|
@@ -0,0 +1,391 @@
|
|
|
+/*
|
|
|
+ * SGI RTC clock/timer routines.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program; if not, write to the Free Software
|
|
|
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
+ *
|
|
|
+ * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
|
|
|
+ * Copyright (c) Dimitri Sivanich
|
|
|
+ */
|
|
|
+#include <linux/clockchips.h>
|
|
|
+
|
|
|
+#include <asm/uv/uv_mmrs.h>
|
|
|
+#include <asm/uv/uv_hub.h>
|
|
|
+#include <asm/uv/bios.h>
|
|
|
+#include <asm/uv/uv.h>
|
|
|
+
|
|
|
+#define RTC_NAME "sgi_rtc"
|
|
|
+
|
|
|
+static cycle_t uv_read_rtc(void);
|
|
|
+static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
|
|
|
+static void uv_rtc_timer_setup(enum clock_event_mode,
|
|
|
+ struct clock_event_device *);
|
|
|
+
|
|
|
+static struct clocksource clocksource_uv = {
|
|
|
+ .name = RTC_NAME,
|
|
|
+ .rating = 400,
|
|
|
+ .read = uv_read_rtc,
|
|
|
+ .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
|
|
|
+ .shift = 10,
|
|
|
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
|
+};
|
|
|
+
|
|
|
+static struct clock_event_device clock_event_device_uv = {
|
|
|
+ .name = RTC_NAME,
|
|
|
+ .features = CLOCK_EVT_FEAT_ONESHOT,
|
|
|
+ .shift = 20,
|
|
|
+ .rating = 400,
|
|
|
+ .irq = -1,
|
|
|
+ .set_next_event = uv_rtc_next_event,
|
|
|
+ .set_mode = uv_rtc_timer_setup,
|
|
|
+ .event_handler = NULL,
|
|
|
+};
|
|
|
+
|
|
|
+static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
|
|
|
+
|
|
|
+/* There is one of these allocated per node */
|
|
|
+struct uv_rtc_timer_head {
|
|
|
+ spinlock_t lock;
|
|
|
+ /* next cpu waiting for timer, local node relative: */
|
|
|
+ int next_cpu;
|
|
|
+ /* number of cpus on this node: */
|
|
|
+ int ncpus;
|
|
|
+ struct {
|
|
|
+ int lcpu; /* systemwide logical cpu number */
|
|
|
+ u64 expires; /* next timer expiration for this cpu */
|
|
|
+ } cpu[1];
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Access to uv_rtc_timer_head via blade id.
|
|
|
+ */
|
|
|
+static struct uv_rtc_timer_head **blade_info __read_mostly;
|
|
|
+
|
|
|
+static int uv_rtc_enable;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Hardware interface routines
|
|
|
+ */
|
|
|
+
|
|
|
+/* Send IPIs to another node */
|
|
|
+static void uv_rtc_send_IPI(int cpu)
|
|
|
+{
|
|
|
+ unsigned long apicid, val;
|
|
|
+ int pnode;
|
|
|
+
|
|
|
+ apicid = per_cpu(x86_cpu_to_apicid, cpu);
|
|
|
+ pnode = uv_apicid_to_pnode(apicid);
|
|
|
+ val = (1UL << UVH_IPI_INT_SEND_SHFT) |
|
|
|
+ (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
|
|
|
+ (GENERIC_INTERRUPT_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
|
|
|
+
|
|
|
+ uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
|
|
|
+}
|
|
|
+
|
|
|
+/* Check for an RTC interrupt pending */
|
|
|
+static int uv_intr_pending(int pnode)
|
|
|
+{
|
|
|
+ return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
|
|
|
+ UVH_EVENT_OCCURRED0_RTC1_MASK;
|
|
|
+}
|
|
|
+
|
|
|
+/* Setup interrupt and return non-zero if early expiration occurred. */
|
|
|
+static int uv_setup_intr(int cpu, u64 expires)
|
|
|
+{
|
|
|
+ u64 val;
|
|
|
+ int pnode = uv_cpu_to_pnode(cpu);
|
|
|
+
|
|
|
+ uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
|
|
|
+ UVH_RTC1_INT_CONFIG_M_MASK);
|
|
|
+ uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
|
|
|
+
|
|
|
+ uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
|
|
|
+ UVH_EVENT_OCCURRED0_RTC1_MASK);
|
|
|
+
|
|
|
+ val = (GENERIC_INTERRUPT_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
|
|
|
+ ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
|
|
|
+
|
|
|
+ /* Set configuration */
|
|
|
+ uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
|
|
|
+ /* Initialize comparator value */
|
|
|
+ uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
|
|
|
+
|
|
|
+ return (expires < uv_read_rtc() && !uv_intr_pending(pnode));
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Per-cpu timer tracking routines
|
|
|
+ */
|
|
|
+
|
|
|
+static __init void uv_rtc_deallocate_timers(void)
|
|
|
+{
|
|
|
+ int bid;
|
|
|
+
|
|
|
+ for_each_possible_blade(bid) {
|
|
|
+ kfree(blade_info[bid]);
|
|
|
+ }
|
|
|
+ kfree(blade_info);
|
|
|
+}
|
|
|
+
|
|
|
+/* Allocate per-node list of cpu timer expiration times. */
|
|
|
+static __init int uv_rtc_allocate_timers(void)
|
|
|
+{
|
|
|
+ int cpu;
|
|
|
+
|
|
|
+ blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
|
|
|
+ if (!blade_info)
|
|
|
+ return -ENOMEM;
|
|
|
+ memset(blade_info, 0, uv_possible_blades * sizeof(void *));
|
|
|
+
|
|
|
+ for_each_present_cpu(cpu) {
|
|
|
+ int nid = cpu_to_node(cpu);
|
|
|
+ int bid = uv_cpu_to_blade_id(cpu);
|
|
|
+ int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
|
|
|
+ struct uv_rtc_timer_head *head = blade_info[bid];
|
|
|
+
|
|
|
+ if (!head) {
|
|
|
+ head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
|
|
|
+ (uv_blade_nr_possible_cpus(bid) *
|
|
|
+ 2 * sizeof(u64)),
|
|
|
+ GFP_KERNEL, nid);
|
|
|
+ if (!head) {
|
|
|
+ uv_rtc_deallocate_timers();
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+ spin_lock_init(&head->lock);
|
|
|
+ head->ncpus = uv_blade_nr_possible_cpus(bid);
|
|
|
+ head->next_cpu = -1;
|
|
|
+ blade_info[bid] = head;
|
|
|
+ }
|
|
|
+
|
|
|
+ head->cpu[bcpu].lcpu = cpu;
|
|
|
+ head->cpu[bcpu].expires = ULLONG_MAX;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Find and set the next expiring timer. */
|
|
|
+static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
|
|
|
+{
|
|
|
+ u64 lowest = ULLONG_MAX;
|
|
|
+ int c, bcpu = -1;
|
|
|
+
|
|
|
+ head->next_cpu = -1;
|
|
|
+ for (c = 0; c < head->ncpus; c++) {
|
|
|
+ u64 exp = head->cpu[c].expires;
|
|
|
+ if (exp < lowest) {
|
|
|
+ bcpu = c;
|
|
|
+ lowest = exp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (bcpu >= 0) {
|
|
|
+ head->next_cpu = bcpu;
|
|
|
+ c = head->cpu[bcpu].lcpu;
|
|
|
+ if (uv_setup_intr(c, lowest))
|
|
|
+ /* If we didn't set it up in time, trigger */
|
|
|
+ uv_rtc_send_IPI(c);
|
|
|
+ } else {
|
|
|
+ uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
|
|
|
+ UVH_RTC1_INT_CONFIG_M_MASK);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Set expiration time for current cpu.
|
|
|
+ *
|
|
|
+ * Returns 1 if we missed the expiration time.
|
|
|
+ */
|
|
|
+static int uv_rtc_set_timer(int cpu, u64 expires)
|
|
|
+{
|
|
|
+ int pnode = uv_cpu_to_pnode(cpu);
|
|
|
+ int bid = uv_cpu_to_blade_id(cpu);
|
|
|
+ struct uv_rtc_timer_head *head = blade_info[bid];
|
|
|
+ int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
|
|
|
+ u64 *t = &head->cpu[bcpu].expires;
|
|
|
+ unsigned long flags;
|
|
|
+ int next_cpu;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&head->lock, flags);
|
|
|
+
|
|
|
+ next_cpu = head->next_cpu;
|
|
|
+ *t = expires;
|
|
|
+ /* Will this one be next to go off? */
|
|
|
+ if (next_cpu < 0 || bcpu == next_cpu ||
|
|
|
+ expires < head->cpu[next_cpu].expires) {
|
|
|
+ head->next_cpu = bcpu;
|
|
|
+ if (uv_setup_intr(cpu, expires)) {
|
|
|
+ *t = ULLONG_MAX;
|
|
|
+ uv_rtc_find_next_timer(head, pnode);
|
|
|
+ spin_unlock_irqrestore(&head->lock, flags);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ spin_unlock_irqrestore(&head->lock, flags);
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Unset expiration time for current cpu.
|
|
|
+ *
|
|
|
+ * Returns 1 if this timer was pending.
|
|
|
+ */
|
|
|
+static int uv_rtc_unset_timer(int cpu)
|
|
|
+{
|
|
|
+ int pnode = uv_cpu_to_pnode(cpu);
|
|
|
+ int bid = uv_cpu_to_blade_id(cpu);
|
|
|
+ struct uv_rtc_timer_head *head = blade_info[bid];
|
|
|
+ int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
|
|
|
+ u64 *t = &head->cpu[bcpu].expires;
|
|
|
+ unsigned long flags;
|
|
|
+ int rc = 0;
|
|
|
+
|
|
|
+ spin_lock_irqsave(&head->lock, flags);
|
|
|
+
|
|
|
+ if (head->next_cpu == bcpu && uv_read_rtc() >= *t)
|
|
|
+ rc = 1;
|
|
|
+
|
|
|
+ *t = ULLONG_MAX;
|
|
|
+
|
|
|
+ /* Was the hardware setup for this timer? */
|
|
|
+ if (head->next_cpu == bcpu)
|
|
|
+ uv_rtc_find_next_timer(head, pnode);
|
|
|
+
|
|
|
+ spin_unlock_irqrestore(&head->lock, flags);
|
|
|
+
|
|
|
+ return rc;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * Kernel interface routines.
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Read the RTC.
|
|
|
+ */
|
|
|
+static cycle_t uv_read_rtc(void)
|
|
|
+{
|
|
|
+ return (cycle_t)uv_read_local_mmr(UVH_RTC);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Program the next event, relative to now
|
|
|
+ */
|
|
|
+static int uv_rtc_next_event(unsigned long delta,
|
|
|
+ struct clock_event_device *ced)
|
|
|
+{
|
|
|
+ int ced_cpu = cpumask_first(ced->cpumask);
|
|
|
+
|
|
|
+ return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc());
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Setup the RTC timer in oneshot mode
|
|
|
+ */
|
|
|
+static void uv_rtc_timer_setup(enum clock_event_mode mode,
|
|
|
+ struct clock_event_device *evt)
|
|
|
+{
|
|
|
+ int ced_cpu = cpumask_first(evt->cpumask);
|
|
|
+
|
|
|
+ switch (mode) {
|
|
|
+ case CLOCK_EVT_MODE_PERIODIC:
|
|
|
+ case CLOCK_EVT_MODE_ONESHOT:
|
|
|
+ case CLOCK_EVT_MODE_RESUME:
|
|
|
+ /* Nothing to do here yet */
|
|
|
+ break;
|
|
|
+ case CLOCK_EVT_MODE_UNUSED:
|
|
|
+ case CLOCK_EVT_MODE_SHUTDOWN:
|
|
|
+ uv_rtc_unset_timer(ced_cpu);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void uv_rtc_interrupt(void)
|
|
|
+{
|
|
|
+ struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
|
|
|
+ int cpu = smp_processor_id();
|
|
|
+
|
|
|
+ if (!ced || !ced->event_handler)
|
|
|
+ return;
|
|
|
+
|
|
|
+ if (uv_rtc_unset_timer(cpu) != 1)
|
|
|
+ return;
|
|
|
+
|
|
|
+ ced->event_handler(ced);
|
|
|
+}
|
|
|
+
|
|
|
+static int __init uv_enable_rtc(char *str)
|
|
|
+{
|
|
|
+ uv_rtc_enable = 1;
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+__setup("uvrtc", uv_enable_rtc);
|
|
|
+
|
|
|
+static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
|
|
|
+{
|
|
|
+ struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
|
|
|
+
|
|
|
+ *ced = clock_event_device_uv;
|
|
|
+ ced->cpumask = cpumask_of(smp_processor_id());
|
|
|
+ clockevents_register_device(ced);
|
|
|
+}
|
|
|
+
|
|
|
+static __init int uv_rtc_setup_clock(void)
|
|
|
+{
|
|
|
+ int rc;
|
|
|
+
|
|
|
+ if (!uv_rtc_enable || !is_uv_system() || generic_interrupt_extension)
|
|
|
+ return -ENODEV;
|
|
|
+
|
|
|
+ generic_interrupt_extension = uv_rtc_interrupt;
|
|
|
+
|
|
|
+ clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
|
|
|
+ clocksource_uv.shift);
|
|
|
+
|
|
|
+ rc = clocksource_register(&clocksource_uv);
|
|
|
+ if (rc) {
|
|
|
+ generic_interrupt_extension = NULL;
|
|
|
+ return rc;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Setup and register clockevents */
|
|
|
+ rc = uv_rtc_allocate_timers();
|
|
|
+ if (rc) {
|
|
|
+ clocksource_unregister(&clocksource_uv);
|
|
|
+ generic_interrupt_extension = NULL;
|
|
|
+ return rc;
|
|
|
+ }
|
|
|
+
|
|
|
+ clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
|
|
|
+ NSEC_PER_SEC, clock_event_device_uv.shift);
|
|
|
+
|
|
|
+ clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
|
|
|
+ sn_rtc_cycles_per_second;
|
|
|
+
|
|
|
+ clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
|
|
|
+ (NSEC_PER_SEC / sn_rtc_cycles_per_second);
|
|
|
+
|
|
|
+ rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
|
|
|
+ if (rc) {
|
|
|
+ clocksource_unregister(&clocksource_uv);
|
|
|
+ generic_interrupt_extension = NULL;
|
|
|
+ uv_rtc_deallocate_timers();
|
|
|
+ }
|
|
|
+
|
|
|
+ return rc;
|
|
|
+}
|
|
|
+arch_initcall(uv_rtc_setup_clock);
|