if (main_mtd && !ptable_ok) {
|
|
|
+ memcpy(axis_partitions, axis_default_partitions,
|
|
|
+ sizeof(axis_default_partitions));
|
|
|
+ pidx = NUM_DEFAULT_PARTITIONS;
|
|
|
+ ram_rootfs_partition = DEFAULT_ROOTFS_PARTITION_NO;
|
|
|
+ }
|
|
|
|
|
|
+ /* Add artificial partitions for rootfs if necessary */
|
|
|
+ if (romfs_in_flash) {
|
|
|
+ /* rootfs is in directly accessible flash memory = NOR flash.
|
|
|
+ Add an overlapping device for the rootfs partition. */
|
|
|
+ printk(KERN_INFO "axisflashmap: Adding partition for "
|
|
|
+ "overlapping root file system image\n");
|
|
|
+ axis_partitions[pidx].size = romfs_length;
|
|
|
+ axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
|
|
|
+ axis_partitions[pidx].name = "romfs";
|
|
|
axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
|
|
|
-
|
|
|
- printk(KERN_INFO
|
|
|
- " Adding readonly flash partition for romfs image:\n");
|
|
|
- printk(pmsg, pidx, axis_partitions[pidx].offset,
|
|
|
- axis_partitions[pidx].size);
|
|
|
+ ram_rootfs_partition = -1;
|
|
|
pidx++;
|
|
|
- }
|
|
|
-
|
|
|
- if (mymtd) {
|
|
|
- if (use_default_ptable) {
|
|
|
- printk(KERN_INFO " Using default partition table.\n");
|
|
|
- err = add_mtd_partitions(mymtd, axis_default_partitions,
|
|
|
- NUM_DEFAULT_PARTITIONS);
|
|
|
- } else {
|
|
|
- err = add_mtd_partitions(mymtd, axis_partitions, pidx);
|
|
|
+ } else if (romfs_length && !nand_boot) {
|
|
|
+ /* romfs exists in memory, but not in flash, so must be in RAM.
|
|
|
+ * Configure an MTDRAM partition. */
|
|
|
+ if (ram_rootfs_partition < 0) {
|
|
|
+ /* None set yet, put it at the end */
|
|
|
+ ram_rootfs_partition = pidx;
|
|
|
+ pidx++;
|
|
|
}
|
|
|
+ printk(KERN_INFO "axisflashmap: Adding partition for "
|
|
|
+ "root file system image in RAM\n");
|
|
|
+ axis_partitions[ram_rootfs_partition].size = romfs_length;
|
|
|
+ axis_partitions[ram_rootfs_partition].offset = romfs_start;
|
|
|
+ axis_partitions[ram_rootfs_partition].name = "romfs";
|
|
|
+ axis_partitions[ram_rootfs_partition].mask_flags |=
|
|
|
+ MTD_WRITEABLE;
|
|
|
+ }
|
|
|
|
|
|
- if (err) {
|
|
|
- panic("axisflashmap could not add MTD partitions!\n");
|
|
|
- }
|
|
|
+#ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
|
|
|
+ if (main_mtd) {
|
|
|
+ main_partition.size = main_mtd->size;
|
|
|
+ err = add_mtd_partitions(main_mtd, &main_partition, 1);
|
|
|
+ if (err)
|
|
|
+ panic("axisflashmap: Could not initialize "
|
|
|
+ "partition for whole main mtd device!\n");
|
|
|
}
|
|
|
-/* CONFIG_EXTRAXFS_SIM */
|
|
|
#endif
|
|
|
|
|
|
- if (!romfs_in_flash) {
|
|
|
- /* Create an RAM device for the root partition (romfs). */
|
|
|
+ /* Now, register all partitions with mtd.
|
|
|
+ * We do this one at a time so we can slip in an MTDRAM device
|
|
|
+ * in the proper place if required. */
|
|
|
+
|
|
|
+ for (part = 0; part < pidx; part++) {
|
|
|
+ if (part == ram_rootfs_partition) {
|
|
|
+ /* add MTDRAM partition here */
|
|
|
+ struct mtd_info *mtd_ram;
|
|
|
+
|
|
|
+ mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
|
|
|
+ if (!mtd_ram)
|
|
|
+ panic("axisflashmap: Couldn't allocate memory "
|
|
|
+ "for mtd_info!\n");
|
|
|
+ printk(KERN_INFO "axisflashmap: Adding RAM partition "
|
|
|
+ "for rootfs image.\n");
|
|
|
+ err = mtdram_init_device(mtd_ram,
|
|
|
+ (void *)partition[part].offset,
|
|
|
+ partition[part].size,
|
|
|
+ partition[part].name);
|
|
|
+ if (err)
|
|
|
+ panic("axisflashmap: Could not initialize "
|
|
|
+ "MTD RAM device!\n");
|
|
|
+ /* JFFS2 likes to have an erasesize. Keep potential
|
|
|
+ * JFFS2 rootfs happy by providing one. Since image
|
|
|
+ * was most likely created for main mtd, use that
|
|
|
+ * erasesize, if available. Otherwise, make a guess. */
|
|
|
+ mtd_ram->erasesize = (main_mtd ? main_mtd->erasesize :
|
|
|
+ CONFIG_ETRAX_PTABLE_SECTOR);
|
|
|
+ } else {
|
|
|
+ err = add_mtd_partitions(main_mtd, &partition[part], 1);
|
|
|
+ if (err)
|
|
|
+ panic("axisflashmap: Could not add mtd "
|
|
|
+ "partition %d\n", part);
|
|
|
+ }
|
|
|
+ }
|
|
|
+#endif /* CONFIG_EXTRAX_VCS_SIM */
|
|
|
+
|
|
|
+#ifdef CONFIG_ETRAX_VCS_SIM
|
|
|
+ /* For simulator, always use a RAM partition.
|
|
|
+ * The rootfs will be found after the kernel in RAM,
|
|
|
+ * with romfs_start and romfs_end indicating location and size.
|
|
|
+ */
|
|
|
+ struct mtd_info *mtd_ram;
|
|
|
+
|
|
|
+ mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
|
|
|
+ if (!mtd_ram) {
|
|
|
+ panic("axisflashmap: Couldn't allocate memory for "
|
|
|
+ "mtd_info!\n");
|
|
|
+ }
|
|
|
|
|
|
-#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
|
|
|
- /* No use trying to boot this kernel from RAM. Panic! */
|
|
|
- printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
|
|
|
- "device due to kernel (mis)configuration!\n");
|
|
|
- panic("This kernel cannot boot from RAM!\n");
|
|
|
-#else
|
|
|
- struct mtd_info *mtd_ram;
|
|
|
+ printk(KERN_INFO "axisflashmap: Adding RAM partition for romfs, "
|
|
|
+ "at %u, size %u\n",
|
|
|
+ (unsigned) romfs_start, (unsigned) romfs_length);
|
|
|
|
|
|
- mtd_ram = kmalloc(sizeof(struct mtd_info),
|
|
|
- GFP_KERNEL);
|
|
|
- if (!mtd_ram) {
|
|
|
- panic("axisflashmap couldn't allocate memory for "
|
|
|
- "mtd_info!\n");
|
|
|
- }
|
|
|
+ err = mtdram_init_device(mtd_ram, (void *)romfs_start,
|
|
|
+ romfs_length, "romfs");
|
|
|
+ if (err) {
|
|
|
+ panic("axisflashmap: Could not initialize MTD RAM "
|
|
|
+ "device!\n");
|
|
|
+ }
|
|
|
+#endif /* CONFIG_EXTRAX_VCS_SIM */
|
|
|
|
|
|
- printk(KERN_INFO " Adding RAM partition for romfs image:\n");
|
|
|
- printk(pmsg, pidx, romfs_start, romfs_length);
|
|
|
+#ifndef CONFIG_ETRAX_VCS_SIM
|
|
|
+ if (aux_mtd) {
|
|
|
+ aux_partition.size = aux_mtd->size;
|
|
|
+ err = add_mtd_partitions(aux_mtd, &aux_partition, 1);
|
|
|
+ if (err)
|
|
|
+ panic("axisflashmap: Could not initialize "
|
|
|
+ "aux mtd device!\n");
|
|
|
|
|
|
- err = mtdram_init_device(mtd_ram, (void*)romfs_start,
|
|
|
- romfs_length, "romfs");
|
|
|
- if (err) {
|
|
|
- panic("axisflashmap could not initialize MTD RAM "
|
|
|
- "device!\n");
|
|
|
- }
|
|
|
-#endif
|
|
|
}
|
|
|
+#endif /* CONFIG_EXTRAX_VCS_SIM */
|
|
|
|
|
|
return err;
|
|
|
}
|