|
@@ -696,6 +696,17 @@ int nfs_flush_incompatible(struct file *file, struct page *page)
|
|
|
return status;
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * If the page cache is marked as unsafe or invalid, then we can't rely on
|
|
|
+ * the PageUptodate() flag. In this case, we will need to turn off
|
|
|
+ * write optimisations that depend on the page contents being correct.
|
|
|
+ */
|
|
|
+static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
|
|
|
+{
|
|
|
+ return PageUptodate(page) &&
|
|
|
+ !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Update and possibly write a cached page of an NFS file.
|
|
|
*
|
|
@@ -717,10 +728,13 @@ int nfs_updatepage(struct file *file, struct page *page,
|
|
|
(long long)(page_offset(page) +offset));
|
|
|
|
|
|
/* If we're not using byte range locks, and we know the page
|
|
|
- * is entirely in cache, it may be more efficient to avoid
|
|
|
- * fragmenting write requests.
|
|
|
+ * is up to date, it may be more efficient to extend the write
|
|
|
+ * to cover the entire page in order to avoid fragmentation
|
|
|
+ * inefficiencies.
|
|
|
*/
|
|
|
- if (PageUptodate(page) && inode->i_flock == NULL && !(file->f_mode & O_SYNC)) {
|
|
|
+ if (nfs_write_pageuptodate(page, inode) &&
|
|
|
+ inode->i_flock == NULL &&
|
|
|
+ !(file->f_mode & O_SYNC)) {
|
|
|
count = max(count + offset, nfs_page_length(page));
|
|
|
offset = 0;
|
|
|
}
|