|
@@ -76,9 +76,6 @@
|
|
|
*/
|
|
|
#define EEH_MAX_FAILS 100000
|
|
|
|
|
|
-/* Misc forward declaraions */
|
|
|
-static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
|
|
|
-
|
|
|
/* RTAS tokens */
|
|
|
static int ibm_set_eeh_option;
|
|
|
static int ibm_set_slot_reset;
|
|
@@ -107,296 +104,8 @@ static DEFINE_PER_CPU(unsigned long, false_positives);
|
|
|
static DEFINE_PER_CPU(unsigned long, ignored_failures);
|
|
|
static DEFINE_PER_CPU(unsigned long, slot_resets);
|
|
|
|
|
|
-/**
|
|
|
- * The pci address cache subsystem. This subsystem places
|
|
|
- * PCI device address resources into a red-black tree, sorted
|
|
|
- * according to the address range, so that given only an i/o
|
|
|
- * address, the corresponding PCI device can be **quickly**
|
|
|
- * found. It is safe to perform an address lookup in an interrupt
|
|
|
- * context; this ability is an important feature.
|
|
|
- *
|
|
|
- * Currently, the only customer of this code is the EEH subsystem;
|
|
|
- * thus, this code has been somewhat tailored to suit EEH better.
|
|
|
- * In particular, the cache does *not* hold the addresses of devices
|
|
|
- * for which EEH is not enabled.
|
|
|
- *
|
|
|
- * (Implementation Note: The RB tree seems to be better/faster
|
|
|
- * than any hash algo I could think of for this problem, even
|
|
|
- * with the penalty of slow pointer chases for d-cache misses).
|
|
|
- */
|
|
|
-struct pci_io_addr_range
|
|
|
-{
|
|
|
- struct rb_node rb_node;
|
|
|
- unsigned long addr_lo;
|
|
|
- unsigned long addr_hi;
|
|
|
- struct pci_dev *pcidev;
|
|
|
- unsigned int flags;
|
|
|
-};
|
|
|
-
|
|
|
-static struct pci_io_addr_cache
|
|
|
-{
|
|
|
- struct rb_root rb_root;
|
|
|
- spinlock_t piar_lock;
|
|
|
-} pci_io_addr_cache_root;
|
|
|
-
|
|
|
-static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
|
|
|
-{
|
|
|
- struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
|
|
|
-
|
|
|
- while (n) {
|
|
|
- struct pci_io_addr_range *piar;
|
|
|
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
|
|
-
|
|
|
- if (addr < piar->addr_lo) {
|
|
|
- n = n->rb_left;
|
|
|
- } else {
|
|
|
- if (addr > piar->addr_hi) {
|
|
|
- n = n->rb_right;
|
|
|
- } else {
|
|
|
- pci_dev_get(piar->pcidev);
|
|
|
- return piar->pcidev;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * pci_get_device_by_addr - Get device, given only address
|
|
|
- * @addr: mmio (PIO) phys address or i/o port number
|
|
|
- *
|
|
|
- * Given an mmio phys address, or a port number, find a pci device
|
|
|
- * that implements this address. Be sure to pci_dev_put the device
|
|
|
- * when finished. I/O port numbers are assumed to be offset
|
|
|
- * from zero (that is, they do *not* have pci_io_addr added in).
|
|
|
- * It is safe to call this function within an interrupt.
|
|
|
- */
|
|
|
-static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
|
|
|
-{
|
|
|
- struct pci_dev *dev;
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
|
|
- dev = __pci_get_device_by_addr(addr);
|
|
|
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
|
|
- return dev;
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef DEBUG
|
|
|
-/*
|
|
|
- * Handy-dandy debug print routine, does nothing more
|
|
|
- * than print out the contents of our addr cache.
|
|
|
- */
|
|
|
-static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
|
|
|
-{
|
|
|
- struct rb_node *n;
|
|
|
- int cnt = 0;
|
|
|
-
|
|
|
- n = rb_first(&cache->rb_root);
|
|
|
- while (n) {
|
|
|
- struct pci_io_addr_range *piar;
|
|
|
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
|
|
- printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
|
|
|
- (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
|
|
|
- piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
|
|
|
- cnt++;
|
|
|
- n = rb_next(n);
|
|
|
- }
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
-/* Insert address range into the rb tree. */
|
|
|
-static struct pci_io_addr_range *
|
|
|
-pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
|
|
|
- unsigned long ahi, unsigned int flags)
|
|
|
-{
|
|
|
- struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
|
|
|
- struct rb_node *parent = NULL;
|
|
|
- struct pci_io_addr_range *piar;
|
|
|
-
|
|
|
- /* Walk tree, find a place to insert into tree */
|
|
|
- while (*p) {
|
|
|
- parent = *p;
|
|
|
- piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
|
|
|
- if (ahi < piar->addr_lo) {
|
|
|
- p = &parent->rb_left;
|
|
|
- } else if (alo > piar->addr_hi) {
|
|
|
- p = &parent->rb_right;
|
|
|
- } else {
|
|
|
- if (dev != piar->pcidev ||
|
|
|
- alo != piar->addr_lo || ahi != piar->addr_hi) {
|
|
|
- printk(KERN_WARNING "PIAR: overlapping address range\n");
|
|
|
- }
|
|
|
- return piar;
|
|
|
- }
|
|
|
- }
|
|
|
- piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
|
|
|
- if (!piar)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- piar->addr_lo = alo;
|
|
|
- piar->addr_hi = ahi;
|
|
|
- piar->pcidev = dev;
|
|
|
- piar->flags = flags;
|
|
|
-
|
|
|
-#ifdef DEBUG
|
|
|
- printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
|
|
|
- alo, ahi, pci_name (dev));
|
|
|
-#endif
|
|
|
-
|
|
|
- rb_link_node(&piar->rb_node, parent, p);
|
|
|
- rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
|
|
|
-
|
|
|
- return piar;
|
|
|
-}
|
|
|
-
|
|
|
-static void __pci_addr_cache_insert_device(struct pci_dev *dev)
|
|
|
-{
|
|
|
- struct device_node *dn;
|
|
|
- struct pci_dn *pdn;
|
|
|
- int i;
|
|
|
- int inserted = 0;
|
|
|
-
|
|
|
- dn = pci_device_to_OF_node(dev);
|
|
|
- if (!dn) {
|
|
|
- printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* Skip any devices for which EEH is not enabled. */
|
|
|
- pdn = PCI_DN(dn);
|
|
|
- if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
|
|
|
- pdn->eeh_mode & EEH_MODE_NOCHECK) {
|
|
|
-#ifdef DEBUG
|
|
|
- printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
|
|
|
- pci_name(dev), pdn->node->full_name);
|
|
|
-#endif
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- /* The cache holds a reference to the device... */
|
|
|
- pci_dev_get(dev);
|
|
|
-
|
|
|
- /* Walk resources on this device, poke them into the tree */
|
|
|
- for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
|
- unsigned long start = pci_resource_start(dev,i);
|
|
|
- unsigned long end = pci_resource_end(dev,i);
|
|
|
- unsigned int flags = pci_resource_flags(dev,i);
|
|
|
-
|
|
|
- /* We are interested only bus addresses, not dma or other stuff */
|
|
|
- if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
|
|
|
- continue;
|
|
|
- if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
|
|
|
- continue;
|
|
|
- pci_addr_cache_insert(dev, start, end, flags);
|
|
|
- inserted = 1;
|
|
|
- }
|
|
|
-
|
|
|
- /* If there was nothing to add, the cache has no reference... */
|
|
|
- if (!inserted)
|
|
|
- pci_dev_put(dev);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * pci_addr_cache_insert_device - Add a device to the address cache
|
|
|
- * @dev: PCI device whose I/O addresses we are interested in.
|
|
|
- *
|
|
|
- * In order to support the fast lookup of devices based on addresses,
|
|
|
- * we maintain a cache of devices that can be quickly searched.
|
|
|
- * This routine adds a device to that cache.
|
|
|
- */
|
|
|
-static void pci_addr_cache_insert_device(struct pci_dev *dev)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
|
|
- __pci_addr_cache_insert_device(dev);
|
|
|
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
|
|
|
-{
|
|
|
- struct rb_node *n;
|
|
|
- int removed = 0;
|
|
|
-
|
|
|
-restart:
|
|
|
- n = rb_first(&pci_io_addr_cache_root.rb_root);
|
|
|
- while (n) {
|
|
|
- struct pci_io_addr_range *piar;
|
|
|
- piar = rb_entry(n, struct pci_io_addr_range, rb_node);
|
|
|
-
|
|
|
- if (piar->pcidev == dev) {
|
|
|
- rb_erase(n, &pci_io_addr_cache_root.rb_root);
|
|
|
- removed = 1;
|
|
|
- kfree(piar);
|
|
|
- goto restart;
|
|
|
- }
|
|
|
- n = rb_next(n);
|
|
|
- }
|
|
|
-
|
|
|
- /* The cache no longer holds its reference to this device... */
|
|
|
- if (removed)
|
|
|
- pci_dev_put(dev);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * pci_addr_cache_remove_device - remove pci device from addr cache
|
|
|
- * @dev: device to remove
|
|
|
- *
|
|
|
- * Remove a device from the addr-cache tree.
|
|
|
- * This is potentially expensive, since it will walk
|
|
|
- * the tree multiple times (once per resource).
|
|
|
- * But so what; device removal doesn't need to be that fast.
|
|
|
- */
|
|
|
-static void pci_addr_cache_remove_device(struct pci_dev *dev)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
|
|
|
- __pci_addr_cache_remove_device(dev);
|
|
|
- spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * pci_addr_cache_build - Build a cache of I/O addresses
|
|
|
- *
|
|
|
- * Build a cache of pci i/o addresses. This cache will be used to
|
|
|
- * find the pci device that corresponds to a given address.
|
|
|
- * This routine scans all pci busses to build the cache.
|
|
|
- * Must be run late in boot process, after the pci controllers
|
|
|
- * have been scaned for devices (after all device resources are known).
|
|
|
- */
|
|
|
-void __init pci_addr_cache_build(void)
|
|
|
-{
|
|
|
- struct device_node *dn;
|
|
|
- struct pci_dev *dev = NULL;
|
|
|
-
|
|
|
- if (!eeh_subsystem_enabled)
|
|
|
- return;
|
|
|
-
|
|
|
- spin_lock_init(&pci_io_addr_cache_root.piar_lock);
|
|
|
-
|
|
|
- while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
|
|
|
- /* Ignore PCI bridges ( XXX why ??) */
|
|
|
- if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
|
|
|
- continue;
|
|
|
- }
|
|
|
- pci_addr_cache_insert_device(dev);
|
|
|
-
|
|
|
- /* Save the BAR's; firmware doesn't restore these after EEH reset */
|
|
|
- dn = pci_device_to_OF_node(dev);
|
|
|
- eeh_save_bars(dev, PCI_DN(dn));
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef DEBUG
|
|
|
- /* Verify tree built up above, echo back the list of addrs. */
|
|
|
- pci_addr_cache_print(&pci_io_addr_cache_root);
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
/* --------------------------------------------------------------- */
|
|
|
-/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
|
|
|
+/* Below lies the EEH event infrastructure */
|
|
|
|
|
|
void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
|
|
|
{
|
|
@@ -880,7 +589,7 @@ void eeh_restore_bars(struct pci_dn *pdn)
|
|
|
* PCI devices are added individuallly; but, for the restore,
|
|
|
* an entire slot is reset at a time.
|
|
|
*/
|
|
|
-static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
|
|
|
+void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
|
|
|
{
|
|
|
int i;
|
|
|
|