瀏覽代碼

Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6: (33 commits)
  sony-laptop: re-read the rfkill state when resuming from suspend
  sony-laptop: check for rfkill hard block at load time
  wext: add back wireless/ dir in sysfs for cfg80211 interfaces
  wext: Add bound checks for copy_from_user
  mac80211: improve/fix mlme messages
  cfg80211: always get BSS
  iwlwifi: fix 3945 ucode info retrieval after failure
  iwlwifi: fix memory leak in command queue handling
  iwlwifi: fix debugfs buffer handling
  cfg80211: don't set privacy w/o key
  cfg80211: wext: don't display BSSID unless associated
  net: Add explicit bound checks in net/socket.c
  bridge: Fix double-free in br_add_if.
  isdn: fix netjet/isdnhdlc build errors
  atm: dereference of he_dev->rbps_virt in he_init_group()
  ax25: Add missing dev_put in ax25_setsockopt
  Revert "sit: stateless autoconf for isatap"
  net: fix double skb free in dcbnl
  net: fix nlmsg len size for skb when error bit is set.
  net: fix vlan_get_size to include vlan_flags size
  ...
Linus Torvalds 15 年之前
父節點
當前提交
5a4c8d75f4

+ 7 - 7
drivers/atm/he.c

@@ -921,9 +921,9 @@ out_free_rbpq_base:
 			he_dev->rbrq_phys);
 			he_dev->rbrq_phys);
 	i = CONFIG_RBPL_SIZE;
 	i = CONFIG_RBPL_SIZE;
 out_free_rbpl_virt:
 out_free_rbpl_virt:
-	while (--i)
-		pci_pool_free(he_dev->rbps_pool, he_dev->rbpl_virt[i].virt,
-				he_dev->rbps_base[i].phys);
+	while (i--)
+		pci_pool_free(he_dev->rbpl_pool, he_dev->rbpl_virt[i].virt,
+				he_dev->rbpl_base[i].phys);
 	kfree(he_dev->rbpl_virt);
 	kfree(he_dev->rbpl_virt);
 
 
 out_free_rbpl_base:
 out_free_rbpl_base:
@@ -933,11 +933,11 @@ out_free_rbpl_base:
 out_destroy_rbpl_pool:
 out_destroy_rbpl_pool:
 	pci_pool_destroy(he_dev->rbpl_pool);
 	pci_pool_destroy(he_dev->rbpl_pool);
 
 
-	i = CONFIG_RBPL_SIZE;
+	i = CONFIG_RBPS_SIZE;
 out_free_rbps_virt:
 out_free_rbps_virt:
-	while (--i)
-		pci_pool_free(he_dev->rbpl_pool, he_dev->rbps_virt[i].virt,
-				he_dev->rbpl_base[i].phys);
+	while (i--)
+		pci_pool_free(he_dev->rbps_pool, he_dev->rbps_virt[i].virt,
+				he_dev->rbps_base[i].phys);
 	kfree(he_dev->rbps_virt);
 	kfree(he_dev->rbps_virt);
 
 
 out_free_rbps_base:
 out_free_rbps_base:

+ 1 - 0
drivers/isdn/hardware/mISDN/Kconfig

@@ -78,6 +78,7 @@ config MISDN_NETJET
 	depends on PCI
 	depends on PCI
 	select MISDN_IPAC
 	select MISDN_IPAC
 	select ISDN_HDLC
 	select ISDN_HDLC
+	select ISDN_I4L
 	help
 	help
 	  Enable support for Traverse Technologies NETJet PCI cards.
 	  Enable support for Traverse Technologies NETJet PCI cards.
 
 

+ 1 - 2
drivers/isdn/i4l/Kconfig

@@ -141,8 +141,7 @@ endmenu
 endif
 endif
 
 
 config ISDN_HDLC
 config ISDN_HDLC
-	tristate 
-	depends on HISAX_ST5481
+	tristate
 	select CRC_CCITT
 	select CRC_CCITT
 	select BITREVERSE
 	select BITREVERSE
 
 

+ 0 - 3
drivers/net/e1000/e1000.h

@@ -149,7 +149,6 @@ do {									\
 
 
 #define AUTO_ALL_MODES            0
 #define AUTO_ALL_MODES            0
 #define E1000_EEPROM_82544_APM    0x0004
 #define E1000_EEPROM_82544_APM    0x0004
-#define E1000_EEPROM_ICH8_APME    0x0004
 #define E1000_EEPROM_APME         0x0400
 #define E1000_EEPROM_APME         0x0400
 
 
 #ifndef E1000_MASTER_SLAVE
 #ifndef E1000_MASTER_SLAVE
@@ -293,7 +292,6 @@ struct e1000_adapter {
 
 
 	u64 hw_csum_err;
 	u64 hw_csum_err;
 	u64 hw_csum_good;
 	u64 hw_csum_good;
-	u64 rx_hdr_split;
 	u32 alloc_rx_buff_failed;
 	u32 alloc_rx_buff_failed;
 	u32 rx_int_delay;
 	u32 rx_int_delay;
 	u32 rx_abs_int_delay;
 	u32 rx_abs_int_delay;
@@ -317,7 +315,6 @@ struct e1000_adapter {
 	struct e1000_rx_ring test_rx_ring;
 	struct e1000_rx_ring test_rx_ring;
 
 
 	int msg_enable;
 	int msg_enable;
-	bool have_msi;
 
 
 	/* to not mess up cache alignment, always add to the bottom */
 	/* to not mess up cache alignment, always add to the bottom */
 	bool tso_force;
 	bool tso_force;

+ 34 - 168
drivers/net/e1000/e1000_ethtool.c

@@ -82,7 +82,6 @@ static const struct e1000_stats e1000_gstrings_stats[] = {
 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
-	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
@@ -114,8 +113,6 @@ static int e1000_get_settings(struct net_device *netdev,
 		                   SUPPORTED_1000baseT_Full|
 		                   SUPPORTED_1000baseT_Full|
 		                   SUPPORTED_Autoneg |
 		                   SUPPORTED_Autoneg |
 		                   SUPPORTED_TP);
 		                   SUPPORTED_TP);
-		if (hw->phy_type == e1000_phy_ife)
-			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
 		ecmd->advertising = ADVERTISED_TP;
 		ecmd->advertising = ADVERTISED_TP;
 
 
 		if (hw->autoneg == 1) {
 		if (hw->autoneg == 1) {
@@ -178,14 +175,6 @@ static int e1000_set_settings(struct net_device *netdev,
 	struct e1000_adapter *adapter = netdev_priv(netdev);
 	struct e1000_adapter *adapter = netdev_priv(netdev);
 	struct e1000_hw *hw = &adapter->hw;
 	struct e1000_hw *hw = &adapter->hw;
 
 
-	/* When SoL/IDER sessions are active, autoneg/speed/duplex
-	 * cannot be changed */
-	if (e1000_check_phy_reset_block(hw)) {
-		DPRINTK(DRV, ERR, "Cannot change link characteristics "
-		        "when SoL/IDER is active.\n");
-		return -EINVAL;
-	}
-
 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 		msleep(1);
 		msleep(1);
 
 
@@ -330,10 +319,7 @@ static int e1000_set_tso(struct net_device *netdev, u32 data)
 	else
 	else
 		netdev->features &= ~NETIF_F_TSO;
 		netdev->features &= ~NETIF_F_TSO;
 
 
-	if (data && (adapter->hw.mac_type > e1000_82547_rev_2))
-		netdev->features |= NETIF_F_TSO6;
-	else
-		netdev->features &= ~NETIF_F_TSO6;
+	netdev->features &= ~NETIF_F_TSO6;
 
 
 	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
 	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
 	adapter->tso_force = true;
 	adapter->tso_force = true;
@@ -441,7 +427,6 @@ static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 	if (hw->mac_type >= e1000_82540 &&
 	if (hw->mac_type >= e1000_82540 &&
-	    hw->mac_type < e1000_82571 &&
 	    hw->media_type == e1000_media_type_copper) {
 	    hw->media_type == e1000_media_type_copper) {
 		regs_buff[26] = er32(MANC);
 		regs_buff[26] = er32(MANC);
 	}
 	}
@@ -554,10 +539,8 @@ static int e1000_set_eeprom(struct net_device *netdev,
 	ret_val = e1000_write_eeprom(hw, first_word,
 	ret_val = e1000_write_eeprom(hw, first_word,
 				     last_word - first_word + 1, eeprom_buff);
 				     last_word - first_word + 1, eeprom_buff);
 
 
-	/* Update the checksum over the first part of the EEPROM if needed
-	 * and flush shadow RAM for 82573 conrollers */
-	if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
-				(hw->mac_type == e1000_82573)))
+	/* Update the checksum over the first part of the EEPROM if needed */
+	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 		e1000_update_eeprom_checksum(hw);
 		e1000_update_eeprom_checksum(hw);
 
 
 	kfree(eeprom_buff);
 	kfree(eeprom_buff);
@@ -568,31 +551,12 @@ static void e1000_get_drvinfo(struct net_device *netdev,
 			      struct ethtool_drvinfo *drvinfo)
 			      struct ethtool_drvinfo *drvinfo)
 {
 {
 	struct e1000_adapter *adapter = netdev_priv(netdev);
 	struct e1000_adapter *adapter = netdev_priv(netdev);
-	struct e1000_hw *hw = &adapter->hw;
 	char firmware_version[32];
 	char firmware_version[32];
-	u16 eeprom_data;
 
 
 	strncpy(drvinfo->driver,  e1000_driver_name, 32);
 	strncpy(drvinfo->driver,  e1000_driver_name, 32);
 	strncpy(drvinfo->version, e1000_driver_version, 32);
 	strncpy(drvinfo->version, e1000_driver_version, 32);
 
 
-	/* EEPROM image version # is reported as firmware version # for
-	 * 8257{1|2|3} controllers */
-	e1000_read_eeprom(hw, 5, 1, &eeprom_data);
-	switch (hw->mac_type) {
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-	case e1000_80003es2lan:
-	case e1000_ich8lan:
-		sprintf(firmware_version, "%d.%d-%d",
-			(eeprom_data & 0xF000) >> 12,
-			(eeprom_data & 0x0FF0) >> 4,
-			eeprom_data & 0x000F);
-		break;
-	default:
-		sprintf(firmware_version, "N/A");
-	}
-
+	sprintf(firmware_version, "N/A");
 	strncpy(drvinfo->fw_version, firmware_version, 32);
 	strncpy(drvinfo->fw_version, firmware_version, 32);
 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
@@ -781,21 +745,9 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 	/* The status register is Read Only, so a write should fail.
 	/* The status register is Read Only, so a write should fail.
 	 * Some bits that get toggled are ignored.
 	 * Some bits that get toggled are ignored.
 	 */
 	 */
-	switch (hw->mac_type) {
+
 	/* there are several bits on newer hardware that are r/w */
 	/* there are several bits on newer hardware that are r/w */
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_80003es2lan:
-		toggle = 0x7FFFF3FF;
-		break;
-	case e1000_82573:
-	case e1000_ich8lan:
-		toggle = 0x7FFFF033;
-		break;
-	default:
-		toggle = 0xFFFFF833;
-		break;
-	}
+	toggle = 0xFFFFF833;
 
 
 	before = er32(STATUS);
 	before = er32(STATUS);
 	value = (er32(STATUS) & toggle);
 	value = (er32(STATUS) & toggle);
@@ -810,12 +762,10 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 	/* restore previous status */
 	/* restore previous status */
 	ew32(STATUS, before);
 	ew32(STATUS, before);
 
 
-	if (hw->mac_type != e1000_ich8lan) {
-		REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
-		REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
-		REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
-		REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
-	}
+	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
+	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 
 
 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
@@ -830,8 +780,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 
 
 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 
 
-	before = (hw->mac_type == e1000_ich8lan ?
-	          0x06C3B33E : 0x06DFB3FE);
+	before = 0x06DFB3FE;
 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 
 
@@ -839,12 +788,10 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 
 
 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
-		if (hw->mac_type != e1000_ich8lan)
-			REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
+		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
-		value = (hw->mac_type == e1000_ich8lan ?
-		         E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
+		value = E1000_RAR_ENTRIES;
 		for (i = 0; i < value; i++) {
 		for (i = 0; i < value; i++) {
 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
 			                 0xFFFFFFFF);
 			                 0xFFFFFFFF);
@@ -859,8 +806,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 
 
 	}
 	}
 
 
-	value = (hw->mac_type == e1000_ich8lan ?
-			E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
+	value = E1000_MC_TBL_SIZE;
 	for (i = 0; i < value; i++)
 	for (i = 0; i < value; i++)
 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 
 
@@ -933,9 +879,6 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 	/* Test each interrupt */
 	/* Test each interrupt */
 	for (; i < 10; i++) {
 	for (; i < 10; i++) {
 
 
-		if (hw->mac_type == e1000_ich8lan && i == 8)
-			continue;
-
 		/* Interrupt to test */
 		/* Interrupt to test */
 		mask = 1 << i;
 		mask = 1 << i;
 
 
@@ -1289,35 +1232,20 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
 		/* autoneg off */
 		/* autoneg off */
 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
-	} else if (hw->phy_type == e1000_phy_gg82563)
-		e1000_write_phy_reg(hw,
-		                    GG82563_PHY_KMRN_MODE_CTRL,
-		                    0x1CC);
+	}
 
 
 	ctrl_reg = er32(CTRL);
 	ctrl_reg = er32(CTRL);
 
 
-	if (hw->phy_type == e1000_phy_ife) {
-		/* force 100, set loopback */
-		e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
+	/* force 1000, set loopback */
+	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
 
 
-		/* Now set up the MAC to the same speed/duplex as the PHY. */
-		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
-		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
-			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
-			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
-			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
-	} else {
-		/* force 1000, set loopback */
-		e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
-
-		/* Now set up the MAC to the same speed/duplex as the PHY. */
-		ctrl_reg = er32(CTRL);
-		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
-		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
-			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
-			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
-			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
-	}
+	/* Now set up the MAC to the same speed/duplex as the PHY. */
+	ctrl_reg = er32(CTRL);
+	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
+			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
+			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
+			E1000_CTRL_FD);	 /* Force Duplex to FULL */
 
 
 	if (hw->media_type == e1000_media_type_copper &&
 	if (hw->media_type == e1000_media_type_copper &&
 	   hw->phy_type == e1000_phy_m88)
 	   hw->phy_type == e1000_phy_m88)
@@ -1373,14 +1301,8 @@ static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
 	case e1000_82541_rev_2:
 	case e1000_82541_rev_2:
 	case e1000_82547:
 	case e1000_82547:
 	case e1000_82547_rev_2:
 	case e1000_82547_rev_2:
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-	case e1000_80003es2lan:
-	case e1000_ich8lan:
 		return e1000_integrated_phy_loopback(adapter);
 		return e1000_integrated_phy_loopback(adapter);
 		break;
 		break;
-
 	default:
 	default:
 		/* Default PHY loopback work is to read the MII
 		/* Default PHY loopback work is to read the MII
 		 * control register and assert bit 14 (loopback mode).
 		 * control register and assert bit 14 (loopback mode).
@@ -1409,14 +1331,6 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
 		case e1000_82546_rev_3:
 		case e1000_82546_rev_3:
 			return e1000_set_phy_loopback(adapter);
 			return e1000_set_phy_loopback(adapter);
 			break;
 			break;
-		case e1000_82571:
-		case e1000_82572:
-#define E1000_SERDES_LB_ON 0x410
-			e1000_set_phy_loopback(adapter);
-			ew32(SCTL, E1000_SERDES_LB_ON);
-			msleep(10);
-			return 0;
-			break;
 		default:
 		default:
 			rctl = er32(RCTL);
 			rctl = er32(RCTL);
 			rctl |= E1000_RCTL_LBM_TCVR;
 			rctl |= E1000_RCTL_LBM_TCVR;
@@ -1440,26 +1354,12 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
 	ew32(RCTL, rctl);
 	ew32(RCTL, rctl);
 
 
 	switch (hw->mac_type) {
 	switch (hw->mac_type) {
-	case e1000_82571:
-	case e1000_82572:
-		if (hw->media_type == e1000_media_type_fiber ||
-		    hw->media_type == e1000_media_type_internal_serdes) {
-#define E1000_SERDES_LB_OFF 0x400
-			ew32(SCTL, E1000_SERDES_LB_OFF);
-			msleep(10);
-			break;
-		}
-		/* Fall Through */
 	case e1000_82545:
 	case e1000_82545:
 	case e1000_82546:
 	case e1000_82546:
 	case e1000_82545_rev_3:
 	case e1000_82545_rev_3:
 	case e1000_82546_rev_3:
 	case e1000_82546_rev_3:
 	default:
 	default:
 		hw->autoneg = true;
 		hw->autoneg = true;
-		if (hw->phy_type == e1000_phy_gg82563)
-			e1000_write_phy_reg(hw,
-					    GG82563_PHY_KMRN_MODE_CTRL,
-					    0x180);
 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
 		if (phy_reg & MII_CR_LOOPBACK) {
 		if (phy_reg & MII_CR_LOOPBACK) {
 			phy_reg &= ~MII_CR_LOOPBACK;
 			phy_reg &= ~MII_CR_LOOPBACK;
@@ -1560,17 +1460,6 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
 
 
 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
 {
 {
-	struct e1000_hw *hw = &adapter->hw;
-
-	/* PHY loopback cannot be performed if SoL/IDER
-	 * sessions are active */
-	if (e1000_check_phy_reset_block(hw)) {
-		DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
-		        "when SoL/IDER is active.\n");
-		*data = 0;
-		goto out;
-	}
-
 	*data = e1000_setup_desc_rings(adapter);
 	*data = e1000_setup_desc_rings(adapter);
 	if (*data)
 	if (*data)
 		goto out;
 		goto out;
@@ -1592,13 +1481,13 @@ static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
 	*data = 0;
 	*data = 0;
 	if (hw->media_type == e1000_media_type_internal_serdes) {
 	if (hw->media_type == e1000_media_type_internal_serdes) {
 		int i = 0;
 		int i = 0;
-		hw->serdes_link_down = true;
+		hw->serdes_has_link = false;
 
 
 		/* On some blade server designs, link establishment
 		/* On some blade server designs, link establishment
 		 * could take as long as 2-3 minutes */
 		 * could take as long as 2-3 minutes */
 		do {
 		do {
 			e1000_check_for_link(hw);
 			e1000_check_for_link(hw);
-			if (!hw->serdes_link_down)
+			if (hw->serdes_has_link)
 				return *data;
 				return *data;
 			msleep(20);
 			msleep(20);
 		} while (i++ < 3750);
 		} while (i++ < 3750);
@@ -1716,15 +1605,11 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter,
 	case E1000_DEV_ID_82545EM_COPPER:
 	case E1000_DEV_ID_82545EM_COPPER:
 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
 	case E1000_DEV_ID_82546GB_PCIE:
 	case E1000_DEV_ID_82546GB_PCIE:
-	case E1000_DEV_ID_82571EB_SERDES_QUAD:
 		/* these don't support WoL at all */
 		/* these don't support WoL at all */
 		wol->supported = 0;
 		wol->supported = 0;
 		break;
 		break;
 	case E1000_DEV_ID_82546EB_FIBER:
 	case E1000_DEV_ID_82546EB_FIBER:
 	case E1000_DEV_ID_82546GB_FIBER:
 	case E1000_DEV_ID_82546GB_FIBER:
-	case E1000_DEV_ID_82571EB_FIBER:
-	case E1000_DEV_ID_82571EB_SERDES:
-	case E1000_DEV_ID_82571EB_COPPER:
 		/* Wake events not supported on port B */
 		/* Wake events not supported on port B */
 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
 			wol->supported = 0;
 			wol->supported = 0;
@@ -1733,10 +1618,6 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter,
 		/* return success for non excluded adapter ports */
 		/* return success for non excluded adapter ports */
 		retval = 0;
 		retval = 0;
 		break;
 		break;
-	case E1000_DEV_ID_82571EB_QUAD_COPPER:
-	case E1000_DEV_ID_82571EB_QUAD_FIBER:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
-	case E1000_DEV_ID_82571PT_QUAD_COPPER:
 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
 		/* quad port adapters only support WoL on port A */
 		/* quad port adapters only support WoL on port A */
 		if (!adapter->quad_port_a) {
 		if (!adapter->quad_port_a) {
@@ -1872,30 +1753,15 @@ static int e1000_phys_id(struct net_device *netdev, u32 data)
 	if (!data)
 	if (!data)
 		data = INT_MAX;
 		data = INT_MAX;
 
 
-	if (hw->mac_type < e1000_82571) {
-		if (!adapter->blink_timer.function) {
-			init_timer(&adapter->blink_timer);
-			adapter->blink_timer.function = e1000_led_blink_callback;
-			adapter->blink_timer.data = (unsigned long)adapter;
-		}
-		e1000_setup_led(hw);
-		mod_timer(&adapter->blink_timer, jiffies);
-		msleep_interruptible(data * 1000);
-		del_timer_sync(&adapter->blink_timer);
-	} else if (hw->phy_type == e1000_phy_ife) {
-		if (!adapter->blink_timer.function) {
-			init_timer(&adapter->blink_timer);
-			adapter->blink_timer.function = e1000_led_blink_callback;
-			adapter->blink_timer.data = (unsigned long)adapter;
-		}
-		mod_timer(&adapter->blink_timer, jiffies);
-		msleep_interruptible(data * 1000);
-		del_timer_sync(&adapter->blink_timer);
-		e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
-	} else {
-		e1000_blink_led_start(hw);
-		msleep_interruptible(data * 1000);
+	if (!adapter->blink_timer.function) {
+		init_timer(&adapter->blink_timer);
+		adapter->blink_timer.function = e1000_led_blink_callback;
+		adapter->blink_timer.data = (unsigned long)adapter;
 	}
 	}
+	e1000_setup_led(hw);
+	mod_timer(&adapter->blink_timer, jiffies);
+	msleep_interruptible(data * 1000);
+	del_timer_sync(&adapter->blink_timer);
 
 
 	e1000_led_off(hw);
 	e1000_led_off(hw);
 	clear_bit(E1000_LED_ON, &adapter->led_status);
 	clear_bit(E1000_LED_ON, &adapter->led_status);

+ 4955 - 8153
drivers/net/e1000/e1000_hw.c

@@ -24,88 +24,34 @@
   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 
 
-*******************************************************************************/
+ */
 
 
 /* e1000_hw.c
 /* e1000_hw.c
  * Shared functions for accessing and configuring the MAC
  * Shared functions for accessing and configuring the MAC
  */
  */
 
 
-
 #include "e1000_hw.h"
 #include "e1000_hw.h"
 
 
-static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask);
-static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask);
-static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data);
-static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
-static s32 e1000_get_software_semaphore(struct e1000_hw *hw);
-static void e1000_release_software_semaphore(struct e1000_hw *hw);
-
-static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw);
 static s32 e1000_check_downshift(struct e1000_hw *hw);
 static s32 e1000_check_downshift(struct e1000_hw *hw);
 static s32 e1000_check_polarity(struct e1000_hw *hw,
 static s32 e1000_check_polarity(struct e1000_hw *hw,
 				e1000_rev_polarity *polarity);
 				e1000_rev_polarity *polarity);
 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
 static void e1000_clear_vfta(struct e1000_hw *hw);
 static void e1000_clear_vfta(struct e1000_hw *hw);
-static s32 e1000_commit_shadow_ram(struct e1000_hw *hw);
 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
 					      bool link_up);
 					      bool link_up);
 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
-static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank);
 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
 				  u16 *max_length);
 				  u16 *max_length);
-static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static s32 e1000_get_software_flag(struct e1000_hw *hw);
-static s32 e1000_ich8_cycle_init(struct e1000_hw *hw);
-static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout);
 static s32 e1000_id_led_init(struct e1000_hw *hw);
 static s32 e1000_id_led_init(struct e1000_hw *hw);
-static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
-						 u32 cnf_base_addr,
-						 u32 cnf_size);
-static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw);
 static void e1000_init_rx_addrs(struct e1000_hw *hw);
 static void e1000_init_rx_addrs(struct e1000_hw *hw);
-static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
-static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
-static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
-				   u16 offset, u8 *sum);
-static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw,
-				      struct e1000_host_mng_command_header
-				      *hdr);
-static s32 e1000_mng_write_commit(struct e1000_hw *hw);
-static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
-				  struct e1000_phy_info *phy_info);
 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
 				  struct e1000_phy_info *phy_info);
 				  struct e1000_phy_info *phy_info);
-static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
-				  u16 *data);
-static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
-				   u16 *data);
-static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
 				  struct e1000_phy_info *phy_info);
 				  struct e1000_phy_info *phy_info);
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
-static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data);
-static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index,
-					u8 byte);
-static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte);
-static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data);
-static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
-				u16 *data);
-static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
-				 u16 data);
-static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
-				  u16 *data);
-static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
-				   u16 *data);
-static void e1000_release_software_flag(struct e1000_hw *hw);
 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop);
-static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
 static s32 e1000_set_phy_type(struct e1000_hw *hw);
 static s32 e1000_set_phy_type(struct e1000_hw *hw);
@@ -117,12 +63,11 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
-				     u16 count);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
-                                      u16 words, u16 *data);
+				  u16 words, u16 *data);
 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
 					u16 words, u16 *data);
 					u16 words, u16 *data);
 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
@@ -131,7 +76,7 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
 				  u16 phy_data);
 				  u16 phy_data);
-static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
 				 u16 *phy_data);
 				 u16 *phy_data);
 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
@@ -140,188 +85,164 @@ static void e1000_standby_eeprom(struct e1000_hw *hw);
 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
-static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer);
-static u8 e1000_calculate_mng_checksum(char *buffer, u32 length);
-static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex);
-static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data);
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data);
 
 
 /* IGP cable length table */
 /* IGP cable length table */
 static const
 static const
-u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-      5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
-      25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
-      40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
-      60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
-      90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
-      100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
-      110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
-
-static const
-u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
-    { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
-      0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
-      6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
-      21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
-      40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
-      60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
-      83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
-      104, 109, 114, 118, 121, 124};
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
+	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
+	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
+	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
+	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
+	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
+	    100,
+	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
+	    110, 110,
+	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
+	    120, 120
+};
 
 
 static DEFINE_SPINLOCK(e1000_eeprom_lock);
 static DEFINE_SPINLOCK(e1000_eeprom_lock);
 
 
-/******************************************************************************
- * Set the phy type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
 static s32 e1000_set_phy_type(struct e1000_hw *hw)
 static s32 e1000_set_phy_type(struct e1000_hw *hw)
 {
 {
-    DEBUGFUNC("e1000_set_phy_type");
-
-    if (hw->mac_type == e1000_undefined)
-        return -E1000_ERR_PHY_TYPE;
-
-    switch (hw->phy_id) {
-    case M88E1000_E_PHY_ID:
-    case M88E1000_I_PHY_ID:
-    case M88E1011_I_PHY_ID:
-    case M88E1111_I_PHY_ID:
-        hw->phy_type = e1000_phy_m88;
-        break;
-    case IGP01E1000_I_PHY_ID:
-        if (hw->mac_type == e1000_82541 ||
-            hw->mac_type == e1000_82541_rev_2 ||
-            hw->mac_type == e1000_82547 ||
-            hw->mac_type == e1000_82547_rev_2) {
-            hw->phy_type = e1000_phy_igp;
-            break;
-        }
-    case IGP03E1000_E_PHY_ID:
-        hw->phy_type = e1000_phy_igp_3;
-        break;
-    case IFE_E_PHY_ID:
-    case IFE_PLUS_E_PHY_ID:
-    case IFE_C_E_PHY_ID:
-        hw->phy_type = e1000_phy_ife;
-        break;
-    case GG82563_E_PHY_ID:
-        if (hw->mac_type == e1000_80003es2lan) {
-            hw->phy_type = e1000_phy_gg82563;
-            break;
-        }
-        /* Fall Through */
-    default:
-        /* Should never have loaded on this device */
-        hw->phy_type = e1000_phy_undefined;
-        return -E1000_ERR_PHY_TYPE;
-    }
-
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * IGP phy init script - initializes the GbE PHY
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_phy_init_script(struct e1000_hw *hw)
-{
-    u32 ret_val;
-    u16 phy_saved_data;
-
-    DEBUGFUNC("e1000_phy_init_script");
-
-    if (hw->phy_init_script) {
-        msleep(20);
-
-        /* Save off the current value of register 0x2F5B to be restored at
-         * the end of this routine. */
-        ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-        /* Disabled the PHY transmitter */
-        e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-        msleep(20);
-
-        e1000_write_phy_reg(hw,0x0000,0x0140);
-
-        msleep(5);
-
-        switch (hw->mac_type) {
-        case e1000_82541:
-        case e1000_82547:
-            e1000_write_phy_reg(hw, 0x1F95, 0x0001);
-
-            e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
-
-            e1000_write_phy_reg(hw, 0x1F79, 0x0018);
-
-            e1000_write_phy_reg(hw, 0x1F30, 0x1600);
-
-            e1000_write_phy_reg(hw, 0x1F31, 0x0014);
-
-            e1000_write_phy_reg(hw, 0x1F32, 0x161C);
-
-            e1000_write_phy_reg(hw, 0x1F94, 0x0003);
-
-            e1000_write_phy_reg(hw, 0x1F96, 0x003F);
-
-            e1000_write_phy_reg(hw, 0x2010, 0x0008);
-            break;
+	DEBUGFUNC("e1000_set_phy_type");
 
 
-        case e1000_82541_rev_2:
-        case e1000_82547_rev_2:
-            e1000_write_phy_reg(hw, 0x1F73, 0x0099);
-            break;
-        default:
-            break;
-        }
+	if (hw->mac_type == e1000_undefined)
+		return -E1000_ERR_PHY_TYPE;
 
 
-        e1000_write_phy_reg(hw, 0x0000, 0x3300);
-
-        msleep(20);
-
-        /* Now enable the transmitter */
-        e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-        if (hw->mac_type == e1000_82547) {
-            u16 fused, fine, coarse;
-
-            /* Move to analog registers page */
-            e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
-
-            if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
-                e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
+	switch (hw->phy_id) {
+	case M88E1000_E_PHY_ID:
+	case M88E1000_I_PHY_ID:
+	case M88E1011_I_PHY_ID:
+	case M88E1111_I_PHY_ID:
+		hw->phy_type = e1000_phy_m88;
+		break;
+	case IGP01E1000_I_PHY_ID:
+		if (hw->mac_type == e1000_82541 ||
+		    hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			hw->phy_type = e1000_phy_igp;
+			break;
+		}
+	default:
+		/* Should never have loaded on this device */
+		hw->phy_type = e1000_phy_undefined;
+		return -E1000_ERR_PHY_TYPE;
+	}
 
 
-                fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
-                coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+	return E1000_SUCCESS;
+}
 
 
-                if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
-                    coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
-                    fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
-                } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
-                    fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+/**
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_phy_init_script(struct e1000_hw *hw)
+{
+	u32 ret_val;
+	u16 phy_saved_data;
+
+	DEBUGFUNC("e1000_phy_init_script");
+
+	if (hw->phy_init_script) {
+		msleep(20);
+
+		/* Save off the current value of register 0x2F5B to be restored at
+		 * the end of this routine. */
+		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+		/* Disabled the PHY transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+		msleep(20);
+
+		e1000_write_phy_reg(hw, 0x0000, 0x0140);
+		msleep(5);
+
+		switch (hw->mac_type) {
+		case e1000_82541:
+		case e1000_82547:
+			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
+			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
+			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
+			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
+			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
+			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
+			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
+			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
+			e1000_write_phy_reg(hw, 0x2010, 0x0008);
+			break;
 
 
-                fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
-                        (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
-                        (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+		case e1000_82541_rev_2:
+		case e1000_82547_rev_2:
+			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
+			break;
+		default:
+			break;
+		}
 
 
-                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
-                e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
-                                    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
-            }
-        }
-    }
+		e1000_write_phy_reg(hw, 0x0000, 0x3300);
+		msleep(20);
+
+		/* Now enable the transmitter */
+		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+		if (hw->mac_type == e1000_82547) {
+			u16 fused, fine, coarse;
+
+			/* Move to analog registers page */
+			e1000_read_phy_reg(hw,
+					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
+					   &fused);
+
+			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+				e1000_read_phy_reg(hw,
+						   IGP01E1000_ANALOG_FUSE_STATUS,
+						   &fused);
+
+				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
+				coarse =
+				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
+
+				if (coarse >
+				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+					coarse -=
+					    IGP01E1000_ANALOG_FUSE_COARSE_10;
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
+				} else if (coarse ==
+					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
+
+				fused =
+				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
+				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
+				    (coarse &
+				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
+
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_CONTROL,
+						    fused);
+				e1000_write_phy_reg(hw,
+						    IGP01E1000_ANALOG_FUSE_BYPASS,
+						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
+			}
+		}
+	}
 }
 }
 
 
-/******************************************************************************
- * Set the mac type member in the hw struct.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+/**
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
+ * @hw: Struct containing variables accessed by shared code
+ */
 s32 e1000_set_mac_type(struct e1000_hw *hw)
 s32 e1000_set_mac_type(struct e1000_hw *hw)
 {
 {
 	DEBUGFUNC("e1000_set_mac_type");
 	DEBUGFUNC("e1000_set_mac_type");
@@ -397,61 +318,12 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
 	case E1000_DEV_ID_82547GI:
 	case E1000_DEV_ID_82547GI:
 		hw->mac_type = e1000_82547_rev_2;
 		hw->mac_type = e1000_82547_rev_2;
 		break;
 		break;
-	case E1000_DEV_ID_82571EB_COPPER:
-	case E1000_DEV_ID_82571EB_FIBER:
-	case E1000_DEV_ID_82571EB_SERDES:
-	case E1000_DEV_ID_82571EB_SERDES_DUAL:
-	case E1000_DEV_ID_82571EB_SERDES_QUAD:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER:
-	case E1000_DEV_ID_82571PT_QUAD_COPPER:
-	case E1000_DEV_ID_82571EB_QUAD_FIBER:
-	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
-		hw->mac_type = e1000_82571;
-		break;
-	case E1000_DEV_ID_82572EI_COPPER:
-	case E1000_DEV_ID_82572EI_FIBER:
-	case E1000_DEV_ID_82572EI_SERDES:
-	case E1000_DEV_ID_82572EI:
-		hw->mac_type = e1000_82572;
-		break;
-	case E1000_DEV_ID_82573E:
-	case E1000_DEV_ID_82573E_IAMT:
-	case E1000_DEV_ID_82573L:
-		hw->mac_type = e1000_82573;
-		break;
-	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
-	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
-	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
-	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-		hw->mac_type = e1000_80003es2lan;
-		break;
-	case E1000_DEV_ID_ICH8_IGP_M_AMT:
-	case E1000_DEV_ID_ICH8_IGP_AMT:
-	case E1000_DEV_ID_ICH8_IGP_C:
-	case E1000_DEV_ID_ICH8_IFE:
-	case E1000_DEV_ID_ICH8_IFE_GT:
-	case E1000_DEV_ID_ICH8_IFE_G:
-	case E1000_DEV_ID_ICH8_IGP_M:
-		hw->mac_type = e1000_ich8lan;
-		break;
 	default:
 	default:
 		/* Should never have loaded on this device */
 		/* Should never have loaded on this device */
 		return -E1000_ERR_MAC_TYPE;
 		return -E1000_ERR_MAC_TYPE;
 	}
 	}
 
 
 	switch (hw->mac_type) {
 	switch (hw->mac_type) {
-	case e1000_ich8lan:
-		hw->swfwhw_semaphore_present = true;
-		hw->asf_firmware_present = true;
-		break;
-	case e1000_80003es2lan:
-		hw->swfw_sync_present = true;
-		/* fall through */
-	case e1000_82571:
-	case e1000_82572:
-	case e1000_82573:
-		hw->eeprom_semaphore_present = true;
-		/* fall through */
 	case e1000_82541:
 	case e1000_82541:
 	case e1000_82547:
 	case e1000_82547:
 	case e1000_82541_rev_2:
 	case e1000_82541_rev_2:
@@ -468,8365 +340,5295 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
 	if (hw->mac_type == e1000_82543)
 	if (hw->mac_type == e1000_82543)
 		hw->bad_tx_carr_stats_fd = true;
 		hw->bad_tx_carr_stats_fd = true;
 
 
-	/* capable of receiving management packets to the host */
-	if (hw->mac_type >= e1000_82571)
-		hw->has_manc2h = true;
-
-	/* In rare occasions, ESB2 systems would end up started without
-	 * the RX unit being turned on.
-	 */
-	if (hw->mac_type == e1000_80003es2lan)
-		hw->rx_needs_kicking = true;
-
 	if (hw->mac_type > e1000_82544)
 	if (hw->mac_type > e1000_82544)
 		hw->has_smbus = true;
 		hw->has_smbus = true;
 
 
 	return E1000_SUCCESS;
 	return E1000_SUCCESS;
 }
 }
 
 
-/*****************************************************************************
- * Set media type and TBI compatibility.
- *
- * hw - Struct containing variables accessed by shared code
- * **************************************************************************/
+/**
+ * e1000_set_media_type - Set media type and TBI compatibility.
+ * @hw: Struct containing variables accessed by shared code
+ */
 void e1000_set_media_type(struct e1000_hw *hw)
 void e1000_set_media_type(struct e1000_hw *hw)
 {
 {
-    u32 status;
-
-    DEBUGFUNC("e1000_set_media_type");
-
-    if (hw->mac_type != e1000_82543) {
-        /* tbi_compatibility is only valid on 82543 */
-        hw->tbi_compatibility_en = false;
-    }
-
-    switch (hw->device_id) {
-    case E1000_DEV_ID_82545GM_SERDES:
-    case E1000_DEV_ID_82546GB_SERDES:
-    case E1000_DEV_ID_82571EB_SERDES:
-    case E1000_DEV_ID_82571EB_SERDES_DUAL:
-    case E1000_DEV_ID_82571EB_SERDES_QUAD:
-    case E1000_DEV_ID_82572EI_SERDES:
-    case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
-        hw->media_type = e1000_media_type_internal_serdes;
-        break;
-    default:
-        switch (hw->mac_type) {
-        case e1000_82542_rev2_0:
-        case e1000_82542_rev2_1:
-            hw->media_type = e1000_media_type_fiber;
-            break;
-        case e1000_ich8lan:
-        case e1000_82573:
-            /* The STATUS_TBIMODE bit is reserved or reused for the this
-             * device.
-             */
-            hw->media_type = e1000_media_type_copper;
-            break;
-        default:
-            status = er32(STATUS);
-            if (status & E1000_STATUS_TBIMODE) {
-                hw->media_type = e1000_media_type_fiber;
-                /* tbi_compatibility not valid on fiber */
-                hw->tbi_compatibility_en = false;
-            } else {
-                hw->media_type = e1000_media_type_copper;
-            }
-            break;
-        }
-    }
+	u32 status;
+
+	DEBUGFUNC("e1000_set_media_type");
+
+	if (hw->mac_type != e1000_82543) {
+		/* tbi_compatibility is only valid on 82543 */
+		hw->tbi_compatibility_en = false;
+	}
+
+	switch (hw->device_id) {
+	case E1000_DEV_ID_82545GM_SERDES:
+	case E1000_DEV_ID_82546GB_SERDES:
+		hw->media_type = e1000_media_type_internal_serdes;
+		break;
+	default:
+		switch (hw->mac_type) {
+		case e1000_82542_rev2_0:
+		case e1000_82542_rev2_1:
+			hw->media_type = e1000_media_type_fiber;
+			break;
+		default:
+			status = er32(STATUS);
+			if (status & E1000_STATUS_TBIMODE) {
+				hw->media_type = e1000_media_type_fiber;
+				/* tbi_compatibility not valid on fiber */
+				hw->tbi_compatibility_en = false;
+			} else {
+				hw->media_type = e1000_media_type_copper;
+			}
+			break;
+		}
+	}
 }
 }
 
 
-/******************************************************************************
- * Reset the transmit and receive units; mask and clear all interrupts.
+/**
+ * e1000_reset_hw: reset the hardware completely
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ */
 s32 e1000_reset_hw(struct e1000_hw *hw)
 s32 e1000_reset_hw(struct e1000_hw *hw)
 {
 {
-    u32 ctrl;
-    u32 ctrl_ext;
-    u32 icr;
-    u32 manc;
-    u32 led_ctrl;
-    u32 timeout;
-    u32 extcnf_ctrl;
-    s32 ret_val;
-
-    DEBUGFUNC("e1000_reset_hw");
-
-    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-        e1000_pci_clear_mwi(hw);
-    }
-
-    if (hw->bus_type == e1000_bus_type_pci_express) {
-        /* Prevent the PCI-E bus from sticking if there is no TLP connection
-         * on the last TLP read/write transaction when MAC is reset.
-         */
-        if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
-            DEBUGOUT("PCI-E Master disable polling has failed.\n");
-        }
-    }
-
-    /* Clear interrupt mask to stop board from generating interrupts */
-    DEBUGOUT("Masking off all interrupts\n");
-    ew32(IMC, 0xffffffff);
-
-    /* Disable the Transmit and Receive units.  Then delay to allow
-     * any pending transactions to complete before we hit the MAC with
-     * the global reset.
-     */
-    ew32(RCTL, 0);
-    ew32(TCTL, E1000_TCTL_PSP);
-    E1000_WRITE_FLUSH();
-
-    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
-    hw->tbi_compatibility_on = false;
-
-    /* Delay to allow any outstanding PCI transactions to complete before
-     * resetting the device
-     */
-    msleep(10);
-
-    ctrl = er32(CTRL);
-
-    /* Must reset the PHY before resetting the MAC */
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
-        msleep(5);
-    }
-
-    /* Must acquire the MDIO ownership before MAC reset.
-     * Ownership defaults to firmware after a reset. */
-    if (hw->mac_type == e1000_82573) {
-        timeout = 10;
-
-        extcnf_ctrl = er32(EXTCNF_CTRL);
-        extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-        do {
-            ew32(EXTCNF_CTRL, extcnf_ctrl);
-            extcnf_ctrl = er32(EXTCNF_CTRL);
-
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
-                break;
-            else
-                extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
-
-            msleep(2);
-            timeout--;
-        } while (timeout);
-    }
-
-    /* Workaround for ICH8 bit corruption issue in FIFO memory */
-    if (hw->mac_type == e1000_ich8lan) {
-        /* Set Tx and Rx buffer allocation to 8k apiece. */
-        ew32(PBA, E1000_PBA_8K);
-        /* Set Packet Buffer Size to 16k. */
-        ew32(PBS, E1000_PBS_16K);
-    }
-
-    /* Issue a global reset to the MAC.  This will reset the chip's
-     * transmit, receive, DMA, and link units.  It will not effect
-     * the current PCI configuration.  The global reset bit is self-
-     * clearing, and should clear within a microsecond.
-     */
-    DEBUGOUT("Issuing a global reset to MAC\n");
-
-    switch (hw->mac_type) {
-        case e1000_82544:
-        case e1000_82540:
-        case e1000_82545:
-        case e1000_82546:
-        case e1000_82541:
-        case e1000_82541_rev_2:
-            /* These controllers can't ack the 64-bit write when issuing the
-             * reset, so use IO-mapping as a workaround to issue the reset */
-            E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
-            break;
-        case e1000_82545_rev_3:
-        case e1000_82546_rev_3:
-            /* Reset is performed on a shadow of the control register */
-            ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
-            break;
-        case e1000_ich8lan:
-            if (!hw->phy_reset_disable &&
-                e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
-                /* e1000_ich8lan PHY HW reset requires MAC CORE reset
-                 * at the same time to make sure the interface between
-                 * MAC and the external PHY is reset.
-                 */
-                ctrl |= E1000_CTRL_PHY_RST;
-            }
-
-            e1000_get_software_flag(hw);
-            ew32(CTRL, (ctrl | E1000_CTRL_RST));
-            msleep(5);
-            break;
-        default:
-            ew32(CTRL, (ctrl | E1000_CTRL_RST));
-            break;
-    }
-
-    /* After MAC reset, force reload of EEPROM to restore power-on settings to
-     * device.  Later controllers reload the EEPROM automatically, so just wait
-     * for reload to complete.
-     */
-    switch (hw->mac_type) {
-        case e1000_82542_rev2_0:
-        case e1000_82542_rev2_1:
-        case e1000_82543:
-        case e1000_82544:
-            /* Wait for reset to complete */
-            udelay(10);
-            ctrl_ext = er32(CTRL_EXT);
-            ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-            ew32(CTRL_EXT, ctrl_ext);
-            E1000_WRITE_FLUSH();
-            /* Wait for EEPROM reload */
-            msleep(2);
-            break;
-        case e1000_82541:
-        case e1000_82541_rev_2:
-        case e1000_82547:
-        case e1000_82547_rev_2:
-            /* Wait for EEPROM reload */
-            msleep(20);
-            break;
-        case e1000_82573:
-            if (!e1000_is_onboard_nvm_eeprom(hw)) {
-                udelay(10);
-                ctrl_ext = er32(CTRL_EXT);
-                ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-                ew32(CTRL_EXT, ctrl_ext);
-                E1000_WRITE_FLUSH();
-            }
-            /* fall through */
-        default:
-            /* Auto read done will delay 5ms or poll based on mac type */
-            ret_val = e1000_get_auto_rd_done(hw);
-            if (ret_val)
-                return ret_val;
-            break;
-    }
-
-    /* Disable HW ARPs on ASF enabled adapters */
-    if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
-        manc = er32(MANC);
-        manc &= ~(E1000_MANC_ARP_EN);
-        ew32(MANC, manc);
-    }
-
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        e1000_phy_init_script(hw);
-
-        /* Configure activity LED after PHY reset */
-        led_ctrl = er32(LEDCTL);
-        led_ctrl &= IGP_ACTIVITY_LED_MASK;
-        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        ew32(LEDCTL, led_ctrl);
-    }
-
-    /* Clear interrupt mask to stop board from generating interrupts */
-    DEBUGOUT("Masking off all interrupts\n");
-    ew32(IMC, 0xffffffff);
-
-    /* Clear any pending interrupt events. */
-    icr = er32(ICR);
-
-    /* If MWI was previously enabled, reenable it. */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
-            e1000_pci_set_mwi(hw);
-    }
-
-    if (hw->mac_type == e1000_ich8lan) {
-        u32 kab = er32(KABGTXD);
-        kab |= E1000_KABGTXD_BGSQLBIAS;
-        ew32(KABGTXD, kab);
-    }
-
-    return E1000_SUCCESS;
-}
+	u32 ctrl;
+	u32 ctrl_ext;
+	u32 icr;
+	u32 manc;
+	u32 led_ctrl;
+	s32 ret_val;
 
 
-/******************************************************************************
- *
- * Initialize a number of hardware-dependent bits
- *
- * hw: Struct containing variables accessed by shared code
- *
- * This function contains hardware limitation workarounds for PCI-E adapters
- *
- *****************************************************************************/
-static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
-{
-    if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
-        /* Settings common to all PCI-express silicon */
-        u32 reg_ctrl, reg_ctrl_ext;
-        u32 reg_tarc0, reg_tarc1;
-        u32 reg_tctl;
-        u32 reg_txdctl, reg_txdctl1;
-
-        /* link autonegotiation/sync workarounds */
-        reg_tarc0 = er32(TARC0);
-        reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
-
-        /* Enable not-done TX descriptor counting */
-        reg_txdctl = er32(TXDCTL);
-        reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
-        ew32(TXDCTL, reg_txdctl);
-        reg_txdctl1 = er32(TXDCTL1);
-        reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
-        ew32(TXDCTL1, reg_txdctl1);
-
-        switch (hw->mac_type) {
-            case e1000_82571:
-            case e1000_82572:
-                /* Clear PHY TX compatible mode bits */
-                reg_tarc1 = er32(TARC1);
-                reg_tarc1 &= ~((1 << 30)|(1 << 29));
-
-                /* link autonegotiation/sync workarounds */
-                reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
-
-                /* TX ring control fixes */
-                reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
-
-                /* Multiple read bit is reversed polarity */
-                reg_tctl = er32(TCTL);
-                if (reg_tctl & E1000_TCTL_MULR)
-                    reg_tarc1 &= ~(1 << 28);
-                else
-                    reg_tarc1 |= (1 << 28);
-
-                ew32(TARC1, reg_tarc1);
-                break;
-            case e1000_82573:
-                reg_ctrl_ext = er32(CTRL_EXT);
-                reg_ctrl_ext &= ~(1 << 23);
-                reg_ctrl_ext |= (1 << 22);
-
-                /* TX byte count fix */
-                reg_ctrl = er32(CTRL);
-                reg_ctrl &= ~(1 << 29);
-
-                ew32(CTRL_EXT, reg_ctrl_ext);
-                ew32(CTRL, reg_ctrl);
-                break;
-            case e1000_80003es2lan:
-                /* improve small packet performace for fiber/serdes */
-                if ((hw->media_type == e1000_media_type_fiber) ||
-                    (hw->media_type == e1000_media_type_internal_serdes)) {
-                    reg_tarc0 &= ~(1 << 20);
-                }
-
-                /* Multiple read bit is reversed polarity */
-                reg_tctl = er32(TCTL);
-                reg_tarc1 = er32(TARC1);
-                if (reg_tctl & E1000_TCTL_MULR)
-                    reg_tarc1 &= ~(1 << 28);
-                else
-                    reg_tarc1 |= (1 << 28);
-
-                ew32(TARC1, reg_tarc1);
-                break;
-            case e1000_ich8lan:
-                /* Reduce concurrent DMA requests to 3 from 4 */
-                if ((hw->revision_id < 3) ||
-                    ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
-                     (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
-                    reg_tarc0 |= ((1 << 29)|(1 << 28));
-
-                reg_ctrl_ext = er32(CTRL_EXT);
-                reg_ctrl_ext |= (1 << 22);
-                ew32(CTRL_EXT, reg_ctrl_ext);
-
-                /* workaround TX hang with TSO=on */
-                reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
-
-                /* Multiple read bit is reversed polarity */
-                reg_tctl = er32(TCTL);
-                reg_tarc1 = er32(TARC1);
-                if (reg_tctl & E1000_TCTL_MULR)
-                    reg_tarc1 &= ~(1 << 28);
-                else
-                    reg_tarc1 |= (1 << 28);
-
-                /* workaround TX hang with TSO=on */
-                reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
-
-                ew32(TARC1, reg_tarc1);
-                break;
-            default:
-                break;
-        }
-
-        ew32(TARC0, reg_tarc0);
-    }
+	DEBUGFUNC("e1000_reset_hw");
+
+	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Disable the Transmit and Receive units.  Then delay to allow
+	 * any pending transactions to complete before we hit the MAC with
+	 * the global reset.
+	 */
+	ew32(RCTL, 0);
+	ew32(TCTL, E1000_TCTL_PSP);
+	E1000_WRITE_FLUSH();
+
+	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+	hw->tbi_compatibility_on = false;
+
+	/* Delay to allow any outstanding PCI transactions to complete before
+	 * resetting the device
+	 */
+	msleep(10);
+
+	ctrl = er32(CTRL);
+
+	/* Must reset the PHY before resetting the MAC */
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
+		msleep(5);
+	}
+
+	/* Issue a global reset to the MAC.  This will reset the chip's
+	 * transmit, receive, DMA, and link units.  It will not effect
+	 * the current PCI configuration.  The global reset bit is self-
+	 * clearing, and should clear within a microsecond.
+	 */
+	DEBUGOUT("Issuing a global reset to MAC\n");
+
+	switch (hw->mac_type) {
+	case e1000_82544:
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82546:
+	case e1000_82541:
+	case e1000_82541_rev_2:
+		/* These controllers can't ack the 64-bit write when issuing the
+		 * reset, so use IO-mapping as a workaround to issue the reset */
+		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		/* Reset is performed on a shadow of the control register */
+		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
+		break;
+	default:
+		ew32(CTRL, (ctrl | E1000_CTRL_RST));
+		break;
+	}
+
+	/* After MAC reset, force reload of EEPROM to restore power-on settings to
+	 * device.  Later controllers reload the EEPROM automatically, so just wait
+	 * for reload to complete.
+	 */
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* Wait for reset to complete */
+		udelay(10);
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		/* Wait for EEPROM reload */
+		msleep(2);
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		/* Wait for EEPROM reload */
+		msleep(20);
+		break;
+	default:
+		/* Auto read done will delay 5ms or poll based on mac type */
+		ret_val = e1000_get_auto_rd_done(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	}
+
+	/* Disable HW ARPs on ASF enabled adapters */
+	if (hw->mac_type >= e1000_82540) {
+		manc = er32(MANC);
+		manc &= ~(E1000_MANC_ARP_EN);
+		ew32(MANC, manc);
+	}
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		e1000_phy_init_script(hw);
+
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Clear interrupt mask to stop board from generating interrupts */
+	DEBUGOUT("Masking off all interrupts\n");
+	ew32(IMC, 0xffffffff);
+
+	/* Clear any pending interrupt events. */
+	icr = er32(ICR);
+
+	/* If MWI was previously enabled, reenable it. */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Performs basic configuration of the adapter.
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_init_hw: Performs basic configuration of the adapter.
+ * @hw: Struct containing variables accessed by shared code
  *
  *
  * Assumes that the controller has previously been reset and is in a
  * Assumes that the controller has previously been reset and is in a
  * post-reset uninitialized state. Initializes the receive address registers,
  * post-reset uninitialized state. Initializes the receive address registers,
  * multicast table, and VLAN filter table. Calls routines to setup link
  * multicast table, and VLAN filter table. Calls routines to setup link
  * configuration and flow control settings. Clears all on-chip counters. Leaves
  * configuration and flow control settings. Clears all on-chip counters. Leaves
  * the transmit and receive units disabled and uninitialized.
  * the transmit and receive units disabled and uninitialized.
- *****************************************************************************/
+ */
 s32 e1000_init_hw(struct e1000_hw *hw)
 s32 e1000_init_hw(struct e1000_hw *hw)
 {
 {
-    u32 ctrl;
-    u32 i;
-    s32 ret_val;
-    u32 mta_size;
-    u32 reg_data;
-    u32 ctrl_ext;
-
-    DEBUGFUNC("e1000_init_hw");
-
-    /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
-    if ((hw->mac_type == e1000_ich8lan) &&
-        ((hw->revision_id < 3) ||
-         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
-          (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
-            reg_data = er32(STATUS);
-            reg_data &= ~0x80000000;
-            ew32(STATUS, reg_data);
-    }
-
-    /* Initialize Identification LED */
-    ret_val = e1000_id_led_init(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Initializing Identification LED\n");
-        return ret_val;
-    }
-
-    /* Set the media type and TBI compatibility */
-    e1000_set_media_type(hw);
-
-    /* Must be called after e1000_set_media_type because media_type is used */
-    e1000_initialize_hardware_bits(hw);
-
-    /* Disabling VLAN filtering. */
-    DEBUGOUT("Initializing the IEEE VLAN\n");
-    /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
-    if (hw->mac_type != e1000_ich8lan) {
-        if (hw->mac_type < e1000_82545_rev_3)
-            ew32(VET, 0);
-        e1000_clear_vfta(hw);
-    }
-
-    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
-        e1000_pci_clear_mwi(hw);
-        ew32(RCTL, E1000_RCTL_RST);
-        E1000_WRITE_FLUSH();
-        msleep(5);
-    }
-
-    /* Setup the receive address. This involves initializing all of the Receive
-     * Address Registers (RARs 0 - 15).
-     */
-    e1000_init_rx_addrs(hw);
-
-    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
-    if (hw->mac_type == e1000_82542_rev2_0) {
-        ew32(RCTL, 0);
-        E1000_WRITE_FLUSH();
-        msleep(1);
-        if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
-            e1000_pci_set_mwi(hw);
-    }
-
-    /* Zero out the Multicast HASH table */
-    DEBUGOUT("Zeroing the MTA\n");
-    mta_size = E1000_MC_TBL_SIZE;
-    if (hw->mac_type == e1000_ich8lan)
-        mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
-    for (i = 0; i < mta_size; i++) {
-        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
-        /* use write flush to prevent Memory Write Block (MWB) from
-         * occuring when accessing our register space */
-        E1000_WRITE_FLUSH();
-    }
-
-    /* Set the PCI priority bit correctly in the CTRL register.  This
-     * determines if the adapter gives priority to receives, or if it
-     * gives equal priority to transmits and receives.  Valid only on
-     * 82542 and 82543 silicon.
-     */
-    if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
-        ctrl = er32(CTRL);
-        ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
-    }
-
-    switch (hw->mac_type) {
-    case e1000_82545_rev_3:
-    case e1000_82546_rev_3:
-        break;
-    default:
-        /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
-	if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
-		e1000_pcix_set_mmrbc(hw, 2048);
-	break;
-    }
-
-    /* More time needed for PHY to initialize */
-    if (hw->mac_type == e1000_ich8lan)
-        msleep(15);
-
-    /* Call a subroutine to configure the link and setup flow control. */
-    ret_val = e1000_setup_link(hw);
-
-    /* Set the transmit descriptor write-back policy */
-    if (hw->mac_type > e1000_82544) {
-        ctrl = er32(TXDCTL);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        ew32(TXDCTL, ctrl);
-    }
-
-    if (hw->mac_type == e1000_82573) {
-        e1000_enable_tx_pkt_filtering(hw);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case e1000_80003es2lan:
-        /* Enable retransmit on late collisions */
-        reg_data = er32(TCTL);
-        reg_data |= E1000_TCTL_RTLC;
-        ew32(TCTL, reg_data);
-
-        /* Configure Gigabit Carry Extend Padding */
-        reg_data = er32(TCTL_EXT);
-        reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
-        ew32(TCTL_EXT, reg_data);
-
-        /* Configure Transmit Inter-Packet Gap */
-        reg_data = er32(TIPG);
-        reg_data &= ~E1000_TIPG_IPGT_MASK;
-        reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-        ew32(TIPG, reg_data);
-
-        reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
-        reg_data &= ~0x00100000;
-        E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
-        /* Fall through */
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_ich8lan:
-        ctrl = er32(TXDCTL1);
-        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
-        ew32(TXDCTL1, ctrl);
-        break;
-    }
-
-
-    if (hw->mac_type == e1000_82573) {
-        u32 gcr = er32(GCR);
-        gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
-        ew32(GCR, gcr);
-    }
-
-    /* Clear all of the statistics registers (clear on read).  It is
-     * important that we do this after we have tried to establish link
-     * because the symbol error count will increment wildly if there
-     * is no link.
-     */
-    e1000_clear_hw_cntrs(hw);
-
-    /* ICH8 No-snoop bits are opposite polarity.
-     * Set to snoop by default after reset. */
-    if (hw->mac_type == e1000_ich8lan)
-        e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
-
-    if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
-        hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
-        ctrl_ext = er32(CTRL_EXT);
-        /* Relaxed ordering must be disabled to avoid a parity
-         * error crash in a PCI slot. */
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        ew32(CTRL_EXT, ctrl_ext);
-    }
-
-    return ret_val;
-}
+	u32 ctrl;
+	u32 i;
+	s32 ret_val;
+	u32 mta_size;
+	u32 ctrl_ext;
 
 
-/******************************************************************************
- * Adjust SERDES output amplitude based on EEPROM setting.
- *
- * hw - Struct containing variables accessed by shared code.
- *****************************************************************************/
-static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
-{
-    u16 eeprom_data;
-    s32  ret_val;
-
-    DEBUGFUNC("e1000_adjust_serdes_amplitude");
-
-    if (hw->media_type != e1000_media_type_internal_serdes)
-        return E1000_SUCCESS;
-
-    switch (hw->mac_type) {
-    case e1000_82545_rev_3:
-    case e1000_82546_rev_3:
-        break;
-    default:
-        return E1000_SUCCESS;
-    }
-
-    ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
-    if (ret_val) {
-        return ret_val;
-    }
-
-    if (eeprom_data != EEPROM_RESERVED_WORD) {
-        /* Adjust SERDES output amplitude only. */
-        eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
+	DEBUGFUNC("e1000_init_hw");
 
 
-/******************************************************************************
- * Configures flow control and link settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the apropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- *****************************************************************************/
-s32 e1000_setup_link(struct e1000_hw *hw)
-{
-    u32 ctrl_ext;
-    s32 ret_val;
-    u16 eeprom_data;
-
-    DEBUGFUNC("e1000_setup_link");
-
-    /* In the case of the phy reset being blocked, we already have a link.
-     * We do not have to set it up again. */
-    if (e1000_check_phy_reset_block(hw))
-        return E1000_SUCCESS;
-
-    /* Read and store word 0x0F of the EEPROM. This word contains bits
-     * that determine the hardware's default PAUSE (flow control) mode,
-     * a bit that determines whether the HW defaults to enabling or
-     * disabling auto-negotiation, and the direction of the
-     * SW defined pins. If there is no SW over-ride of the flow
-     * control setting, then the variable hw->fc will
-     * be initialized based on a value in the EEPROM.
-     */
-    if (hw->fc == E1000_FC_DEFAULT) {
-        switch (hw->mac_type) {
-        case e1000_ich8lan:
-        case e1000_82573:
-            hw->fc = E1000_FC_FULL;
-            break;
-        default:
-            ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                        1, &eeprom_data);
-            if (ret_val) {
-                DEBUGOUT("EEPROM Read Error\n");
-                return -E1000_ERR_EEPROM;
-            }
-            if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
-                hw->fc = E1000_FC_NONE;
-            else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
-                    EEPROM_WORD0F_ASM_DIR)
-                hw->fc = E1000_FC_TX_PAUSE;
-            else
-                hw->fc = E1000_FC_FULL;
-            break;
-        }
-    }
-
-    /* We want to save off the original Flow Control configuration just
-     * in case we get disconnected and then reconnected into a different
-     * hub or switch with different Flow Control capabilities.
-     */
-    if (hw->mac_type == e1000_82542_rev2_0)
-        hw->fc &= (~E1000_FC_TX_PAUSE);
-
-    if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
-        hw->fc &= (~E1000_FC_RX_PAUSE);
-
-    hw->original_fc = hw->fc;
-
-    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
-
-    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
-     * polarity value for the SW controlled pins, and setup the
-     * Extended Device Control reg with that info.
-     * This is needed because one of the SW controlled pins is used for
-     * signal detection.  So this should be done before e1000_setup_pcs_link()
-     * or e1000_phy_setup() is called.
-     */
-    if (hw->mac_type == e1000_82543) {
-        ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
-                                    1, &eeprom_data);
-        if (ret_val) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
-                    SWDPIO__EXT_SHIFT);
-        ew32(CTRL_EXT, ctrl_ext);
-    }
-
-    /* Call the necessary subroutine to configure the link. */
-    ret_val = (hw->media_type == e1000_media_type_copper) ?
-              e1000_setup_copper_link(hw) :
-              e1000_setup_fiber_serdes_link(hw);
-
-    /* Initialize the flow control address, type, and PAUSE timer
-     * registers to their default values.  This is done even if flow
-     * control is disabled, because it does not hurt anything to
-     * initialize these registers.
-     */
-    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
-
-    /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
-    if (hw->mac_type != e1000_ich8lan) {
-        ew32(FCT, FLOW_CONTROL_TYPE);
-        ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
-        ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
-    }
-
-    ew32(FCTTV, hw->fc_pause_time);
-
-    /* Set the flow control receive threshold registers.  Normally,
-     * these registers will be set to a default threshold that may be
-     * adjusted later by the driver's runtime code.  However, if the
-     * ability to transmit pause frames in not enabled, then these
-     * registers will be set to 0.
-     */
-    if (!(hw->fc & E1000_FC_TX_PAUSE)) {
-        ew32(FCRTL, 0);
-        ew32(FCRTH, 0);
-    } else {
-        /* We need to set up the Receive Threshold high and low water marks
-         * as well as (optionally) enabling the transmission of XON frames.
-         */
-        if (hw->fc_send_xon) {
-            ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
-            ew32(FCRTH, hw->fc_high_water);
-        } else {
-            ew32(FCRTL, hw->fc_low_water);
-            ew32(FCRTH, hw->fc_high_water);
-        }
-    }
-    return ret_val;
-}
+	/* Initialize Identification LED */
+	ret_val = e1000_id_led_init(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Initializing Identification LED\n");
+		return ret_val;
+	}
 
 
-/******************************************************************************
- * Sets up link for a fiber based or serdes based adapter
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- *****************************************************************************/
-static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
-{
-    u32 ctrl;
-    u32 status;
-    u32 txcw = 0;
-    u32 i;
-    u32 signal = 0;
-    s32 ret_val;
-
-    DEBUGFUNC("e1000_setup_fiber_serdes_link");
-
-    /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
-     * until explicitly turned off or a power cycle is performed.  A read to
-     * the register does not indicate its status.  Therefore, we ensure
-     * loopback mode is disabled during initialization.
-     */
-    if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
-        ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK);
-
-    /* On adapters with a MAC newer than 82544, SWDP 1 will be
-     * set when the optics detect a signal. On older adapters, it will be
-     * cleared when there is a signal.  This applies to fiber media only.
-     * If we're on serdes media, adjust the output amplitude to value
-     * set in the EEPROM.
-     */
-    ctrl = er32(CTRL);
-    if (hw->media_type == e1000_media_type_fiber)
-        signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
-    ret_val = e1000_adjust_serdes_amplitude(hw);
-    if (ret_val)
-        return ret_val;
-
-    /* Take the link out of reset */
-    ctrl &= ~(E1000_CTRL_LRST);
-
-    /* Adjust VCO speed to improve BER performance */
-    ret_val = e1000_set_vco_speed(hw);
-    if (ret_val)
-        return ret_val;
-
-    e1000_config_collision_dist(hw);
-
-    /* Check for a software override of the flow control settings, and setup
-     * the device accordingly.  If auto-negotiation is enabled, then software
-     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
-     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
-     * auto-negotiation is disabled, then software will have to manually
-     * configure the two flow control enable bits in the CTRL register.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause frames, but
-     *          not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames but we do
-     *          not support receiving pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) are enabled.
-     */
-    switch (hw->fc) {
-    case E1000_FC_NONE:
-        /* Flow control is completely disabled by a software over-ride. */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
-        break;
-    case E1000_FC_RX_PAUSE:
-        /* RX Flow control is enabled and TX Flow control is disabled by a
-         * software over-ride. Since there really isn't a way to advertise
-         * that we are capable of RX Pause ONLY, we will advertise that we
-         * support both symmetric and asymmetric RX PAUSE. Later, we will
-         *  disable the adapter's ability to send PAUSE frames.
-         */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-        break;
-    case E1000_FC_TX_PAUSE:
-        /* TX Flow control is enabled, and RX Flow control is disabled, by a
-         * software over-ride.
-         */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
-        break;
-    case E1000_FC_FULL:
-        /* Flow control (both RX and TX) is enabled by a software over-ride. */
-        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-        break;
-    }
-
-    /* Since auto-negotiation is enabled, take the link out of reset (the link
-     * will be in reset, because we previously reset the chip). This will
-     * restart auto-negotiation.  If auto-neogtiation is successful then the
-     * link-up status bit will be set and the flow control enable bits (RFCE
-     * and TFCE) will be set according to their negotiated value.
-     */
-    DEBUGOUT("Auto-negotiation enabled\n");
-
-    ew32(TXCW, txcw);
-    ew32(CTRL, ctrl);
-    E1000_WRITE_FLUSH();
-
-    hw->txcw = txcw;
-    msleep(1);
-
-    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
-     * indication in the Device Status Register.  Time-out if a link isn't
-     * seen in 500 milliseconds seconds (Auto-negotiation should complete in
-     * less than 500 milliseconds even if the other end is doing it in SW).
-     * For internal serdes, we just assume a signal is present, then poll.
-     */
-    if (hw->media_type == e1000_media_type_internal_serdes ||
-       (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
-        DEBUGOUT("Looking for Link\n");
-        for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
-            msleep(10);
-            status = er32(STATUS);
-            if (status & E1000_STATUS_LU) break;
-        }
-        if (i == (LINK_UP_TIMEOUT / 10)) {
-            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
-            hw->autoneg_failed = 1;
-            /* AutoNeg failed to achieve a link, so we'll call
-             * e1000_check_for_link. This routine will force the link up if
-             * we detect a signal. This will allow us to communicate with
-             * non-autonegotiating link partners.
-             */
-            ret_val = e1000_check_for_link(hw);
-            if (ret_val) {
-                DEBUGOUT("Error while checking for link\n");
-                return ret_val;
-            }
-            hw->autoneg_failed = 0;
-        } else {
-            hw->autoneg_failed = 0;
-            DEBUGOUT("Valid Link Found\n");
-        }
-    } else {
-        DEBUGOUT("No Signal Detected\n");
-    }
-    return E1000_SUCCESS;
-}
+	/* Set the media type and TBI compatibility */
+	e1000_set_media_type(hw);
+
+	/* Disabling VLAN filtering. */
+	DEBUGOUT("Initializing the IEEE VLAN\n");
+	if (hw->mac_type < e1000_82545_rev_3)
+		ew32(VET, 0);
+	e1000_clear_vfta(hw);
+
+	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+		e1000_pci_clear_mwi(hw);
+		ew32(RCTL, E1000_RCTL_RST);
+		E1000_WRITE_FLUSH();
+		msleep(5);
+	}
 
 
-/******************************************************************************
-* Make sure we have a valid PHY and change PHY mode before link setup.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
-{
-    u32 ctrl;
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_copper_link_preconfig");
-
-    ctrl = er32(CTRL);
-    /* With 82543, we need to force speed and duplex on the MAC equal to what
-     * the PHY speed and duplex configuration is. In addition, we need to
-     * perform a hardware reset on the PHY to take it out of reset.
-     */
-    if (hw->mac_type > e1000_82543) {
-        ctrl |= E1000_CTRL_SLU;
-        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-        ew32(CTRL, ctrl);
-    } else {
-        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
-        ew32(CTRL, ctrl);
-        ret_val = e1000_phy_hw_reset(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    /* Make sure we have a valid PHY */
-    ret_val = e1000_detect_gig_phy(hw);
-    if (ret_val) {
-        DEBUGOUT("Error, did not detect valid phy.\n");
-        return ret_val;
-    }
-    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
-
-    /* Set PHY to class A mode (if necessary) */
-    ret_val = e1000_set_phy_mode(hw);
-    if (ret_val)
-        return ret_val;
-
-    if ((hw->mac_type == e1000_82545_rev_3) ||
-       (hw->mac_type == e1000_82546_rev_3)) {
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        phy_data |= 0x00000008;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-    }
-
-    if (hw->mac_type <= e1000_82543 ||
-        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
-        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
-        hw->phy_reset_disable = false;
-
-   return E1000_SUCCESS;
-}
+	/* Setup the receive address. This involves initializing all of the Receive
+	 * Address Registers (RARs 0 - 15).
+	 */
+	e1000_init_rx_addrs(hw);
+
+	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+	if (hw->mac_type == e1000_82542_rev2_0) {
+		ew32(RCTL, 0);
+		E1000_WRITE_FLUSH();
+		msleep(1);
+		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
+			e1000_pci_set_mwi(hw);
+	}
 
 
+	/* Zero out the Multicast HASH table */
+	DEBUGOUT("Zeroing the MTA\n");
+	mta_size = E1000_MC_TBL_SIZE;
+	for (i = 0; i < mta_size; i++) {
+		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+		/* use write flush to prevent Memory Write Block (MWB) from
+		 * occurring when accessing our register space */
+		E1000_WRITE_FLUSH();
+	}
 
 
-/********************************************************************
-* Copper link setup for e1000_phy_igp series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
-{
-    u32 led_ctrl;
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_copper_link_igp_setup");
-
-    if (hw->phy_reset_disable)
-        return E1000_SUCCESS;
-
-    ret_val = e1000_phy_reset(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Resetting the PHY\n");
-        return ret_val;
-    }
-
-    /* Wait 15ms for MAC to configure PHY from eeprom settings */
-    msleep(15);
-    if (hw->mac_type != e1000_ich8lan) {
-    /* Configure activity LED after PHY reset */
-    led_ctrl = er32(LEDCTL);
-    led_ctrl &= IGP_ACTIVITY_LED_MASK;
-    led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-    ew32(LEDCTL, led_ctrl);
-    }
-
-    /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
-    if (hw->phy_type == e1000_phy_igp) {
-        /* disable lplu d3 during driver init */
-        ret_val = e1000_set_d3_lplu_state(hw, false);
-        if (ret_val) {
-            DEBUGOUT("Error Disabling LPLU D3\n");
-            return ret_val;
-        }
-    }
-
-    /* disable lplu d0 during driver init */
-    ret_val = e1000_set_d0_lplu_state(hw, false);
-    if (ret_val) {
-        DEBUGOUT("Error Disabling LPLU D0\n");
-        return ret_val;
-    }
-    /* Configure mdi-mdix settings */
-    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        hw->dsp_config_state = e1000_dsp_config_disabled;
-        /* Force MDI for earlier revs of the IGP PHY */
-        phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
-        hw->mdix = 1;
-
-    } else {
-        hw->dsp_config_state = e1000_dsp_config_enabled;
-        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-            break;
-        case 2:
-            phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
-            break;
-        }
-    }
-    ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* set auto-master slave resolution settings */
-    if (hw->autoneg) {
-        e1000_ms_type phy_ms_setting = hw->master_slave;
-
-        if (hw->ffe_config_state == e1000_ffe_config_active)
-            hw->ffe_config_state = e1000_ffe_config_enabled;
-
-        if (hw->dsp_config_state == e1000_dsp_config_activated)
-            hw->dsp_config_state = e1000_dsp_config_enabled;
-
-        /* when autonegotiation advertisment is only 1000Mbps then we
-          * should disable SmartSpeed and enable Auto MasterSlave
-          * resolution as hardware default. */
-        if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
-            /* Disable SmartSpeed */
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-            /* Set auto Master/Slave resolution process */
-            ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
-            if (ret_val)
-                return ret_val;
-            phy_data &= ~CR_1000T_MS_ENABLE;
-            ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* load defaults for future use */
-        hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
-                                        ((phy_data & CR_1000T_MS_VALUE) ?
-                                         e1000_ms_force_master :
-                                         e1000_ms_force_slave) :
-                                         e1000_ms_auto;
-
-        switch (phy_ms_setting) {
-        case e1000_ms_force_master:
-            phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
-            break;
-        case e1000_ms_force_slave:
-            phy_data |= CR_1000T_MS_ENABLE;
-            phy_data &= ~(CR_1000T_MS_VALUE);
-            break;
-        case e1000_ms_auto:
-            phy_data &= ~CR_1000T_MS_ENABLE;
-            default:
-            break;
-        }
-        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
+	/* Set the PCI priority bit correctly in the CTRL register.  This
+	 * determines if the adapter gives priority to receives, or if it
+	 * gives equal priority to transmits and receives.  Valid only on
+	 * 82542 and 82543 silicon.
+	 */
+	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
+	}
 
 
-/********************************************************************
-* Copper link setup for e1000_phy_gg82563 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 phy_data;
-    u32 reg_data;
-
-    DEBUGFUNC("e1000_copper_link_ggp_setup");
-
-    if (!hw->phy_reset_disable) {
-
-        /* Enable CRS on TX for half-duplex operation. */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-        /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
-        phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
-
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Options:
-         *   MDI/MDI-X = 0 (default)
-         *   0 - Auto for all speeds
-         *   1 - MDI mode
-         *   2 - MDI-X mode
-         *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-         */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
-
-        switch (hw->mdix) {
-        case 1:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
-            break;
-        case 2:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
-            break;
-        case 0:
-        default:
-            phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
-            break;
-        }
-
-        /* Options:
-         *   disable_polarity_correction = 0 (default)
-         *       Automatic Correction for Reversed Cable Polarity
-         *   0 - Disabled
-         *   1 - Enabled
-         */
-        phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        if (hw->disable_polarity_correction == 1)
-            phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        /* SW Reset the PHY so all changes take effect */
-        ret_val = e1000_phy_reset(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Resetting the PHY\n");
-            return ret_val;
-        }
-    } /* phy_reset_disable */
-
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Bypass RX and TX FIFO's */
-        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
-                                       E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
-
-        if (ret_val)
-            return ret_val;
-
-        reg_data = er32(CTRL_EXT);
-        reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
-        ew32(CTRL_EXT, reg_data);
-
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Do not init these registers when the HW is in IAMT mode, since the
-         * firmware will have already initialized them.  We only initialize
-         * them if the HW is not in IAMT mode.
-         */
-        if (!e1000_check_mng_mode(hw)) {
-            /* Enable Electrical Idle on the PHY */
-            phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
-            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-            ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
-                                          phy_data);
-
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* Workaround: Disable padding in Kumeran interface in the MAC
-         * and in the PHY to avoid CRC errors.
-         */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        phy_data |= GG82563_ICR_DIS_PADDING;
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
-                                      phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+		if (hw->bus_type == e1000_bus_type_pcix
+		    && e1000_pcix_get_mmrbc(hw) > 2048)
+			e1000_pcix_set_mmrbc(hw, 2048);
+		break;
+	}
 
 
-/********************************************************************
-* Copper link setup for e1000_phy_m88 series.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_copper_link_mgp_setup");
-
-    if (hw->phy_reset_disable)
-        return E1000_SUCCESS;
-
-    /* Enable CRS on TX. This must be set for half-duplex operation. */
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
-    /* Options:
-     *   MDI/MDI-X = 0 (default)
-     *   0 - Auto for all speeds
-     *   1 - MDI mode
-     *   2 - MDI-X mode
-     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
-     */
-    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
-    switch (hw->mdix) {
-    case 1:
-        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
-        break;
-    case 2:
-        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
-        break;
-    case 3:
-        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
-        break;
-    case 0:
-    default:
-        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
-        break;
-    }
-
-    /* Options:
-     *   disable_polarity_correction = 0 (default)
-     *       Automatic Correction for Reversed Cable Polarity
-     *   0 - Disabled
-     *   1 - Enabled
-     */
-    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
-    if (hw->disable_polarity_correction == 1)
-        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_revision < M88E1011_I_REV_4) {
-        /* Force TX_CLK in the Extended PHY Specific Control Register
-         * to 25MHz clock.
-         */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
-        if ((hw->phy_revision == E1000_REVISION_2) &&
-            (hw->phy_id == M88E1111_I_PHY_ID)) {
-            /* Vidalia Phy, set the downshift counter to 5x */
-            phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
-            phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
-            ret_val = e1000_write_phy_reg(hw,
-                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            /* Configure Master and Slave downshift values */
-            phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
-                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
-            phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
-                             M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
-            ret_val = e1000_write_phy_reg(hw,
-                                        M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-            if (ret_val)
-               return ret_val;
-        }
-    }
-
-    /* SW Reset the PHY so all changes take effect */
-    ret_val = e1000_phy_reset(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Resetting the PHY\n");
-        return ret_val;
-    }
-
-   return E1000_SUCCESS;
-}
+	/* Call a subroutine to configure the link and setup flow control. */
+	ret_val = e1000_setup_link(hw);
 
 
-/********************************************************************
-* Setup auto-negotiation and flow control advertisements,
-* and then perform auto-negotiation.
-*
-* hw - Struct containing variables accessed by shared code
-*********************************************************************/
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_copper_link_autoneg");
-
-    /* Perform some bounds checking on the hw->autoneg_advertised
-     * parameter.  If this variable is zero, then set it to the default.
-     */
-    hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-    /* If autoneg_advertised is zero, we assume it was not defaulted
-     * by the calling code so we set to advertise full capability.
-     */
-    if (hw->autoneg_advertised == 0)
-        hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
-    /* IFE phy only supports 10/100 */
-    if (hw->phy_type == e1000_phy_ife)
-        hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
-    DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
-    ret_val = e1000_phy_setup_autoneg(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Setting up Auto-Negotiation\n");
-        return ret_val;
-    }
-    DEBUGOUT("Restarting Auto-Neg\n");
-
-    /* Restart auto-negotiation by setting the Auto Neg Enable bit and
-     * the Auto Neg Restart bit in the PHY control register.
-     */
-    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
-    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
-    if (ret_val)
-        return ret_val;
-
-    /* Does the user want to wait for Auto-Neg to complete here, or
-     * check at a later time (for example, callback routine).
-     */
-    if (hw->wait_autoneg_complete) {
-        ret_val = e1000_wait_autoneg(hw);
-        if (ret_val) {
-            DEBUGOUT("Error while waiting for autoneg to complete\n");
-            return ret_val;
-        }
-    }
-
-    hw->get_link_status = true;
-
-    return E1000_SUCCESS;
-}
+	/* Set the transmit descriptor write-back policy */
+	if (hw->mac_type > e1000_82544) {
+		ctrl = er32(TXDCTL);
+		ctrl =
+		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
+		    E1000_TXDCTL_FULL_TX_DESC_WB;
+		ew32(TXDCTL, ctrl);
+	}
 
 
-/******************************************************************************
-* Config the MAC and the PHY after link is up.
-*   1) Set up the MAC to the current PHY speed/duplex
-*      if we are on 82543.  If we
-*      are on newer silicon, we only need to configure
-*      collision distance in the Transmit Control Register.
-*   2) Set up flow control on the MAC to that established with
-*      the link partner.
-*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    DEBUGFUNC("e1000_copper_link_postconfig");
-
-    if (hw->mac_type >= e1000_82544) {
-        e1000_config_collision_dist(hw);
-    } else {
-        ret_val = e1000_config_mac_to_phy(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring MAC to PHY settings\n");
-            return ret_val;
-        }
-    }
-    ret_val = e1000_config_fc_after_link_up(hw);
-    if (ret_val) {
-        DEBUGOUT("Error Configuring Flow Control\n");
-        return ret_val;
-    }
-
-    /* Config DSP to improve Giga link quality */
-    if (hw->phy_type == e1000_phy_igp) {
-        ret_val = e1000_config_dsp_after_link_change(hw, true);
-        if (ret_val) {
-            DEBUGOUT("Error Configuring DSP after link up\n");
-            return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
-}
+	/* Clear all of the statistics registers (clear on read).  It is
+	 * important that we do this after we have tried to establish link
+	 * because the symbol error count will increment wildly if there
+	 * is no link.
+	 */
+	e1000_clear_hw_cntrs(hw);
+
+	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
+	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
+		ctrl_ext = er32(CTRL_EXT);
+		/* Relaxed ordering must be disabled to avoid a parity
+		 * error crash in a PCI slot. */
+		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
+		ew32(CTRL_EXT, ctrl_ext);
+	}
 
 
-/******************************************************************************
-* Detects which PHY is present and setup the speed and duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_setup_copper_link(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 i;
-    u16 phy_data;
-    u16 reg_data = 0;
-
-    DEBUGFUNC("e1000_setup_copper_link");
-
-    switch (hw->mac_type) {
-    case e1000_80003es2lan:
-    case e1000_ich8lan:
-        /* Set the mac to wait the maximum time between each
-         * iteration and increase the max iterations when
-         * polling the phy; this fixes erroneous timeouts at 10Mbps. */
-        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
-        if (ret_val)
-            return ret_val;
-        reg_data |= 0x3F;
-        ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
-        if (ret_val)
-            return ret_val;
-    default:
-        break;
-    }
-
-    /* Check if it is a valid PHY and set PHY mode if necessary. */
-    ret_val = e1000_copper_link_preconfig(hw);
-    if (ret_val)
-        return ret_val;
-
-    switch (hw->mac_type) {
-    case e1000_80003es2lan:
-        /* Kumeran registers are written-only */
-        reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
-        reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
-        ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
-                                       reg_data);
-        if (ret_val)
-            return ret_val;
-        break;
-    default:
-        break;
-    }
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) {
-        ret_val = e1000_copper_link_igp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->phy_type == e1000_phy_m88) {
-        ret_val = e1000_copper_link_mgp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        ret_val = e1000_copper_link_ggp_setup(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (hw->autoneg) {
-        /* Setup autoneg and flow control advertisement
-          * and perform autonegotiation */
-        ret_val = e1000_copper_link_autoneg(hw);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* PHY will be set to 10H, 10F, 100H,or 100F
-          * depending on value from forced_speed_duplex. */
-        DEBUGOUT("Forcing speed and duplex\n");
-        ret_val = e1000_phy_force_speed_duplex(hw);
-        if (ret_val) {
-            DEBUGOUT("Error Forcing Speed and Duplex\n");
-            return ret_val;
-        }
-    }
-
-    /* Check link status. Wait up to 100 microseconds for link to become
-     * valid.
-     */
-    for (i = 0; i < 10; i++) {
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (phy_data & MII_SR_LINK_STATUS) {
-            /* Config the MAC and PHY after link is up */
-            ret_val = e1000_copper_link_postconfig(hw);
-            if (ret_val)
-                return ret_val;
-
-            DEBUGOUT("Valid link established!!!\n");
-            return E1000_SUCCESS;
-        }
-        udelay(10);
-    }
-
-    DEBUGOUT("Unable to establish link!!!\n");
-    return E1000_SUCCESS;
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
-* Configure the MAC-to-PHY interface for 10/100Mbps
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
+/**
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
+ * @hw: Struct containing variables accessed by shared code.
+ */
+static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
 {
 {
-    s32 ret_val = E1000_SUCCESS;
-    u32 tipg;
-    u16 reg_data;
-
-    DEBUGFUNC("e1000_configure_kmrn_for_10_100");
+	u16 eeprom_data;
+	s32 ret_val;
 
 
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
-    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
+	DEBUGFUNC("e1000_adjust_serdes_amplitude");
 
 
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = er32(TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
-    ew32(TIPG, tipg);
+	if (hw->media_type != e1000_media_type_internal_serdes)
+		return E1000_SUCCESS;
 
 
-    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
-
-    if (ret_val)
-        return ret_val;
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
 
 
-    if (duplex == HALF_DUPLEX)
-        reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
-    else
-        reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
+	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
+	                            &eeprom_data);
+	if (ret_val) {
+		return ret_val;
+	}
 
 
-    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+	if (eeprom_data != EEPROM_RESERVED_WORD) {
+		/* Adjust SERDES output amplitude only. */
+		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
+		if (ret_val)
+			return ret_val;
+	}
 
 
-    return ret_val;
+	return E1000_SUCCESS;
 }
 }
 
 
-static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
+/**
+ * e1000_setup_link - Configures flow control and link settings.
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Determines which flow control settings to use. Calls the appropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the
+ * transmitter and receiver are not enabled.
+ */
+s32 e1000_setup_link(struct e1000_hw *hw)
 {
 {
-    s32 ret_val = E1000_SUCCESS;
-    u16 reg_data;
-    u32 tipg;
+	u32 ctrl_ext;
+	s32 ret_val;
+	u16 eeprom_data;
 
 
-    DEBUGFUNC("e1000_configure_kmrn_for_1000");
+	DEBUGFUNC("e1000_setup_link");
 
 
-    reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
-    ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
-                                   reg_data);
-    if (ret_val)
-        return ret_val;
+	/* Read and store word 0x0F of the EEPROM. This word contains bits
+	 * that determine the hardware's default PAUSE (flow control) mode,
+	 * a bit that determines whether the HW defaults to enabling or
+	 * disabling auto-negotiation, and the direction of the
+	 * SW defined pins. If there is no SW over-ride of the flow
+	 * control setting, then the variable hw->fc will
+	 * be initialized based on a value in the EEPROM.
+	 */
+	if (hw->fc == E1000_FC_DEFAULT) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+			hw->fc = E1000_FC_NONE;
+		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
+			 EEPROM_WORD0F_ASM_DIR)
+			hw->fc = E1000_FC_TX_PAUSE;
+		else
+			hw->fc = E1000_FC_FULL;
+	}
 
 
-    /* Configure Transmit Inter-Packet Gap */
-    tipg = er32(TIPG);
-    tipg &= ~E1000_TIPG_IPGT_MASK;
-    tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
-    ew32(TIPG, tipg);
+	/* We want to save off the original Flow Control configuration just
+	 * in case we get disconnected and then reconnected into a different
+	 * hub or switch with different Flow Control capabilities.
+	 */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		hw->fc &= (~E1000_FC_TX_PAUSE);
 
 
-    ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
+	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+		hw->fc &= (~E1000_FC_RX_PAUSE);
 
 
-    if (ret_val)
-        return ret_val;
+	hw->original_fc = hw->fc;
 
 
-    reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-    ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
+	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
 
 
-    return ret_val;
-}
+	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
+	 * polarity value for the SW controlled pins, and setup the
+	 * Extended Device Control reg with that info.
+	 * This is needed because one of the SW controlled pins is used for
+	 * signal detection.  So this should be done before e1000_setup_pcs_link()
+	 * or e1000_phy_setup() is called.
+	 */
+	if (hw->mac_type == e1000_82543) {
+		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+					    1, &eeprom_data);
+		if (ret_val) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
+			    SWDPIO__EXT_SHIFT);
+		ew32(CTRL_EXT, ctrl_ext);
+	}
 
 
-/******************************************************************************
-* Configures PHY autoneg and flow control advertisement settings
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 mii_autoneg_adv_reg;
-    u16 mii_1000t_ctrl_reg;
-
-    DEBUGFUNC("e1000_phy_setup_autoneg");
-
-    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
-    ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    if (hw->phy_type != e1000_phy_ife) {
-        /* Read the MII 1000Base-T Control Register (Address 9). */
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    } else
-        mii_1000t_ctrl_reg=0;
-
-    /* Need to parse both autoneg_advertised and fc and set up
-     * the appropriate PHY registers.  First we will parse for
-     * autoneg_advertised software override.  Since we can advertise
-     * a plethora of combinations, we need to check each bit
-     * individually.
-     */
-
-    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
-     * Advertisement Register (Address 4) and the 1000 mb speed bits in
-     * the  1000Base-T Control Register (Address 9).
-     */
-    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
-    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
-    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
-
-    /* Do we want to advertise 10 Mb Half Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
-        DEBUGOUT("Advertise 10mb Half duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
-    }
-
-    /* Do we want to advertise 10 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
-        DEBUGOUT("Advertise 10mb Full duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
-    }
-
-    /* Do we want to advertise 100 Mb Half Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
-        DEBUGOUT("Advertise 100mb Half duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
-    }
-
-    /* Do we want to advertise 100 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
-        DEBUGOUT("Advertise 100mb Full duplex\n");
-        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
-    }
-
-    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
-    if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
-        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
-    }
-
-    /* Do we want to advertise 1000 Mb Full Duplex? */
-    if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
-        DEBUGOUT("Advertise 1000mb Full duplex\n");
-        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
-        if (hw->phy_type == e1000_phy_ife) {
-            DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
-        }
-    }
-
-    /* Check for a software override of the flow control settings, and
-     * setup the PHY advertisement registers accordingly.  If
-     * auto-negotiation is enabled, then software will have to set the
-     * "PAUSE" bits to the correct value in the Auto-Negotiation
-     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause frames
-     *          but not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames
-     *          but we do not support receiving pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) are enabled.
-     *  other:  No software override.  The flow control configuration
-     *          in the EEPROM is used.
-     */
-    switch (hw->fc) {
-    case E1000_FC_NONE: /* 0 */
-        /* Flow control (RX & TX) is completely disabled by a
-         * software over-ride.
-         */
-        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    case E1000_FC_RX_PAUSE: /* 1 */
-        /* RX Flow control is enabled, and TX Flow control is
-         * disabled, by a software over-ride.
-         */
-        /* Since there really isn't a way to advertise that we are
-         * capable of RX Pause ONLY, we will advertise that we
-         * support both symmetric and asymmetric RX PAUSE.  Later
-         * (in e1000_config_fc_after_link_up) we will disable the
-         *hw's ability to send PAUSE frames.
-         */
-        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    case E1000_FC_TX_PAUSE: /* 2 */
-        /* TX Flow control is enabled, and RX Flow control is
-         * disabled, by a software over-ride.
-         */
-        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
-        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
-        break;
-    case E1000_FC_FULL: /* 3 */
-        /* Flow control (both RX and TX) is enabled by a software
-         * over-ride.
-         */
-        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
-    if (ret_val)
-        return ret_val;
-
-    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
-    if (hw->phy_type != e1000_phy_ife) {
-        ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
+	/* Call the necessary subroutine to configure the link. */
+	ret_val = (hw->media_type == e1000_media_type_copper) ?
+	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
 
 
-/******************************************************************************
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
-{
-    u32 ctrl;
-    s32 ret_val;
-    u16 mii_ctrl_reg;
-    u16 mii_status_reg;
-    u16 phy_data;
-    u16 i;
-
-    DEBUGFUNC("e1000_phy_force_speed_duplex");
-
-    /* Turn off Flow control if we are forcing speed and duplex. */
-    hw->fc = E1000_FC_NONE;
-
-    DEBUGOUT1("hw->fc = %d\n", hw->fc);
-
-    /* Read the Device Control Register. */
-    ctrl = er32(CTRL);
-
-    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
-    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-    ctrl &= ~(DEVICE_SPEED_MASK);
-
-    /* Clear the Auto Speed Detect Enable bit. */
-    ctrl &= ~E1000_CTRL_ASDE;
-
-    /* Read the MII Control Register. */
-    ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
-    if (ret_val)
-        return ret_val;
-
-    /* We need to disable autoneg in order to force link and duplex. */
-
-    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
-    /* Are we forcing Full or Half Duplex? */
-    if (hw->forced_speed_duplex == e1000_100_full ||
-        hw->forced_speed_duplex == e1000_10_full) {
-        /* We want to force full duplex so we SET the full duplex bits in the
-         * Device and MII Control Registers.
-         */
-        ctrl |= E1000_CTRL_FD;
-        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
-        DEBUGOUT("Full Duplex\n");
-    } else {
-        /* We want to force half duplex so we CLEAR the full duplex bits in
-         * the Device and MII Control Registers.
-         */
-        ctrl &= ~E1000_CTRL_FD;
-        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
-        DEBUGOUT("Half Duplex\n");
-    }
-
-    /* Are we forcing 100Mbps??? */
-    if (hw->forced_speed_duplex == e1000_100_full ||
-       hw->forced_speed_duplex == e1000_100_half) {
-        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
-        ctrl |= E1000_CTRL_SPD_100;
-        mii_ctrl_reg |= MII_CR_SPEED_100;
-        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
-        DEBUGOUT("Forcing 100mb ");
-    } else {
-        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
-        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
-        mii_ctrl_reg |= MII_CR_SPEED_10;
-        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
-        DEBUGOUT("Forcing 10mb ");
-    }
-
-    e1000_config_collision_dist(hw);
-
-    /* Write the configured values back to the Device Control Reg. */
-    ew32(CTRL, ctrl);
-
-    if ((hw->phy_type == e1000_phy_m88) ||
-        (hw->phy_type == e1000_phy_gg82563)) {
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
-         * forced whenever speed are duplex are forced.
-         */
-        phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
-
-        /* Need to reset the PHY or these changes will be ignored */
-        mii_ctrl_reg |= MII_CR_RESET;
-
-    /* Disable MDI-X support for 10/100 */
-    } else if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IFE_PMC_AUTO_MDIX;
-        phy_data &= ~IFE_PMC_FORCE_MDIX;
-
-        ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    } else {
-        /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
-         * forced whenever speed or duplex are forced.
-         */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-        phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    /* Write back the modified PHY MII control register. */
-    ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
-    if (ret_val)
-        return ret_val;
-
-    udelay(1);
-
-    /* The wait_autoneg_complete flag may be a little misleading here.
-     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
-     * But we do want to delay for a period while forcing only so we
-     * don't generate false No Link messages.  So we will wait here
-     * only if the user has set wait_autoneg_complete to 1, which is
-     * the default.
-     */
-    if (hw->wait_autoneg_complete) {
-        /* We will wait for autoneg to complete. */
-        DEBUGOUT("Waiting for forced speed/duplex link.\n");
-        mii_status_reg = 0;
-
-        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
-        for (i = PHY_FORCE_TIME; i > 0; i--) {
-            /* Read the MII Status Register and wait for Auto-Neg Complete bit
-             * to be set.
-             */
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msleep(100);
-        }
-        if ((i == 0) &&
-           ((hw->phy_type == e1000_phy_m88) ||
-            (hw->phy_type == e1000_phy_gg82563))) {
-            /* We didn't get link.  Reset the DSP and wait again for link. */
-            ret_val = e1000_phy_reset_dsp(hw);
-            if (ret_val) {
-                DEBUGOUT("Error Resetting PHY DSP\n");
-                return ret_val;
-            }
-        }
-        /* This loop will early-out if the link condition has been met.  */
-        for (i = PHY_FORCE_TIME; i > 0; i--) {
-            if (mii_status_reg & MII_SR_LINK_STATUS) break;
-            msleep(100);
-            /* Read the MII Status Register and wait for Auto-Neg Complete bit
-             * to be set.
-             */
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    if (hw->phy_type == e1000_phy_m88) {
-        /* Because we reset the PHY above, we need to re-force TX_CLK in the
-         * Extended PHY Specific Control Register to 25MHz clock.  This value
-         * defaults back to a 2.5MHz clock when the PHY is reset.
-         */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_EPSCR_TX_CLK_25;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* In addition, because of the s/w reset above, we need to enable CRS on
-         * TX.  This must be set for both full and half duplex operation.
-         */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-        ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
-            (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
-             hw->forced_speed_duplex == e1000_10_half)) {
-            ret_val = e1000_polarity_reversal_workaround(hw);
-            if (ret_val)
-                return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        /* The TX_CLK of the Extended PHY Specific Control Register defaults
-         * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if
-         * we're not in a forced 10/duplex configuration. */
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
-        if ((hw->forced_speed_duplex == e1000_10_full) ||
-            (hw->forced_speed_duplex == e1000_10_half))
-            phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
-        else
-            phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
-
-        /* Also due to the reset, we need to enable CRS on Tx. */
-        phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
-
-        ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-    return E1000_SUCCESS;
+	/* Initialize the flow control address, type, and PAUSE timer
+	 * registers to their default values.  This is done even if flow
+	 * control is disabled, because it does not hurt anything to
+	 * initialize these registers.
+	 */
+	DEBUGOUT
+	    ("Initializing the Flow Control address, type and timer regs\n");
+
+	ew32(FCT, FLOW_CONTROL_TYPE);
+	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+	ew32(FCTTV, hw->fc_pause_time);
+
+	/* Set the flow control receive threshold registers.  Normally,
+	 * these registers will be set to a default threshold that may be
+	 * adjusted later by the driver's runtime code.  However, if the
+	 * ability to transmit pause frames in not enabled, then these
+	 * registers will be set to 0.
+	 */
+	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
+		ew32(FCRTL, 0);
+		ew32(FCRTH, 0);
+	} else {
+		/* We need to set up the Receive Threshold high and low water marks
+		 * as well as (optionally) enabling the transmission of XON frames.
+		 */
+		if (hw->fc_send_xon) {
+			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+			ew32(FCRTH, hw->fc_high_water);
+		} else {
+			ew32(FCRTL, hw->fc_low_water);
+			ew32(FCRTH, hw->fc_high_water);
+		}
+	}
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
-* Sets the collision distance in the Transmit Control register
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Link should have been established previously. Reads the speed and duplex
-* information from the Device Status register.
-******************************************************************************/
-void e1000_config_collision_dist(struct e1000_hw *hw)
+/**
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ */
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
 {
 {
-    u32 tctl, coll_dist;
+	u32 ctrl;
+	u32 status;
+	u32 txcw = 0;
+	u32 i;
+	u32 signal = 0;
+	s32 ret_val;
 
 
-    DEBUGFUNC("e1000_config_collision_dist");
+	DEBUGFUNC("e1000_setup_fiber_serdes_link");
 
 
-    if (hw->mac_type < e1000_82543)
-        coll_dist = E1000_COLLISION_DISTANCE_82542;
-    else
-        coll_dist = E1000_COLLISION_DISTANCE;
+	/* On adapters with a MAC newer than 82544, SWDP 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 * If we're on serdes media, adjust the output amplitude to value
+	 * set in the EEPROM.
+	 */
+	ctrl = er32(CTRL);
+	if (hw->media_type == e1000_media_type_fiber)
+		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+
+	ret_val = e1000_adjust_serdes_amplitude(hw);
+	if (ret_val)
+		return ret_val;
+
+	/* Take the link out of reset */
+	ctrl &= ~(E1000_CTRL_LRST);
+
+	/* Adjust VCO speed to improve BER performance */
+	ret_val = e1000_set_vco_speed(hw);
+	if (ret_val)
+		return ret_val;
+
+	e1000_config_collision_dist(hw);
+
+	/* Check for a software override of the flow control settings, and setup
+	 * the device accordingly.  If auto-negotiation is enabled, then software
+	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+	 * auto-negotiation is disabled, then software will have to manually
+	 * configure the two flow control enable bits in the CTRL register.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames, but
+	 *          not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames but we do
+	 *          not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		/* Flow control is completely disabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+		break;
+	case E1000_FC_RX_PAUSE:
+		/* RX Flow control is enabled and TX Flow control is disabled by a
+		 * software over-ride. Since there really isn't a way to advertise
+		 * that we are capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE. Later, we will
+		 *  disable the adapter's ability to send PAUSE frames.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	case E1000_FC_TX_PAUSE:
+		/* TX Flow control is enabled, and RX Flow control is disabled, by a
+		 * software over-ride.
+		 */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+		break;
+	case E1000_FC_FULL:
+		/* Flow control (both RX and TX) is enabled by a software over-ride. */
+		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+		break;
+	}
+
+	/* Since auto-negotiation is enabled, take the link out of reset (the link
+	 * will be in reset, because we previously reset the chip). This will
+	 * restart auto-negotiation.  If auto-negotiation is successful then the
+	 * link-up status bit will be set and the flow control enable bits (RFCE
+	 * and TFCE) will be set according to their negotiated value.
+	 */
+	DEBUGOUT("Auto-negotiation enabled\n");
 
 
-    tctl = er32(TCTL);
+	ew32(TXCW, txcw);
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
 
 
-    tctl &= ~E1000_TCTL_COLD;
-    tctl |= coll_dist << E1000_COLD_SHIFT;
+	hw->txcw = txcw;
+	msleep(1);
 
 
-    ew32(TCTL, tctl);
-    E1000_WRITE_FLUSH();
+	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+	 * indication in the Device Status Register.  Time-out if a link isn't
+	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
+	 * less than 500 milliseconds even if the other end is doing it in SW).
+	 * For internal serdes, we just assume a signal is present, then poll.
+	 */
+	if (hw->media_type == e1000_media_type_internal_serdes ||
+	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+		DEBUGOUT("Looking for Link\n");
+		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+			msleep(10);
+			status = er32(STATUS);
+			if (status & E1000_STATUS_LU)
+				break;
+		}
+		if (i == (LINK_UP_TIMEOUT / 10)) {
+			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+			hw->autoneg_failed = 1;
+			/* AutoNeg failed to achieve a link, so we'll call
+			 * e1000_check_for_link. This routine will force the link up if
+			 * we detect a signal. This will allow us to communicate with
+			 * non-autonegotiating link partners.
+			 */
+			ret_val = e1000_check_for_link(hw);
+			if (ret_val) {
+				DEBUGOUT("Error while checking for link\n");
+				return ret_val;
+			}
+			hw->autoneg_failed = 0;
+		} else {
+			hw->autoneg_failed = 0;
+			DEBUGOUT("Valid Link Found\n");
+		}
+	} else {
+		DEBUGOUT("No Signal Detected\n");
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
-* Sets MAC speed and duplex settings to reflect the those in the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* mii_reg - data to write to the MII control register
-*
-* The contents of the PHY register containing the needed information need to
-* be passed in.
-******************************************************************************/
-static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
-{
-    u32 ctrl;
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_config_mac_to_phy");
-
-    /* 82544 or newer MAC, Auto Speed Detection takes care of
-    * MAC speed/duplex configuration.*/
-    if (hw->mac_type >= e1000_82544)
-        return E1000_SUCCESS;
-
-    /* Read the Device Control Register and set the bits to Force Speed
-     * and Duplex.
-     */
-    ctrl = er32(CTRL);
-    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
-    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
-    /* Set up duplex in the Device Control and Transmit Control
-     * registers depending on negotiated values.
-     */
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if (phy_data & M88E1000_PSSR_DPLX)
-        ctrl |= E1000_CTRL_FD;
-    else
-        ctrl &= ~E1000_CTRL_FD;
-
-    e1000_config_collision_dist(hw);
-
-    /* Set up speed in the Device Control register depending on
-     * negotiated values.
-     */
-    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
-        ctrl |= E1000_CTRL_SPD_1000;
-    else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
-        ctrl |= E1000_CTRL_SPD_100;
-
-    /* Write the configured values back to the Device Control Reg. */
-    ew32(CTRL, ctrl);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Forces the MAC's flow control settings.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- *****************************************************************************/
-s32 e1000_force_mac_fc(struct e1000_hw *hw)
-{
-    u32 ctrl;
-
-    DEBUGFUNC("e1000_force_mac_fc");
-
-    /* Get the current configuration of the Device Control Register */
-    ctrl = er32(CTRL);
-
-    /* Because we didn't get link via the internal auto-negotiation
-     * mechanism (we either forced link or we got link via PHY
-     * auto-neg), we have to manually enable/disable transmit an
-     * receive flow control.
-     *
-     * The "Case" statement below enables/disable flow control
-     * according to the "hw->fc" parameter.
-     *
-     * The possible values of the "fc" parameter are:
-     *      0:  Flow control is completely disabled
-     *      1:  Rx flow control is enabled (we can receive pause
-     *          frames but not send pause frames).
-     *      2:  Tx flow control is enabled (we can send pause frames
-     *          frames but we do not receive pause frames).
-     *      3:  Both Rx and TX flow control (symmetric) is enabled.
-     *  other:  No other values should be possible at this point.
-     */
-
-    switch (hw->fc) {
-    case E1000_FC_NONE:
-        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
-        break;
-    case E1000_FC_RX_PAUSE:
-        ctrl &= (~E1000_CTRL_TFCE);
-        ctrl |= E1000_CTRL_RFCE;
-        break;
-    case E1000_FC_TX_PAUSE:
-        ctrl &= (~E1000_CTRL_RFCE);
-        ctrl |= E1000_CTRL_TFCE;
-        break;
-    case E1000_FC_FULL:
-        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
-        break;
-    default:
-        DEBUGOUT("Flow control param set incorrectly\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    /* Disable TX Flow Control for 82542 (rev 2.0) */
-    if (hw->mac_type == e1000_82542_rev2_0)
-        ctrl &= (~E1000_CTRL_TFCE);
-
-    ew32(CTRL, ctrl);
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Configures flow control settings after link is established
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
- *****************************************************************************/
-static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 mii_status_reg;
-    u16 mii_nway_adv_reg;
-    u16 mii_nway_lp_ability_reg;
-    u16 speed;
-    u16 duplex;
-
-    DEBUGFUNC("e1000_config_fc_after_link_up");
-
-    /* Check for the case where we have fiber media and auto-neg failed
-     * so we had to force link.  In this case, we need to force the
-     * configuration of the MAC to match the "fc" parameter.
-     */
-    if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
-        ((hw->media_type == e1000_media_type_internal_serdes) &&
-         (hw->autoneg_failed)) ||
-        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
-        ret_val = e1000_force_mac_fc(hw);
-        if (ret_val) {
-            DEBUGOUT("Error forcing flow control settings\n");
-            return ret_val;
-        }
-    }
-
-    /* Check for the case where we have copper media and auto-neg is
-     * enabled.  In this case, we need to check and see if Auto-Neg
-     * has completed, and if so, how the PHY and link partner has
-     * flow control configured.
-     */
-    if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
-        /* Read the MII Status Register and check to see if AutoNeg
-         * has completed.  We read this twice because this reg has
-         * some "sticky" (latched) bits.
-         */
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
-            /* The AutoNeg process has completed, so we now need to
-             * read both the Auto Negotiation Advertisement Register
-             * (Address 4) and the Auto_Negotiation Base Page Ability
-             * Register (Address 5) to determine how flow control was
-             * negotiated.
-             */
-            ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
-                                         &mii_nway_adv_reg);
-            if (ret_val)
-                return ret_val;
-            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
-                                         &mii_nway_lp_ability_reg);
-            if (ret_val)
-                return ret_val;
-
-            /* Two bits in the Auto Negotiation Advertisement Register
-             * (Address 4) and two bits in the Auto Negotiation Base
-             * Page Ability Register (Address 5) determine flow control
-             * for both the PHY and the link partner.  The following
-             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
-             * 1999, describes these PAUSE resolution bits and how flow
-             * control is determined based upon these settings.
-             * NOTE:  DC = Don't Care
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
-             *-------|---------|-------|---------|--------------------
-             *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
-             *   0   |    1    |   0   |   DC    | E1000_FC_NONE
-             *   0   |    1    |   1   |    0    | E1000_FC_NONE
-             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
-             *   1   |    0    |   0   |   DC    | E1000_FC_NONE
-             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
-             *   1   |    1    |   0   |    0    | E1000_FC_NONE
-             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
-             *
-             */
-            /* Are both PAUSE bits set to 1?  If so, this implies
-             * Symmetric Flow Control is enabled at both ends.  The
-             * ASM_DIR bits are irrelevant per the spec.
-             *
-             * For Symmetric Flow Control:
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
-             *
-             */
-            if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
-                /* Now we need to check if the user selected RX ONLY
-                 * of pause frames.  In this case, we had to advertise
-                 * FULL flow control because we could not advertise RX
-                 * ONLY. Hence, we must now check to see if we need to
-                 * turn OFF  the TRANSMISSION of PAUSE frames.
-                 */
-                if (hw->original_fc == E1000_FC_FULL) {
-                    hw->fc = E1000_FC_FULL;
-                    DEBUGOUT("Flow Control = FULL.\n");
-                } else {
-                    hw->fc = E1000_FC_RX_PAUSE;
-                    DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-                }
-            }
-            /* For receiving PAUSE frames ONLY.
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
-             *
-             */
-            else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = E1000_FC_TX_PAUSE;
-                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
-            }
-            /* For transmitting PAUSE frames ONLY.
-             *
-             *   LOCAL DEVICE  |   LINK PARTNER
-             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
-             *-------|---------|-------|---------|--------------------
-             *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
-             *
-             */
-            else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
-                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
-                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
-                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
-                hw->fc = E1000_FC_RX_PAUSE;
-                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-            }
-            /* Per the IEEE spec, at this point flow control should be
-             * disabled.  However, we want to consider that we could
-             * be connected to a legacy switch that doesn't advertise
-             * desired flow control, but can be forced on the link
-             * partner.  So if we advertised no flow control, that is
-             * what we will resolve to.  If we advertised some kind of
-             * receive capability (Rx Pause Only or Full Flow Control)
-             * and the link partner advertised none, we will configure
-             * ourselves to enable Rx Flow Control only.  We can do
-             * this safely for two reasons:  If the link partner really
-             * didn't want flow control enabled, and we enable Rx, no
-             * harm done since we won't be receiving any PAUSE frames
-             * anyway.  If the intent on the link partner was to have
-             * flow control enabled, then by us enabling RX only, we
-             * can at least receive pause frames and process them.
-             * This is a good idea because in most cases, since we are
-             * predominantly a server NIC, more times than not we will
-             * be asked to delay transmission of packets than asking
-             * our link partner to pause transmission of frames.
-             */
-            else if ((hw->original_fc == E1000_FC_NONE ||
-                      hw->original_fc == E1000_FC_TX_PAUSE) ||
-                      hw->fc_strict_ieee) {
-                hw->fc = E1000_FC_NONE;
-                DEBUGOUT("Flow Control = NONE.\n");
-            } else {
-                hw->fc = E1000_FC_RX_PAUSE;
-                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
-            }
-
-            /* Now we need to do one last check...  If we auto-
-             * negotiated to HALF DUPLEX, flow control should not be
-             * enabled per IEEE 802.3 spec.
-             */
-            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
-            if (ret_val) {
-                DEBUGOUT("Error getting link speed and duplex\n");
-                return ret_val;
-            }
-
-            if (duplex == HALF_DUPLEX)
-                hw->fc = E1000_FC_NONE;
-
-            /* Now we call a subroutine to actually force the MAC
-             * controller to use the correct flow control settings.
-             */
-            ret_val = e1000_force_mac_fc(hw);
-            if (ret_val) {
-                DEBUGOUT("Error forcing flow control settings\n");
-                return ret_val;
-            }
-        } else {
-            DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
-        }
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Checks to see if the link status of the hardware has changed.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Called by any function that needs to check the link status of the adapter.
- *****************************************************************************/
-s32 e1000_check_for_link(struct e1000_hw *hw)
-{
-    u32 rxcw = 0;
-    u32 ctrl;
-    u32 status;
-    u32 rctl;
-    u32 icr;
-    u32 signal = 0;
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_check_for_link");
-
-    ctrl = er32(CTRL);
-    status = er32(STATUS);
-
-    /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
-     * set when the optics detect a signal. On older adapters, it will be
-     * cleared when there is a signal.  This applies to fiber media only.
-     */
-    if ((hw->media_type == e1000_media_type_fiber) ||
-        (hw->media_type == e1000_media_type_internal_serdes)) {
-        rxcw = er32(RXCW);
-
-        if (hw->media_type == e1000_media_type_fiber) {
-            signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
-            if (status & E1000_STATUS_LU)
-                hw->get_link_status = false;
-        }
-    }
-
-    /* If we have a copper PHY then we only want to go out to the PHY
-     * registers to see if Auto-Neg has completed and/or if our link
-     * status has changed.  The get_link_status flag will be set if we
-     * receive a Link Status Change interrupt or we have Rx Sequence
-     * Errors.
-     */
-    if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
-        /* First we want to see if the MII Status Register reports
-         * link.  If so, then we want to get the current speed/duplex
-         * of the PHY.
-         * Read the register twice since the link bit is sticky.
-         */
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (phy_data & MII_SR_LINK_STATUS) {
-            hw->get_link_status = false;
-            /* Check if there was DownShift, must be checked immediately after
-             * link-up */
-            e1000_check_downshift(hw);
-
-            /* If we are on 82544 or 82543 silicon and speed/duplex
-             * are forced to 10H or 10F, then we will implement the polarity
-             * reversal workaround.  We disable interrupts first, and upon
-             * returning, place the devices interrupt state to its previous
-             * value except for the link status change interrupt which will
-             * happen due to the execution of this workaround.
-             */
-
-            if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
-                (!hw->autoneg) &&
-                (hw->forced_speed_duplex == e1000_10_full ||
-                 hw->forced_speed_duplex == e1000_10_half)) {
-                ew32(IMC, 0xffffffff);
-                ret_val = e1000_polarity_reversal_workaround(hw);
-                icr = er32(ICR);
-                ew32(ICS, (icr & ~E1000_ICS_LSC));
-                ew32(IMS, IMS_ENABLE_MASK);
-            }
-
-        } else {
-            /* No link detected */
-            e1000_config_dsp_after_link_change(hw, false);
-            return 0;
-        }
-
-        /* If we are forcing speed/duplex, then we simply return since
-         * we have already determined whether we have link or not.
-         */
-        if (!hw->autoneg) return -E1000_ERR_CONFIG;
-
-        /* optimize the dsp settings for the igp phy */
-        e1000_config_dsp_after_link_change(hw, true);
-
-        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
-         * have Si on board that is 82544 or newer, Auto
-         * Speed Detection takes care of MAC speed/duplex
-         * configuration.  So we only need to configure Collision
-         * Distance in the MAC.  Otherwise, we need to force
-         * speed/duplex on the MAC to the current PHY speed/duplex
-         * settings.
-         */
-        if (hw->mac_type >= e1000_82544)
-            e1000_config_collision_dist(hw);
-        else {
-            ret_val = e1000_config_mac_to_phy(hw);
-            if (ret_val) {
-                DEBUGOUT("Error configuring MAC to PHY settings\n");
-                return ret_val;
-            }
-        }
-
-        /* Configure Flow Control now that Auto-Neg has completed. First, we
-         * need to restore the desired flow control settings because we may
-         * have had to re-autoneg with a different link partner.
-         */
-        ret_val = e1000_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-
-        /* At this point we know that we are on copper and we have
-         * auto-negotiated link.  These are conditions for checking the link
-         * partner capability register.  We use the link speed to determine if
-         * TBI compatibility needs to be turned on or off.  If the link is not
-         * at gigabit speed, then TBI compatibility is not needed.  If we are
-         * at gigabit speed, we turn on TBI compatibility.
-         */
-        if (hw->tbi_compatibility_en) {
-            u16 speed, duplex;
-            ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
-            if (ret_val) {
-                DEBUGOUT("Error getting link speed and duplex\n");
-                return ret_val;
-            }
-            if (speed != SPEED_1000) {
-                /* If link speed is not set to gigabit speed, we do not need
-                 * to enable TBI compatibility.
-                 */
-                if (hw->tbi_compatibility_on) {
-                    /* If we previously were in the mode, turn it off. */
-                    rctl = er32(RCTL);
-                    rctl &= ~E1000_RCTL_SBP;
-                    ew32(RCTL, rctl);
-                    hw->tbi_compatibility_on = false;
-                }
-            } else {
-                /* If TBI compatibility is was previously off, turn it on. For
-                 * compatibility with a TBI link partner, we will store bad
-                 * packets. Some frames have an additional byte on the end and
-                 * will look like CRC errors to the hardware.
-                 */
-                if (!hw->tbi_compatibility_on) {
-                    hw->tbi_compatibility_on = true;
-                    rctl = er32(RCTL);
-                    rctl |= E1000_RCTL_SBP;
-                    ew32(RCTL, rctl);
-                }
-            }
-        }
-    }
-    /* If we don't have link (auto-negotiation failed or link partner cannot
-     * auto-negotiate), the cable is plugged in (we have signal), and our
-     * link partner is not trying to auto-negotiate with us (we are receiving
-     * idles or data), we need to force link up. We also need to give
-     * auto-negotiation time to complete, in case the cable was just plugged
-     * in. The autoneg_failed flag does this.
-     */
-    else if ((((hw->media_type == e1000_media_type_fiber) &&
-              ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
-              (hw->media_type == e1000_media_type_internal_serdes)) &&
-              (!(status & E1000_STATUS_LU)) &&
-              (!(rxcw & E1000_RXCW_C))) {
-        if (hw->autoneg_failed == 0) {
-            hw->autoneg_failed = 1;
-            return 0;
-        }
-        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
-
-        /* Disable auto-negotiation in the TXCW register */
-        ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
-        /* Force link-up and also force full-duplex. */
-        ctrl = er32(CTRL);
-        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
-        ew32(CTRL, ctrl);
-
-        /* Configure Flow Control after forcing link up. */
-        ret_val = e1000_config_fc_after_link_up(hw);
-        if (ret_val) {
-            DEBUGOUT("Error configuring flow control\n");
-            return ret_val;
-        }
-    }
-    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
-     * auto-negotiation in the TXCW register and disable forced link in the
-     * Device Control register in an attempt to auto-negotiate with our link
-     * partner.
-     */
-    else if (((hw->media_type == e1000_media_type_fiber) ||
-              (hw->media_type == e1000_media_type_internal_serdes)) &&
-              (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
-        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
-        ew32(TXCW, hw->txcw);
-        ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
-        hw->serdes_link_down = false;
-    }
-    /* If we force link for non-auto-negotiation switch, check link status
-     * based on MAC synchronization for internal serdes media type.
-     */
-    else if ((hw->media_type == e1000_media_type_internal_serdes) &&
-             !(E1000_TXCW_ANE & er32(TXCW))) {
-        /* SYNCH bit and IV bit are sticky. */
-        udelay(10);
-        if (E1000_RXCW_SYNCH & er32(RXCW)) {
-            if (!(rxcw & E1000_RXCW_IV)) {
-                hw->serdes_link_down = false;
-                DEBUGOUT("SERDES: Link is up.\n");
-            }
-        } else {
-            hw->serdes_link_down = true;
-            DEBUGOUT("SERDES: Link is down.\n");
-        }
-    }
-    if ((hw->media_type == e1000_media_type_internal_serdes) &&
-        (E1000_TXCW_ANE & er32(TXCW))) {
-        hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS));
-    }
-    return E1000_SUCCESS;
-}
-
-/******************************************************************************
- * Detects the current speed and duplex settings of the hardware.
+/**
+ * e1000_copper_link_preconfig - early configuration for copper
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- * speed - Speed of the connection
- * duplex - Duplex setting of the connection
- *****************************************************************************/
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+ * Make sure we have a valid PHY and change PHY mode before link setup.
+ */
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
 {
 {
-    u32 status;
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_get_speed_and_duplex");
-
-    if (hw->mac_type >= e1000_82543) {
-        status = er32(STATUS);
-        if (status & E1000_STATUS_SPEED_1000) {
-            *speed = SPEED_1000;
-            DEBUGOUT("1000 Mbs, ");
-        } else if (status & E1000_STATUS_SPEED_100) {
-            *speed = SPEED_100;
-            DEBUGOUT("100 Mbs, ");
-        } else {
-            *speed = SPEED_10;
-            DEBUGOUT("10 Mbs, ");
-        }
-
-        if (status & E1000_STATUS_FD) {
-            *duplex = FULL_DUPLEX;
-            DEBUGOUT("Full Duplex\n");
-        } else {
-            *duplex = HALF_DUPLEX;
-            DEBUGOUT(" Half Duplex\n");
-        }
-    } else {
-        DEBUGOUT("1000 Mbs, Full Duplex\n");
-        *speed = SPEED_1000;
-        *duplex = FULL_DUPLEX;
-    }
-
-    /* IGP01 PHY may advertise full duplex operation after speed downgrade even
-     * if it is operating at half duplex.  Here we set the duplex settings to
-     * match the duplex in the link partner's capabilities.
-     */
-    if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
-        ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
-            *duplex = HALF_DUPLEX;
-        else {
-            ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
-            if (ret_val)
-                return ret_val;
-            if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
-               (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
-                *duplex = HALF_DUPLEX;
-        }
-    }
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (hw->media_type == e1000_media_type_copper)) {
-        if (*speed == SPEED_1000)
-            ret_val = e1000_configure_kmrn_for_1000(hw);
-        else
-            ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
-        ret_val = e1000_kumeran_lock_loss_workaround(hw);
-        if (ret_val)
-            return ret_val;
-    }
-
-    return E1000_SUCCESS;
-}
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
 
 
-/******************************************************************************
-* Blocks until autoneg completes or times out (~4.5 seconds)
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 i;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_wait_autoneg");
-    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
-
-    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
-    for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Auto-Neg
-         * Complete bit to be set.
-         */
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-        if (phy_data & MII_SR_AUTONEG_COMPLETE) {
-            return E1000_SUCCESS;
-        }
-        msleep(100);
-    }
-    return E1000_SUCCESS;
-}
+	DEBUGFUNC("e1000_copper_link_preconfig");
 
 
-/******************************************************************************
-* Raises the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
-{
-    /* Raise the clock input to the Management Data Clock (by setting the MDC
-     * bit), and then delay 10 microseconds.
-     */
-    ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH();
-    udelay(10);
-}
+	ctrl = er32(CTRL);
+	/* With 82543, we need to force speed and duplex on the MAC equal to what
+	 * the PHY speed and duplex configuration is. In addition, we need to
+	 * perform a hardware reset on the PHY to take it out of reset.
+	 */
+	if (hw->mac_type > e1000_82543) {
+		ctrl |= E1000_CTRL_SLU;
+		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+		ew32(CTRL, ctrl);
+	} else {
+		ctrl |=
+		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+		ew32(CTRL, ctrl);
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+	}
 
 
-/******************************************************************************
-* Lowers the Management Data Clock
-*
-* hw - Struct containing variables accessed by shared code
-* ctrl - Device control register's current value
-******************************************************************************/
-static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
-{
-    /* Lower the clock input to the Management Data Clock (by clearing the MDC
-     * bit), and then delay 10 microseconds.
-     */
-    ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
-    E1000_WRITE_FLUSH();
-    udelay(10);
-}
+	/* Make sure we have a valid PHY */
+	ret_val = e1000_detect_gig_phy(hw);
+	if (ret_val) {
+		DEBUGOUT("Error, did not detect valid phy.\n");
+		return ret_val;
+	}
+	DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+	/* Set PHY to class A mode (if necessary) */
+	ret_val = e1000_set_phy_mode(hw);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82545_rev_3) ||
+	    (hw->mac_type == e1000_82546_rev_3)) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		phy_data |= 0x00000008;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	}
 
 
-/******************************************************************************
-* Shifts data bits out to the PHY
-*
-* hw - Struct containing variables accessed by shared code
-* data - Data to send out to the PHY
-* count - Number of bits to shift out
-*
-* Bits are shifted out in MSB to LSB order.
-******************************************************************************/
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
-{
-    u32 ctrl;
-    u32 mask;
-
-    /* We need to shift "count" number of bits out to the PHY. So, the value
-     * in the "data" parameter will be shifted out to the PHY one bit at a
-     * time. In order to do this, "data" must be broken down into bits.
-     */
-    mask = 0x01;
-    mask <<= (count - 1);
-
-    ctrl = er32(CTRL);
-
-    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
-    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
-    while (mask) {
-        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
-         * then raising and lowering the Management Data Clock. A "0" is
-         * shifted out to the PHY by setting the MDIO bit to "0" and then
-         * raising and lowering the clock.
-         */
-        if (data & mask)
-            ctrl |= E1000_CTRL_MDIO;
-        else
-            ctrl &= ~E1000_CTRL_MDIO;
-
-        ew32(CTRL, ctrl);
-        E1000_WRITE_FLUSH();
-
-        udelay(10);
-
-        e1000_raise_mdi_clk(hw, &ctrl);
-        e1000_lower_mdi_clk(hw, &ctrl);
-
-        mask = mask >> 1;
-    }
-}
+	if (hw->mac_type <= e1000_82543 ||
+	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+	    hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2)
+		hw->phy_reset_disable = false;
 
 
-/******************************************************************************
-* Shifts data bits in from the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Bits are shifted in in MSB to LSB order.
-******************************************************************************/
-static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
-{
-    u32 ctrl;
-    u16 data = 0;
-    u8 i;
-
-    /* In order to read a register from the PHY, we need to shift in a total
-     * of 18 bits from the PHY. The first two bit (turnaround) times are used
-     * to avoid contention on the MDIO pin when a read operation is performed.
-     * These two bits are ignored by us and thrown away. Bits are "shifted in"
-     * by raising the input to the Management Data Clock (setting the MDC bit),
-     * and then reading the value of the MDIO bit.
-     */
-    ctrl = er32(CTRL);
-
-    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
-    ctrl &= ~E1000_CTRL_MDIO_DIR;
-    ctrl &= ~E1000_CTRL_MDIO;
-
-    ew32(CTRL, ctrl);
-    E1000_WRITE_FLUSH();
-
-    /* Raise and Lower the clock before reading in the data. This accounts for
-     * the turnaround bits. The first clock occurred when we clocked out the
-     * last bit of the Register Address.
-     */
-    e1000_raise_mdi_clk(hw, &ctrl);
-    e1000_lower_mdi_clk(hw, &ctrl);
-
-    for (data = 0, i = 0; i < 16; i++) {
-        data = data << 1;
-        e1000_raise_mdi_clk(hw, &ctrl);
-        ctrl = er32(CTRL);
-        /* Check to see if we shifted in a "1". */
-        if (ctrl & E1000_CTRL_MDIO)
-            data |= 1;
-        e1000_lower_mdi_clk(hw, &ctrl);
-    }
-
-    e1000_raise_mdi_clk(hw, &ctrl);
-    e1000_lower_mdi_clk(hw, &ctrl);
-
-    return data;
+	return E1000_SUCCESS;
 }
 }
 
 
-static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
+/**
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
 {
 {
-    u32 swfw_sync = 0;
-    u32 swmask = mask;
-    u32 fwmask = mask << 16;
-    s32 timeout = 200;
+	u32 led_ctrl;
+	s32 ret_val;
+	u16 phy_data;
 
 
-    DEBUGFUNC("e1000_swfw_sync_acquire");
+	DEBUGFUNC("e1000_copper_link_igp_setup");
 
 
-    if (hw->swfwhw_semaphore_present)
-        return e1000_get_software_flag(hw);
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
 
 
-    if (!hw->swfw_sync_present)
-        return e1000_get_hw_eeprom_semaphore(hw);
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
 
 
-    while (timeout) {
-            if (e1000_get_hw_eeprom_semaphore(hw))
-                return -E1000_ERR_SWFW_SYNC;
+	/* Wait 15ms for MAC to configure PHY from eeprom settings */
+	msleep(15);
+	/* Configure activity LED after PHY reset */
+	led_ctrl = er32(LEDCTL);
+	led_ctrl &= IGP_ACTIVITY_LED_MASK;
+	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+	ew32(LEDCTL, led_ctrl);
+
+	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
+	if (hw->phy_type == e1000_phy_igp) {
+		/* disable lplu d3 during driver init */
+		ret_val = e1000_set_d3_lplu_state(hw, false);
+		if (ret_val) {
+			DEBUGOUT("Error Disabling LPLU D3\n");
+			return ret_val;
+		}
+	}
 
 
-            swfw_sync = er32(SW_FW_SYNC);
-            if (!(swfw_sync & (fwmask | swmask))) {
-                break;
-            }
+	/* Configure mdi-mdix settings */
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		hw->dsp_config_state = e1000_dsp_config_disabled;
+		/* Force MDI for earlier revs of the IGP PHY */
+		phy_data &=
+		    ~(IGP01E1000_PSCR_AUTO_MDIX |
+		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
+		hw->mdix = 1;
+
+	} else {
+		hw->dsp_config_state = e1000_dsp_config_enabled;
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+		switch (hw->mdix) {
+		case 1:
+			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 2:
+			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+			break;
+		case 0:
+		default:
+			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
+			break;
+		}
+	}
+	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* set auto-master slave resolution settings */
+	if (hw->autoneg) {
+		e1000_ms_type phy_ms_setting = hw->master_slave;
+
+		if (hw->ffe_config_state == e1000_ffe_config_active)
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+
+		if (hw->dsp_config_state == e1000_dsp_config_activated)
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+
+		/* when autonegotiation advertisement is only 1000Mbps then we
+		 * should disable SmartSpeed and enable Auto MasterSlave
+		 * resolution as hardware default. */
+		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+			/* Disable SmartSpeed */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+			/* Set auto Master/Slave resolution process */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+			if (ret_val)
+				return ret_val;
+			phy_data &= ~CR_1000T_MS_ENABLE;
+			ret_val =
+			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+			if (ret_val)
+				return ret_val;
+		}
 
 
-            /* firmware currently using resource (fwmask) */
-            /* or other software thread currently using resource (swmask) */
-            e1000_put_hw_eeprom_semaphore(hw);
-            mdelay(5);
-            timeout--;
-    }
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
 
 
-    if (!timeout) {
-        DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
-        return -E1000_ERR_SWFW_SYNC;
-    }
+		/* load defaults for future use */
+		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
+		    ((phy_data & CR_1000T_MS_VALUE) ?
+		     e1000_ms_force_master :
+		     e1000_ms_force_slave) : e1000_ms_auto;
 
 
-    swfw_sync |= swmask;
-    ew32(SW_FW_SYNC, swfw_sync);
+		switch (phy_ms_setting) {
+		case e1000_ms_force_master:
+			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_force_slave:
+			phy_data |= CR_1000T_MS_ENABLE;
+			phy_data &= ~(CR_1000T_MS_VALUE);
+			break;
+		case e1000_ms_auto:
+			phy_data &= ~CR_1000T_MS_ENABLE;
+		default:
+			break;
+		}
+		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
 
 
-    e1000_put_hw_eeprom_semaphore(hw);
-    return E1000_SUCCESS;
+	return E1000_SUCCESS;
 }
 }
 
 
-static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
+/**
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
 {
 {
-    u32 swfw_sync;
-    u32 swmask = mask;
+	s32 ret_val;
+	u16 phy_data;
 
 
-    DEBUGFUNC("e1000_swfw_sync_release");
+	DEBUGFUNC("e1000_copper_link_mgp_setup");
 
 
-    if (hw->swfwhw_semaphore_present) {
-        e1000_release_software_flag(hw);
-        return;
-    }
+	if (hw->phy_reset_disable)
+		return E1000_SUCCESS;
 
 
-    if (!hw->swfw_sync_present) {
-        e1000_put_hw_eeprom_semaphore(hw);
-        return;
-    }
+	/* Enable CRS on TX. This must be set for half-duplex operation. */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-    /* if (e1000_get_hw_eeprom_semaphore(hw))
-     *    return -E1000_ERR_SWFW_SYNC; */
-    while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
-        /* empty */
+	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 
 
-    swfw_sync = er32(SW_FW_SYNC);
-    swfw_sync &= ~swmask;
-    ew32(SW_FW_SYNC, swfw_sync);
-
-    e1000_put_hw_eeprom_semaphore(hw);
-}
-
-/*****************************************************************************
-* Reads the value from a PHY register, if the value is on a specific non zero
-* page, sets the page first.
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to read
-******************************************************************************/
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
-{
-    u32 ret_val;
-    u16 swfw;
-
-    DEBUGFUNC("e1000_read_phy_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (er32(STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
-        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (u16)reg_addr);
-        if (ret_val) {
-            e1000_swfw_sync_release(hw, swfw);
-            return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == e1000_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = e1000_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                e1000_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
-    }
-
-    ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
-                                    phy_data);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return ret_val;
-}
+	/* Options:
+	 *   MDI/MDI-X = 0 (default)
+	 *   0 - Auto for all speeds
+	 *   1 - MDI mode
+	 *   2 - MDI-X mode
+	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+	 */
+	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 
 
-static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
-				 u16 *phy_data)
-{
-    u32 i;
-    u32 mdic = 0;
-    const u32 phy_addr = 1;
-
-    DEBUGFUNC("e1000_read_phy_reg_ex");
-
-    if (reg_addr > MAX_PHY_REG_ADDRESS) {
-        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
-        return -E1000_ERR_PARAM;
-    }
-
-    if (hw->mac_type > e1000_82543) {
-        /* Set up Op-code, Phy Address, and register address in the MDI
-         * Control register.  The MAC will take care of interfacing with the
-         * PHY to retrieve the desired data.
-         */
-        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
-                (phy_addr << E1000_MDIC_PHY_SHIFT) |
-                (E1000_MDIC_OP_READ));
-
-        ew32(MDIC, mdic);
-
-        /* Poll the ready bit to see if the MDI read completed */
-        for (i = 0; i < 64; i++) {
-            udelay(50);
-            mdic = er32(MDIC);
-            if (mdic & E1000_MDIC_READY) break;
-        }
-        if (!(mdic & E1000_MDIC_READY)) {
-            DEBUGOUT("MDI Read did not complete\n");
-            return -E1000_ERR_PHY;
-        }
-        if (mdic & E1000_MDIC_ERROR) {
-            DEBUGOUT("MDI Error\n");
-            return -E1000_ERR_PHY;
-        }
-        *phy_data = (u16)mdic;
-    } else {
-        /* We must first send a preamble through the MDIO pin to signal the
-         * beginning of an MII instruction.  This is done by sending 32
-         * consecutive "1" bits.
-         */
-        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-        /* Now combine the next few fields that are required for a read
-         * operation.  We use this method instead of calling the
-         * e1000_shift_out_mdi_bits routine five different times. The format of
-         * a MII read instruction consists of a shift out of 14 bits and is
-         * defined as follows:
-         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
-         * followed by a shift in of 18 bits.  This first two bits shifted in
-         * are TurnAround bits used to avoid contention on the MDIO pin when a
-         * READ operation is performed.  These two bits are thrown away
-         * followed by a shift in of 16 bits which contains the desired data.
-         */
-        mdic = ((reg_addr) | (phy_addr << 5) |
-                (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
-        e1000_shift_out_mdi_bits(hw, mdic, 14);
-
-        /* Now that we've shifted out the read command to the MII, we need to
-         * "shift in" the 16-bit value (18 total bits) of the requested PHY
-         * register address.
-         */
-        *phy_data = e1000_shift_in_mdi_bits(hw);
-    }
-    return E1000_SUCCESS;
-}
+	switch (hw->mdix) {
+	case 1:
+		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+		break;
+	case 2:
+		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+		break;
+	case 3:
+		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+		break;
+	case 0:
+	default:
+		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+		break;
+	}
 
 
-/******************************************************************************
-* Writes a value to a PHY register
-*
-* hw - Struct containing variables accessed by shared code
-* reg_addr - address of the PHY register to write
-* data - data to write to the PHY
-******************************************************************************/
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
-{
-    u32 ret_val;
-    u16 swfw;
-
-    DEBUGFUNC("e1000_write_phy_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (er32(STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    if ((hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) &&
-       (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
-        ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
-                                         (u16)reg_addr);
-        if (ret_val) {
-            e1000_swfw_sync_release(hw, swfw);
-            return ret_val;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
-            (hw->mac_type == e1000_80003es2lan)) {
-            /* Select Configuration Page */
-            if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
-                ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
-                          (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
-            } else {
-                /* Use Alternative Page Select register to access
-                 * registers 30 and 31
-                 */
-                ret_val = e1000_write_phy_reg_ex(hw,
-                                                 GG82563_PHY_PAGE_SELECT_ALT,
-                          (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT));
-            }
-
-            if (ret_val) {
-                e1000_swfw_sync_release(hw, swfw);
-                return ret_val;
-            }
-        }
-    }
-
-    ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
-                                     phy_data);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return ret_val;
-}
+	/* Options:
+	 *   disable_polarity_correction = 0 (default)
+	 *       Automatic Correction for Reversed Cable Polarity
+	 *   0 - Disabled
+	 *   1 - Enabled
+	 */
+	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+	if (hw->disable_polarity_correction == 1)
+		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_revision < M88E1011_I_REV_4) {
+		/* Force TX_CLK in the Extended PHY Specific Control Register
+		 * to 25MHz clock.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+		if ((hw->phy_revision == E1000_REVISION_2) &&
+		    (hw->phy_id == M88E1111_I_PHY_ID)) {
+			/* Vidalia Phy, set the downshift counter to 5x */
+			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
+			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		} else {
+			/* Configure Master and Slave downshift values */
+			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+			ret_val = e1000_write_phy_reg(hw,
+						      M88E1000_EXT_PHY_SPEC_CTRL,
+						      phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	}
 
 
-static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
-				  u16 phy_data)
-{
-    u32 i;
-    u32 mdic = 0;
-    const u32 phy_addr = 1;
-
-    DEBUGFUNC("e1000_write_phy_reg_ex");
-
-    if (reg_addr > MAX_PHY_REG_ADDRESS) {
-        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
-        return -E1000_ERR_PARAM;
-    }
-
-    if (hw->mac_type > e1000_82543) {
-        /* Set up Op-code, Phy Address, register address, and data intended
-         * for the PHY register in the MDI Control register.  The MAC will take
-         * care of interfacing with the PHY to send the desired data.
-         */
-        mdic = (((u32)phy_data) |
-                (reg_addr << E1000_MDIC_REG_SHIFT) |
-                (phy_addr << E1000_MDIC_PHY_SHIFT) |
-                (E1000_MDIC_OP_WRITE));
-
-        ew32(MDIC, mdic);
-
-        /* Poll the ready bit to see if the MDI read completed */
-        for (i = 0; i < 641; i++) {
-            udelay(5);
-            mdic = er32(MDIC);
-            if (mdic & E1000_MDIC_READY) break;
-        }
-        if (!(mdic & E1000_MDIC_READY)) {
-            DEBUGOUT("MDI Write did not complete\n");
-            return -E1000_ERR_PHY;
-        }
-    } else {
-        /* We'll need to use the SW defined pins to shift the write command
-         * out to the PHY. We first send a preamble to the PHY to signal the
-         * beginning of the MII instruction.  This is done by sending 32
-         * consecutive "1" bits.
-         */
-        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
-        /* Now combine the remaining required fields that will indicate a
-         * write operation. We use this method instead of calling the
-         * e1000_shift_out_mdi_bits routine for each field in the command. The
-         * format of a MII write instruction is as follows:
-         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
-         */
-        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
-                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
-        mdic <<= 16;
-        mdic |= (u32)phy_data;
-
-        e1000_shift_out_mdi_bits(hw, mdic, 32);
-    }
-
-    return E1000_SUCCESS;
-}
+	/* SW Reset the PHY so all changes take effect */
+	ret_val = e1000_phy_reset(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Resetting the PHY\n");
+		return ret_val;
+	}
 
 
-static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
-{
-    u32 reg_val;
-    u16 swfw;
-    DEBUGFUNC("e1000_read_kmrn_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (er32(STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    /* Write register address */
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) |
-              E1000_KUMCTRLSTA_REN;
-    ew32(KUMCTRLSTA, reg_val);
-    udelay(2);
-
-    /* Read the data returned */
-    reg_val = er32(KUMCTRLSTA);
-    *data = (u16)reg_val;
-
-    e1000_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
+	return E1000_SUCCESS;
 }
 }
 
 
-static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
+/**
+ * e1000_copper_link_autoneg - setup auto-neg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Setup auto-negotiation and flow control advertisements,
+ * and then perform auto-negotiation.
+ */
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
 {
 {
-    u32 reg_val;
-    u16 swfw;
-    DEBUGFUNC("e1000_write_kmrn_reg");
-
-    if ((hw->mac_type == e1000_80003es2lan) &&
-        (er32(STATUS) & E1000_STATUS_FUNC_1)) {
-        swfw = E1000_SWFW_PHY1_SM;
-    } else {
-        swfw = E1000_SWFW_PHY0_SM;
-    }
-    if (e1000_swfw_sync_acquire(hw, swfw))
-        return -E1000_ERR_SWFW_SYNC;
-
-    reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
-              E1000_KUMCTRLSTA_OFFSET) | data;
-    ew32(KUMCTRLSTA, reg_val);
-    udelay(2);
-
-    e1000_swfw_sync_release(hw, swfw);
-    return E1000_SUCCESS;
-}
+	s32 ret_val;
+	u16 phy_data;
 
 
-/******************************************************************************
-* Returns the PHY to the power-on reset state
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
-    u32 ctrl, ctrl_ext;
-    u32 led_ctrl;
-    s32 ret_val;
-    u16 swfw;
-
-    DEBUGFUNC("e1000_phy_hw_reset");
-
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = e1000_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    DEBUGOUT("Resetting Phy...\n");
-
-    if (hw->mac_type > e1000_82543) {
-        if ((hw->mac_type == e1000_80003es2lan) &&
-            (er32(STATUS) & E1000_STATUS_FUNC_1)) {
-            swfw = E1000_SWFW_PHY1_SM;
-        } else {
-            swfw = E1000_SWFW_PHY0_SM;
-        }
-        if (e1000_swfw_sync_acquire(hw, swfw)) {
-            DEBUGOUT("Unable to acquire swfw sync\n");
-            return -E1000_ERR_SWFW_SYNC;
-        }
-        /* Read the device control register and assert the E1000_CTRL_PHY_RST
-         * bit. Then, take it out of reset.
-         * For pre-e1000_82571 hardware, we delay for 10ms between the assert
-         * and deassert.  For e1000_82571 hardware and later, we instead delay
-         * for 50us between and 10ms after the deassertion.
-         */
-        ctrl = er32(CTRL);
-        ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
-        E1000_WRITE_FLUSH();
-
-        if (hw->mac_type < e1000_82571)
-            msleep(10);
-        else
-            udelay(100);
-
-        ew32(CTRL, ctrl);
-        E1000_WRITE_FLUSH();
-
-        if (hw->mac_type >= e1000_82571)
-            mdelay(10);
-
-        e1000_swfw_sync_release(hw, swfw);
-    } else {
-        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
-         * bit to put the PHY into reset. Then, take it out of reset.
-         */
-        ctrl_ext = er32(CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
-        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
-        ew32(CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH();
-        msleep(10);
-        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
-        ew32(CTRL_EXT, ctrl_ext);
-        E1000_WRITE_FLUSH();
-    }
-    udelay(150);
-
-    if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
-        /* Configure activity LED after PHY reset */
-        led_ctrl = er32(LEDCTL);
-        led_ctrl &= IGP_ACTIVITY_LED_MASK;
-        led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
-        ew32(LEDCTL, led_ctrl);
-    }
-
-    /* Wait for FW to finish PHY configuration. */
-    ret_val = e1000_get_phy_cfg_done(hw);
-    if (ret_val != E1000_SUCCESS)
-        return ret_val;
-    e1000_release_software_semaphore(hw);
-
-    if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
-        ret_val = e1000_init_lcd_from_nvm(hw);
-
-    return ret_val;
-}
+	DEBUGFUNC("e1000_copper_link_autoneg");
 
 
-/******************************************************************************
-* Resets the PHY
-*
-* hw - Struct containing variables accessed by shared code
-*
-* Sets bit 15 of the MII Control register
-******************************************************************************/
-s32 e1000_phy_reset(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_phy_reset");
-
-    /* In the case of the phy reset being blocked, it's not an error, we
-     * simply return success without performing the reset. */
-    ret_val = e1000_check_phy_reset_block(hw);
-    if (ret_val)
-        return E1000_SUCCESS;
-
-    switch (hw->phy_type) {
-    case e1000_phy_igp:
-    case e1000_phy_igp_2:
-    case e1000_phy_igp_3:
-    case e1000_phy_ife:
-        ret_val = e1000_phy_hw_reset(hw);
-        if (ret_val)
-            return ret_val;
-        break;
-    default:
-        ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data |= MII_CR_RESET;
-        ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
-        if (ret_val)
-            return ret_val;
-
-        udelay(1);
-        break;
-    }
-
-    if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
-        e1000_phy_init_script(hw);
-
-    return E1000_SUCCESS;
-}
+	/* Perform some bounds checking on the hw->autoneg_advertised
+	 * parameter.  If this variable is zero, then set it to the default.
+	 */
+	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 
 
-/******************************************************************************
-* Work-around for 82566 power-down: on D3 entry-
-* 1) disable gigabit link
-* 2) write VR power-down enable
-* 3) read it back
-* if successful continue, else issue LCD reset and repeat
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
-{
-    s32 reg;
-    u16 phy_data;
-    s32 retry = 0;
+	/* If autoneg_advertised is zero, we assume it was not defaulted
+	 * by the calling code so we set to advertise full capability.
+	 */
+	if (hw->autoneg_advertised == 0)
+		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+	ret_val = e1000_phy_setup_autoneg(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Setting up Auto-Negotiation\n");
+		return ret_val;
+	}
+	DEBUGOUT("Restarting Auto-Neg\n");
 
 
-    DEBUGFUNC("e1000_phy_powerdown_workaround");
+	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
+	 * the Auto Neg Restart bit in the PHY control register.
+	 */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-    if (hw->phy_type != e1000_phy_igp_3)
-        return;
+	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-    do {
-        /* Disable link */
-        reg = er32(PHY_CTRL);
-        ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
+	/* Does the user want to wait for Auto-Neg to complete here, or
+	 * check at a later time (for example, callback routine).
+	 */
+	if (hw->wait_autoneg_complete) {
+		ret_val = e1000_wait_autoneg(hw);
+		if (ret_val) {
+			DEBUGOUT
+			    ("Error while waiting for autoneg to complete\n");
+			return ret_val;
+		}
+	}
 
 
-        /* Write VR power-down enable - bits 9:8 should be 10b */
-        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        phy_data |= (1 << 9);
-        phy_data &= ~(1 << 8);
-        e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
+	hw->get_link_status = true;
 
 
-        /* Read it back and test */
-        e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
-        if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
-            break;
+	return E1000_SUCCESS;
+}
 
 
-        /* Issue PHY reset and repeat at most one more time */
-        reg = er32(CTRL);
-        ew32(CTRL, reg | E1000_CTRL_PHY_RST);
-        retry++;
-    } while (retry);
+/**
+ * e1000_copper_link_postconfig - post link setup
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Config the MAC and the PHY after link is up.
+ *   1) Set up the MAC to the current PHY speed/duplex
+ *      if we are on 82543.  If we
+ *      are on newer silicon, we only need to configure
+ *      collision distance in the Transmit Control Register.
+ *   2) Set up flow control on the MAC to that established with
+ *      the link partner.
+ *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
+ */
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	DEBUGFUNC("e1000_copper_link_postconfig");
 
 
-    return;
+	if (hw->mac_type >= e1000_82544) {
+		e1000_config_collision_dist(hw);
+	} else {
+		ret_val = e1000_config_mac_to_phy(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring MAC to PHY settings\n");
+			return ret_val;
+		}
+	}
+	ret_val = e1000_config_fc_after_link_up(hw);
+	if (ret_val) {
+		DEBUGOUT("Error Configuring Flow Control\n");
+		return ret_val;
+	}
 
 
-}
+	/* Config DSP to improve Giga link quality */
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_config_dsp_after_link_change(hw, true);
+		if (ret_val) {
+			DEBUGOUT("Error Configuring DSP after link up\n");
+			return ret_val;
+		}
+	}
 
 
-/******************************************************************************
-* Work-around for 82566 Kumeran PCS lock loss:
-* On link status change (i.e. PCI reset, speed change) and link is up and
-* speed is gigabit-
-* 0) if workaround is optionally disabled do nothing
-* 1) wait 1ms for Kumeran link to come up
-* 2) check Kumeran Diagnostic register PCS lock loss bit
-* 3) if not set the link is locked (all is good), otherwise...
-* 4) reset the PHY
-* 5) repeat up to 10 times
-* Note: this is only called for IGP3 copper when speed is 1gb.
-*
-* hw - struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    s32 reg;
-    s32 cnt;
-    u16 phy_data;
-
-    if (hw->kmrn_lock_loss_workaround_disabled)
-        return E1000_SUCCESS;
-
-    /* Make sure link is up before proceeding.  If not just return.
-     * Attempting this while link is negotiating fouled up link
-     * stability */
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-
-    if (phy_data & MII_SR_LINK_STATUS) {
-        for (cnt = 0; cnt < 10; cnt++) {
-            /* read once to clear */
-            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-            /* and again to get new status */
-            ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* check for PCS lock */
-            if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
-                return E1000_SUCCESS;
-
-            /* Issue PHY reset */
-            e1000_phy_hw_reset(hw);
-            mdelay(5);
-        }
-        /* Disable GigE link negotiation */
-        reg = er32(PHY_CTRL);
-        ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
-                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
-
-        /* unable to acquire PCS lock */
-        return E1000_ERR_PHY;
-    }
-
-    return E1000_SUCCESS;
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
-* Probes the expected PHY address for known PHY IDs
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
+/**
+ * e1000_setup_copper_link - phy/speed/duplex setting
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Detects which PHY is present and sets up the speed and duplex
+ */
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
 {
 {
-    s32 phy_init_status, ret_val;
-    u16 phy_id_high, phy_id_low;
-    bool match = false;
-
-    DEBUGFUNC("e1000_detect_gig_phy");
-
-    if (hw->phy_id != 0)
-        return E1000_SUCCESS;
-
-    /* The 82571 firmware may still be configuring the PHY.  In this
-     * case, we cannot access the PHY until the configuration is done.  So
-     * we explicitly set the PHY values. */
-    if (hw->mac_type == e1000_82571 ||
-        hw->mac_type == e1000_82572) {
-        hw->phy_id = IGP01E1000_I_PHY_ID;
-        hw->phy_type = e1000_phy_igp_2;
-        return E1000_SUCCESS;
-    }
-
-    /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
-     * around that forces PHY page 0 to be set or the reads fail.  The rest of
-     * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
-     * So for ESB-2 we need to have this set so our reads won't fail.  If the
-     * attached PHY is not a e1000_phy_gg82563, the routines below will figure
-     * this out as well. */
-    if (hw->mac_type == e1000_80003es2lan)
-        hw->phy_type = e1000_phy_gg82563;
-
-    /* Read the PHY ID Registers to identify which PHY is onboard. */
-    ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
-    if (ret_val)
-        return ret_val;
-
-    hw->phy_id = (u32)(phy_id_high << 16);
-    udelay(20);
-    ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
-    if (ret_val)
-        return ret_val;
-
-    hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
-    hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
-
-    switch (hw->mac_type) {
-    case e1000_82543:
-        if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
-        break;
-    case e1000_82544:
-        if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
-        break;
-    case e1000_82540:
-    case e1000_82545:
-    case e1000_82545_rev_3:
-    case e1000_82546:
-    case e1000_82546_rev_3:
-        if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
-        break;
-    case e1000_82541:
-    case e1000_82541_rev_2:
-    case e1000_82547:
-    case e1000_82547_rev_2:
-        if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
-        break;
-    case e1000_82573:
-        if (hw->phy_id == M88E1111_I_PHY_ID) match = true;
-        break;
-    case e1000_80003es2lan:
-        if (hw->phy_id == GG82563_E_PHY_ID) match = true;
-        break;
-    case e1000_ich8lan:
-        if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true;
-        if (hw->phy_id == IFE_E_PHY_ID) match = true;
-        if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true;
-        if (hw->phy_id == IFE_C_E_PHY_ID) match = true;
-        break;
-    default:
-        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
-        return -E1000_ERR_CONFIG;
-    }
-    phy_init_status = e1000_set_phy_type(hw);
-
-    if ((match) && (phy_init_status == E1000_SUCCESS)) {
-        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
-        return E1000_SUCCESS;
-    }
-    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
-    return -E1000_ERR_PHY;
-}
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_setup_copper_link");
+
+	/* Check if it is a valid PHY and set PHY mode if necessary. */
+	ret_val = e1000_copper_link_preconfig(hw);
+	if (ret_val)
+		return ret_val;
+
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_copper_link_igp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_copper_link_mgp_setup(hw);
+		if (ret_val)
+			return ret_val;
+	}
 
 
-/******************************************************************************
-* Resets the PHY's DSP
-*
-* hw - Struct containing variables accessed by shared code
-******************************************************************************/
-static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    DEBUGFUNC("e1000_phy_reset_dsp");
-
-    do {
-        if (hw->phy_type != e1000_phy_gg82563) {
-            ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
-            if (ret_val) break;
-        }
-        ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
-        if (ret_val) break;
-        ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
-        if (ret_val) break;
-        ret_val = E1000_SUCCESS;
-    } while (0);
-
-    return ret_val;
-}
+	if (hw->autoneg) {
+		/* Setup autoneg and flow control advertisement
+		 * and perform autonegotiation */
+		ret_val = e1000_copper_link_autoneg(hw);
+		if (ret_val)
+			return ret_val;
+	} else {
+		/* PHY will be set to 10H, 10F, 100H,or 100F
+		 * depending on value from forced_speed_duplex. */
+		DEBUGOUT("Forcing speed and duplex\n");
+		ret_val = e1000_phy_force_speed_duplex(hw);
+		if (ret_val) {
+			DEBUGOUT("Error Forcing Speed and Duplex\n");
+			return ret_val;
+		}
+	}
 
 
-/******************************************************************************
-* Get PHY information from various PHY registers for igp PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
-				  struct e1000_phy_info *phy_info)
-{
-    s32 ret_val;
-    u16 phy_data, min_length, max_length, average;
-    e1000_rev_polarity polarity;
-
-    DEBUGFUNC("e1000_phy_igp_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
-    /* IGP01E1000 does not need to support it. */
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
-    /* IGP01E1000 always correct polarity reversal */
-    phy_info->polarity_correction = e1000_polarity_reversal_enabled;
-
-    /* Check polarity status */
-    ret_val = e1000_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
-                          IGP01E1000_PSSR_MDIX_SHIFT);
-
-    if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
-       IGP01E1000_PSSR_SPEED_1000MBPS) {
-        /* Local/Remote Receiver Information are only valid at 1000 Mbps */
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
-                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
-                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
-        /* Get cable length */
-        ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
-        if (ret_val)
-            return ret_val;
-
-        /* Translate to old method */
-        average = (max_length + min_length) / 2;
-
-        if (average <= e1000_igp_cable_length_50)
-            phy_info->cable_length = e1000_cable_length_50;
-        else if (average <= e1000_igp_cable_length_80)
-            phy_info->cable_length = e1000_cable_length_50_80;
-        else if (average <= e1000_igp_cable_length_110)
-            phy_info->cable_length = e1000_cable_length_80_110;
-        else if (average <= e1000_igp_cable_length_140)
-            phy_info->cable_length = e1000_cable_length_110_140;
-        else
-            phy_info->cable_length = e1000_cable_length_140;
-    }
-
-    return E1000_SUCCESS;
-}
+	/* Check link status. Wait up to 100 microseconds for link to become
+	 * valid.
+	 */
+	for (i = 0; i < 10; i++) {
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			/* Config the MAC and PHY after link is up */
+			ret_val = e1000_copper_link_postconfig(hw);
+			if (ret_val)
+				return ret_val;
+
+			DEBUGOUT("Valid link established!!!\n");
+			return E1000_SUCCESS;
+		}
+		udelay(10);
+	}
 
 
-/******************************************************************************
-* Get PHY information from various PHY registers for ife PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-static s32 e1000_phy_ife_get_info(struct e1000_hw *hw,
-				  struct e1000_phy_info *phy_info)
-{
-    s32 ret_val;
-    u16 phy_data;
-    e1000_rev_polarity polarity;
-
-    DEBUGFUNC("e1000_phy_ife_get_info");
-
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
-    ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-    phy_info->polarity_correction =
-                        ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
-                        IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
-                        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
-    if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
-        ret_val = e1000_check_polarity(hw, &polarity);
-        if (ret_val)
-            return ret_val;
-    } else {
-        /* Polarity is forced. */
-        polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
-                     IFE_PSC_FORCE_POLARITY_SHIFT) ?
-                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-    }
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (e1000_auto_x_mode)
-                     ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
-                     IFE_PMC_MDIX_MODE_SHIFT);
-
-    return E1000_SUCCESS;
+	DEBUGOUT("Unable to establish link!!!\n");
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
-* Get PHY information from various PHY registers fot m88 PHY only.
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
-				  struct e1000_phy_info *phy_info)
+/**
+ * e1000_phy_setup_autoneg - phy settings
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures PHY autoneg and flow control advertisement settings
+ */
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 {
 {
-    s32 ret_val;
-    u16 phy_data;
-    e1000_rev_polarity polarity;
-
-    DEBUGFUNC("e1000_phy_m88_get_info");
-
-    /* The downshift status is checked only once, after link is established,
-     * and it stored in the hw->speed_downgraded parameter. */
-    phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->extended_10bt_distance =
-        ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
-        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
-        e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
-
-    phy_info->polarity_correction =
-        ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
-        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
-        e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
-    /* Check polarity status */
-    ret_val = e1000_check_polarity(hw, &polarity);
-    if (ret_val)
-        return ret_val;
-    phy_info->cable_polarity = polarity;
-
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
-                          M88E1000_PSSR_MDIX_SHIFT);
-
-    if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
-        /* Cable Length Estimation and Local/Remote Receiver Information
-         * are only valid at 1000 Mbps.
-         */
-        if (hw->phy_type != e1000_phy_gg82563) {
-            phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-        } else {
-            ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
-        }
-
-        ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
-                             SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
-                             e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-        phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
-                              SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
-                              e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
-    }
-
-    return E1000_SUCCESS;
-}
+	s32 ret_val;
+	u16 mii_autoneg_adv_reg;
+	u16 mii_1000t_ctrl_reg;
 
 
-/******************************************************************************
-* Get PHY information from various PHY registers
-*
-* hw - Struct containing variables accessed by shared code
-* phy_info - PHY information structure
-******************************************************************************/
-s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
-{
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_phy_get_info");
-
-    phy_info->cable_length = e1000_cable_length_undefined;
-    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
-    phy_info->cable_polarity = e1000_rev_polarity_undefined;
-    phy_info->downshift = e1000_downshift_undefined;
-    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
-    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
-    phy_info->local_rx = e1000_1000t_rx_status_undefined;
-    phy_info->remote_rx = e1000_1000t_rx_status_undefined;
-
-    if (hw->media_type != e1000_media_type_copper) {
-        DEBUGOUT("PHY info is only valid for copper media\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
-    if (ret_val)
-        return ret_val;
-
-    if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
-        DEBUGOUT("PHY info is only valid if link is up\n");
-        return -E1000_ERR_CONFIG;
-    }
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2)
-        return e1000_phy_igp_get_info(hw, phy_info);
-    else if (hw->phy_type == e1000_phy_ife)
-        return e1000_phy_ife_get_info(hw, phy_info);
-    else
-        return e1000_phy_m88_get_info(hw, phy_info);
-}
+	DEBUGFUNC("e1000_phy_setup_autoneg");
 
 
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
-{
-    DEBUGFUNC("e1000_validate_mdi_settings");
-
-    if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
-        DEBUGOUT("Invalid MDI setting detected\n");
-        hw->mdix = 1;
-        return -E1000_ERR_CONFIG;
-    }
-    return E1000_SUCCESS;
-}
+	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
+	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
 
 
+	/* Read the MII 1000Base-T Control Register (Address 9). */
+	ret_val =
+	    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
 
 
-/******************************************************************************
- * Sets up eeprom variables in the hw struct.  Must be called after mac_type
- * is configured.  Additionally, if this is ICH8, the flash controller GbE
- * registers must be mapped, or this will crash.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_init_eeprom_params(struct e1000_hw *hw)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u32 eecd = er32(EECD);
-    s32 ret_val = E1000_SUCCESS;
-    u16 eeprom_size;
-
-    DEBUGFUNC("e1000_init_eeprom_params");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-    case e1000_82544:
-        eeprom->type = e1000_eeprom_microwire;
-        eeprom->word_size = 64;
-        eeprom->opcode_bits = 3;
-        eeprom->address_bits = 6;
-        eeprom->delay_usec = 50;
-        eeprom->use_eerd = false;
-        eeprom->use_eewr = false;
-        break;
-    case e1000_82540:
-    case e1000_82545:
-    case e1000_82545_rev_3:
-    case e1000_82546:
-    case e1000_82546_rev_3:
-        eeprom->type = e1000_eeprom_microwire;
-        eeprom->opcode_bits = 3;
-        eeprom->delay_usec = 50;
-        if (eecd & E1000_EECD_SIZE) {
-            eeprom->word_size = 256;
-            eeprom->address_bits = 8;
-        } else {
-            eeprom->word_size = 64;
-            eeprom->address_bits = 6;
-        }
-        eeprom->use_eerd = false;
-        eeprom->use_eewr = false;
-        break;
-    case e1000_82541:
-    case e1000_82541_rev_2:
-    case e1000_82547:
-    case e1000_82547_rev_2:
-        if (eecd & E1000_EECD_TYPE) {
-            eeprom->type = e1000_eeprom_spi;
-            eeprom->opcode_bits = 8;
-            eeprom->delay_usec = 1;
-            if (eecd & E1000_EECD_ADDR_BITS) {
-                eeprom->page_size = 32;
-                eeprom->address_bits = 16;
-            } else {
-                eeprom->page_size = 8;
-                eeprom->address_bits = 8;
-            }
-        } else {
-            eeprom->type = e1000_eeprom_microwire;
-            eeprom->opcode_bits = 3;
-            eeprom->delay_usec = 50;
-            if (eecd & E1000_EECD_ADDR_BITS) {
-                eeprom->word_size = 256;
-                eeprom->address_bits = 8;
-            } else {
-                eeprom->word_size = 64;
-                eeprom->address_bits = 6;
-            }
-        }
-        eeprom->use_eerd = false;
-        eeprom->use_eewr = false;
-        break;
-    case e1000_82571:
-    case e1000_82572:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = false;
-        eeprom->use_eewr = false;
-        break;
-    case e1000_82573:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = true;
-        eeprom->use_eewr = true;
-        if (!e1000_is_onboard_nvm_eeprom(hw)) {
-            eeprom->type = e1000_eeprom_flash;
-            eeprom->word_size = 2048;
-
-            /* Ensure that the Autonomous FLASH update bit is cleared due to
-             * Flash update issue on parts which use a FLASH for NVM. */
-            eecd &= ~E1000_EECD_AUPDEN;
-            ew32(EECD, eecd);
-        }
-        break;
-    case e1000_80003es2lan:
-        eeprom->type = e1000_eeprom_spi;
-        eeprom->opcode_bits = 8;
-        eeprom->delay_usec = 1;
-        if (eecd & E1000_EECD_ADDR_BITS) {
-            eeprom->page_size = 32;
-            eeprom->address_bits = 16;
-        } else {
-            eeprom->page_size = 8;
-            eeprom->address_bits = 8;
-        }
-        eeprom->use_eerd = true;
-        eeprom->use_eewr = false;
-        break;
-    case e1000_ich8lan:
-        {
-        s32  i = 0;
-        u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
-
-        eeprom->type = e1000_eeprom_ich8;
-        eeprom->use_eerd = false;
-        eeprom->use_eewr = false;
-        eeprom->word_size = E1000_SHADOW_RAM_WORDS;
-
-        /* Zero the shadow RAM structure. But don't load it from NVM
-         * so as to save time for driver init */
-        if (hw->eeprom_shadow_ram != NULL) {
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                hw->eeprom_shadow_ram[i].modified = false;
-                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-            }
-        }
-
-        hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
-                              ICH_FLASH_SECTOR_SIZE;
-
-        hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
-        hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
-
-        hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
-
-        hw->flash_bank_size /= 2 * sizeof(u16);
-
-        break;
-        }
-    default:
-        break;
-    }
-
-    if (eeprom->type == e1000_eeprom_spi) {
-        /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
-         * 32KB (incremented by powers of 2).
-         */
-        if (hw->mac_type <= e1000_82547_rev_2) {
-            /* Set to default value for initial eeprom read. */
-            eeprom->word_size = 64;
-            ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
-            if (ret_val)
-                return ret_val;
-            eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
-            /* 256B eeprom size was not supported in earlier hardware, so we
-             * bump eeprom_size up one to ensure that "1" (which maps to 256B)
-             * is never the result used in the shifting logic below. */
-            if (eeprom_size)
-                eeprom_size++;
-        } else {
-            eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
-                          E1000_EECD_SIZE_EX_SHIFT);
-        }
-
-        eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
-    }
-    return ret_val;
-}
+	/* Need to parse both autoneg_advertised and fc and set up
+	 * the appropriate PHY registers.  First we will parse for
+	 * autoneg_advertised software override.  Since we can advertise
+	 * a plethora of combinations, we need to check each bit
+	 * individually.
+	 */
 
 
-/******************************************************************************
- * Raises the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
-{
-    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
-     * wait <delay> microseconds.
-     */
-    *eecd = *eecd | E1000_EECD_SK;
-    ew32(EECD, *eecd);
-    E1000_WRITE_FLUSH();
-    udelay(hw->eeprom.delay_usec);
-}
+	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
+	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
+	 * the  1000Base-T Control Register (Address 9).
+	 */
+	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
 
 
-/******************************************************************************
- * Lowers the EEPROM's clock input.
- *
- * hw - Struct containing variables accessed by shared code
- * eecd - EECD's current value
- *****************************************************************************/
-static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
-{
-    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
-     * wait 50 microseconds.
-     */
-    *eecd = *eecd & ~E1000_EECD_SK;
-    ew32(EECD, *eecd);
-    E1000_WRITE_FLUSH();
-    udelay(hw->eeprom.delay_usec);
-}
+	DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
 
 
-/******************************************************************************
- * Shift data bits out to the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * data - data to send to the EEPROM
- * count - number of bits to shift out
- *****************************************************************************/
-static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u32 eecd;
-    u32 mask;
-
-    /* We need to shift "count" bits out to the EEPROM. So, value in the
-     * "data" parameter will be shifted out to the EEPROM one bit at a time.
-     * In order to do this, "data" must be broken down into bits.
-     */
-    mask = 0x01 << (count - 1);
-    eecd = er32(EECD);
-    if (eeprom->type == e1000_eeprom_microwire) {
-        eecd &= ~E1000_EECD_DO;
-    } else if (eeprom->type == e1000_eeprom_spi) {
-        eecd |= E1000_EECD_DO;
-    }
-    do {
-        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
-         * and then raising and then lowering the clock (the SK bit controls
-         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
-         * by setting "DI" to "0" and then raising and then lowering the clock.
-         */
-        eecd &= ~E1000_EECD_DI;
-
-        if (data & mask)
-            eecd |= E1000_EECD_DI;
-
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-
-        udelay(eeprom->delay_usec);
-
-        e1000_raise_ee_clk(hw, &eecd);
-        e1000_lower_ee_clk(hw, &eecd);
-
-        mask = mask >> 1;
-
-    } while (mask);
-
-    /* We leave the "DI" bit set to "0" when we leave this routine. */
-    eecd &= ~E1000_EECD_DI;
-    ew32(EECD, eecd);
-}
+	/* Do we want to advertise 10 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
+		DEBUGOUT("Advertise 10mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+	}
 
 
-/******************************************************************************
- * Shift data bits in from the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
-{
-    u32 eecd;
-    u32 i;
-    u16 data;
+	/* Do we want to advertise 10 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
+		DEBUGOUT("Advertise 10mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+	}
 
 
-    /* In order to read a register from the EEPROM, we need to shift 'count'
-     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
-     * input to the EEPROM (setting the SK bit), and then reading the value of
-     * the "DO" bit.  During this "shifting in" process the "DI" bit should
-     * always be clear.
-     */
+	/* Do we want to advertise 100 Mb Half Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
+		DEBUGOUT("Advertise 100mb Half duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+	}
 
 
-    eecd = er32(EECD);
+	/* Do we want to advertise 100 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
+		DEBUGOUT("Advertise 100mb Full duplex\n");
+		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+	}
 
 
-    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
-    data = 0;
+	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+		DEBUGOUT
+		    ("Advertise 1000mb Half duplex requested, request denied!\n");
+	}
 
 
-    for (i = 0; i < count; i++) {
-        data = data << 1;
-        e1000_raise_ee_clk(hw, &eecd);
+	/* Do we want to advertise 1000 Mb Full Duplex? */
+	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+		DEBUGOUT("Advertise 1000mb Full duplex\n");
+		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+	}
 
 
-        eecd = er32(EECD);
+	/* Check for a software override of the flow control settings, and
+	 * setup the PHY advertisement registers accordingly.  If
+	 * auto-negotiation is enabled, then software will have to set the
+	 * "PAUSE" bits to the correct value in the Auto-Negotiation
+	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause frames
+	 *          but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          but we do not support receiving pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
+	 *  other:  No software override.  The flow control configuration
+	 *          in the EEPROM is used.
+	 */
+	switch (hw->fc) {
+	case E1000_FC_NONE:	/* 0 */
+		/* Flow control (RX & TX) is completely disabled by a
+		 * software over-ride.
+		 */
+		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_RX_PAUSE:	/* 1 */
+		/* RX Flow control is enabled, and TX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		/* Since there really isn't a way to advertise that we are
+		 * capable of RX Pause ONLY, we will advertise that we
+		 * support both symmetric and asymmetric RX PAUSE.  Later
+		 * (in e1000_config_fc_after_link_up) we will disable the
+		 *hw's ability to send PAUSE frames.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	case E1000_FC_TX_PAUSE:	/* 2 */
+		/* TX Flow control is enabled, and RX Flow control is
+		 * disabled, by a software over-ride.
+		 */
+		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+		break;
+	case E1000_FC_FULL:	/* 3 */
+		/* Flow control (both RX and TX) is enabled by a software
+		 * over-ride.
+		 */
+		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
 
 
-        eecd &= ~(E1000_EECD_DI);
-        if (eecd & E1000_EECD_DO)
-            data |= 1;
+	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+	if (ret_val)
+		return ret_val;
 
 
-        e1000_lower_ee_clk(hw, &eecd);
-    }
+	DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
 
 
-    return data;
-}
+	ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+	if (ret_val)
+		return ret_val;
 
 
-/******************************************************************************
- * Prepares EEPROM for access
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- *****************************************************************************/
-static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u32 eecd, i=0;
-
-    DEBUGFUNC("e1000_acquire_eeprom");
-
-    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
-    eecd = er32(EECD);
-
-    if (hw->mac_type != e1000_82573) {
-        /* Request EEPROM Access */
-        if (hw->mac_type > e1000_82544) {
-            eecd |= E1000_EECD_REQ;
-            ew32(EECD, eecd);
-            eecd = er32(EECD);
-            while ((!(eecd & E1000_EECD_GNT)) &&
-                  (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
-                i++;
-                udelay(5);
-                eecd = er32(EECD);
-            }
-            if (!(eecd & E1000_EECD_GNT)) {
-                eecd &= ~E1000_EECD_REQ;
-                ew32(EECD, eecd);
-                DEBUGOUT("Could not acquire EEPROM grant\n");
-                e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-                return -E1000_ERR_EEPROM;
-            }
-        }
-    }
-
-    /* Setup EEPROM for Read/Write */
-
-    if (eeprom->type == e1000_eeprom_microwire) {
-        /* Clear SK and DI */
-        eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
-        ew32(EECD, eecd);
-
-        /* Set CS */
-        eecd |= E1000_EECD_CS;
-        ew32(EECD, eecd);
-    } else if (eeprom->type == e1000_eeprom_spi) {
-        /* Clear SK and CS */
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        ew32(EECD, eecd);
-        udelay(1);
-    }
-
-    return E1000_SUCCESS;
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Returns EEPROM to a "standby" state
+/**
+ * e1000_phy_force_speed_duplex - force link settings
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_standby_eeprom(struct e1000_hw *hw)
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
+ */
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
 {
 {
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u32 eecd;
-
-    eecd = er32(EECD);
-
-    if (eeprom->type == e1000_eeprom_microwire) {
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(eeprom->delay_usec);
-
-        /* Clock high */
-        eecd |= E1000_EECD_SK;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(eeprom->delay_usec);
-
-        /* Select EEPROM */
-        eecd |= E1000_EECD_CS;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(eeprom->delay_usec);
-
-        /* Clock low */
-        eecd &= ~E1000_EECD_SK;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(eeprom->delay_usec);
-    } else if (eeprom->type == e1000_eeprom_spi) {
-        /* Toggle CS to flush commands */
-        eecd |= E1000_EECD_CS;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(eeprom->delay_usec);
-        eecd &= ~E1000_EECD_CS;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(eeprom->delay_usec);
-    }
-}
+	u32 ctrl;
+	s32 ret_val;
+	u16 mii_ctrl_reg;
+	u16 mii_status_reg;
+	u16 phy_data;
+	u16 i;
+
+	DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+	/* Turn off Flow control if we are forcing speed and duplex. */
+	hw->fc = E1000_FC_NONE;
+
+	DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+	/* Read the Device Control Register. */
+	ctrl = er32(CTRL);
+
+	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(DEVICE_SPEED_MASK);
+
+	/* Clear the Auto Speed Detect Enable bit. */
+	ctrl &= ~E1000_CTRL_ASDE;
+
+	/* Read the MII Control Register. */
+	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
+
+	/* We need to disable autoneg in order to force link and duplex. */
+
+	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+	/* Are we forcing Full or Half Duplex? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_10_full) {
+		/* We want to force full duplex so we SET the full duplex bits in the
+		 * Device and MII Control Registers.
+		 */
+		ctrl |= E1000_CTRL_FD;
+		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Full Duplex\n");
+	} else {
+		/* We want to force half duplex so we CLEAR the full duplex bits in
+		 * the Device and MII Control Registers.
+		 */
+		ctrl &= ~E1000_CTRL_FD;
+		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+		DEBUGOUT("Half Duplex\n");
+	}
 
 
-/******************************************************************************
- * Terminates a command by inverting the EEPROM's chip select pin
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_release_eeprom(struct e1000_hw *hw)
-{
-    u32 eecd;
+	/* Are we forcing 100Mbps??? */
+	if (hw->forced_speed_duplex == e1000_100_full ||
+	    hw->forced_speed_duplex == e1000_100_half) {
+		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+		ctrl |= E1000_CTRL_SPD_100;
+		mii_ctrl_reg |= MII_CR_SPEED_100;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+		DEBUGOUT("Forcing 100mb ");
+	} else {
+		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+		mii_ctrl_reg |= MII_CR_SPEED_10;
+		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+		DEBUGOUT("Forcing 10mb ");
+	}
 
 
-    DEBUGFUNC("e1000_release_eeprom");
+	e1000_config_collision_dist(hw);
+
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+
+	if (hw->phy_type == e1000_phy_m88) {
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+		 * forced whenever speed are duplex are forced.
+		 */
+		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+		/* Need to reset the PHY or these changes will be ignored */
+		mii_ctrl_reg |= MII_CR_RESET;
+
+		/* Disable MDI-X support for 10/100 */
+	} else {
+		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+		 * forced whenever speed or duplex are forced.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+	}
 
 
-    eecd = er32(EECD);
+	/* Write back the modified PHY MII control register. */
+	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
+	if (ret_val)
+		return ret_val;
 
 
-    if (hw->eeprom.type == e1000_eeprom_spi) {
-        eecd |= E1000_EECD_CS;  /* Pull CS high */
-        eecd &= ~E1000_EECD_SK; /* Lower SCK */
+	udelay(1);
 
 
-        ew32(EECD, eecd);
+	/* The wait_autoneg_complete flag may be a little misleading here.
+	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+	 * But we do want to delay for a period while forcing only so we
+	 * don't generate false No Link messages.  So we will wait here
+	 * only if the user has set wait_autoneg_complete to 1, which is
+	 * the default.
+	 */
+	if (hw->wait_autoneg_complete) {
+		/* We will wait for autoneg to complete. */
+		DEBUGOUT("Waiting for forced speed/duplex link.\n");
+		mii_status_reg = 0;
+
+		/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+		}
+		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
+			/* We didn't get link.  Reset the DSP and wait again for link. */
+			ret_val = e1000_phy_reset_dsp(hw);
+			if (ret_val) {
+				DEBUGOUT("Error Resetting PHY DSP\n");
+				return ret_val;
+			}
+		}
+		/* This loop will early-out if the link condition has been met.  */
+		for (i = PHY_FORCE_TIME; i > 0; i--) {
+			if (mii_status_reg & MII_SR_LINK_STATUS)
+				break;
+			msleep(100);
+			/* Read the MII Status Register and wait for Auto-Neg Complete bit
+			 * to be set.
+			 */
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+			if (ret_val)
+				return ret_val;
+		}
+	}
 
 
-        udelay(hw->eeprom.delay_usec);
-    } else if (hw->eeprom.type == e1000_eeprom_microwire) {
-        /* cleanup eeprom */
+	if (hw->phy_type == e1000_phy_m88) {
+		/* Because we reset the PHY above, we need to re-force TX_CLK in the
+		 * Extended PHY Specific Control Register to 25MHz clock.  This value
+		 * defaults back to a 2.5MHz clock when the PHY is reset.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_EPSCR_TX_CLK_25;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+					phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* In addition, because of the s/w reset above, we need to enable CRS on
+		 * TX.  This must be set for both full and half duplex operation.
+		 */
+		ret_val =
+		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+		ret_val =
+		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
+		    && (!hw->autoneg)
+		    && (hw->forced_speed_duplex == e1000_10_full
+			|| hw->forced_speed_duplex == e1000_10_half)) {
+			ret_val = e1000_polarity_reversal_workaround(hw);
+			if (ret_val)
+				return ret_val;
+		}
+	}
+	return E1000_SUCCESS;
+}
 
 
-        /* CS on Microwire is active-high */
-        eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+/**
+ * e1000_config_collision_dist - set collision distance register
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Sets the collision distance in the Transmit Control register.
+ * Link should have been established previously. Reads the speed and duplex
+ * information from the Device Status register.
+ */
+void e1000_config_collision_dist(struct e1000_hw *hw)
+{
+	u32 tctl, coll_dist;
 
 
-        ew32(EECD, eecd);
+	DEBUGFUNC("e1000_config_collision_dist");
 
 
-        /* Rising edge of clock */
-        eecd |= E1000_EECD_SK;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(hw->eeprom.delay_usec);
+	if (hw->mac_type < e1000_82543)
+		coll_dist = E1000_COLLISION_DISTANCE_82542;
+	else
+		coll_dist = E1000_COLLISION_DISTANCE;
 
 
-        /* Falling edge of clock */
-        eecd &= ~E1000_EECD_SK;
-        ew32(EECD, eecd);
-        E1000_WRITE_FLUSH();
-        udelay(hw->eeprom.delay_usec);
-    }
+	tctl = er32(TCTL);
 
 
-    /* Stop requesting EEPROM access */
-    if (hw->mac_type > e1000_82544) {
-        eecd &= ~E1000_EECD_REQ;
-        ew32(EECD, eecd);
-    }
+	tctl &= ~E1000_TCTL_COLD;
+	tctl |= coll_dist << E1000_COLD_SHIFT;
 
 
-    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
+	ew32(TCTL, tctl);
+	E1000_WRITE_FLUSH();
 }
 }
 
 
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
+/**
+ * e1000_config_mac_to_phy - sync phy and mac settings
+ * @hw: Struct containing variables accessed by shared code
+ * @mii_reg: data to write to the MII control register
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
+ * The contents of the PHY register containing the needed information need to
+ * be passed in.
+ */
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
 {
 {
-    u16 retry_count = 0;
-    u8 spi_stat_reg;
-
-    DEBUGFUNC("e1000_spi_eeprom_ready");
-
-    /* Read "Status Register" repeatedly until the LSB is cleared.  The
-     * EEPROM will signal that the command has been completed by clearing
-     * bit 0 of the internal status register.  If it's not cleared within
-     * 5 milliseconds, then error out.
-     */
-    retry_count = 0;
-    do {
-        e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
-                                hw->eeprom.opcode_bits);
-        spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
-        if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
-            break;
-
-        udelay(5);
-        retry_count += 5;
-
-        e1000_standby_eeprom(hw);
-    } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
-    /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
-     * only 0-5mSec on 5V devices)
-     */
-    if (retry_count >= EEPROM_MAX_RETRY_SPI) {
-        DEBUGOUT("SPI EEPROM Status error\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
+	u32 ctrl;
+	s32 ret_val;
+	u16 phy_data;
 
 
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-    s32 ret;
-    spin_lock(&e1000_eeprom_lock);
-    ret = e1000_do_read_eeprom(hw, offset, words, data);
-    spin_unlock(&e1000_eeprom_lock);
-    return ret;
-}
+	DEBUGFUNC("e1000_config_mac_to_phy");
 
 
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u32 i = 0;
-
-    DEBUGFUNC("e1000_read_eeprom");
-
-    /* If eeprom is not yet detected, do so now */
-    if (eeprom->word_size == 0)
-        e1000_init_eeprom_params(hw);
-
-    /* A check for invalid values:  offset too large, too many words, and not
-     * enough words.
-     */
-    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
-       (words == 0)) {
-        DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
-        return -E1000_ERR_EEPROM;
-    }
-
-    /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
-     * directly. In this case, we need to acquire the EEPROM so that
-     * FW or other port software does not interrupt.
-     */
-    if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) {
-        /* Prepare the EEPROM for bit-bang reading */
-        if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
-            return -E1000_ERR_EEPROM;
-    }
-
-    /* Eerd register EEPROM access requires no eeprom aquire/release */
-    if (eeprom->use_eerd)
-        return e1000_read_eeprom_eerd(hw, offset, words, data);
-
-    /* ICH EEPROM access is done via the ICH flash controller */
-    if (eeprom->type == e1000_eeprom_ich8)
-        return e1000_read_eeprom_ich8(hw, offset, words, data);
-
-    /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
-     * acquired the EEPROM at this point, so any returns should relase it */
-    if (eeprom->type == e1000_eeprom_spi) {
-        u16 word_in;
-        u8 read_opcode = EEPROM_READ_OPCODE_SPI;
-
-        if (e1000_spi_eeprom_ready(hw)) {
-            e1000_release_eeprom(hw);
-            return -E1000_ERR_EEPROM;
-        }
-
-        e1000_standby_eeprom(hw);
-
-        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
-        if ((eeprom->address_bits == 8) && (offset >= 128))
-            read_opcode |= EEPROM_A8_OPCODE_SPI;
-
-        /* Send the READ command (opcode + addr)  */
-        e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
-        e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
-
-        /* Read the data.  The address of the eeprom internally increments with
-         * each byte (spi) being read, saving on the overhead of eeprom setup
-         * and tear-down.  The address counter will roll over if reading beyond
-         * the size of the eeprom, thus allowing the entire memory to be read
-         * starting from any offset. */
-        for (i = 0; i < words; i++) {
-            word_in = e1000_shift_in_ee_bits(hw, 16);
-            data[i] = (word_in >> 8) | (word_in << 8);
-        }
-    } else if (eeprom->type == e1000_eeprom_microwire) {
-        for (i = 0; i < words; i++) {
-            /* Send the READ command (opcode + addr)  */
-            e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
-                                    eeprom->opcode_bits);
-            e1000_shift_out_ee_bits(hw, (u16)(offset + i),
-                                    eeprom->address_bits);
-
-            /* Read the data.  For microwire, each word requires the overhead
-             * of eeprom setup and tear-down. */
-            data[i] = e1000_shift_in_ee_bits(hw, 16);
-            e1000_standby_eeprom(hw);
-        }
-    }
-
-    /* End this read operation */
-    e1000_release_eeprom(hw);
-
-    return E1000_SUCCESS;
-}
+	/* 82544 or newer MAC, Auto Speed Detection takes care of
+	 * MAC speed/duplex configuration.*/
+	if (hw->mac_type >= e1000_82544)
+		return E1000_SUCCESS;
 
 
-/******************************************************************************
- * Reads a 16 bit word from the EEPROM using the EERD register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
-				  u16 *data)
-{
-    u32 i, eerd = 0;
-    s32 error = 0;
+	/* Read the Device Control Register and set the bits to Force Speed
+	 * and Duplex.
+	 */
+	ctrl = er32(CTRL);
+	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
 
 
-    for (i = 0; i < words; i++) {
-        eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
-                         E1000_EEPROM_RW_REG_START;
+	/* Set up duplex in the Device Control and Transmit Control
+	 * registers depending on negotiated values.
+	 */
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-        ew32(EERD, eerd);
-        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
+	if (phy_data & M88E1000_PSSR_DPLX)
+		ctrl |= E1000_CTRL_FD;
+	else
+		ctrl &= ~E1000_CTRL_FD;
 
 
-        if (error) {
-            break;
-        }
-        data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
+	e1000_config_collision_dist(hw);
 
 
-    }
+	/* Set up speed in the Device Control register depending on
+	 * negotiated values.
+	 */
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+		ctrl |= E1000_CTRL_SPD_1000;
+	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+		ctrl |= E1000_CTRL_SPD_100;
 
 
-    return error;
+	/* Write the configured values back to the Device Control Reg. */
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Writes a 16 bit word from the EEPROM using the EEWR register.
+/**
+ * e1000_force_mac_fc - force flow control settings
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
-				   u16 *data)
+ * Forces the MAC's flow control settings.
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ */
+s32 e1000_force_mac_fc(struct e1000_hw *hw)
 {
 {
-    u32    register_value = 0;
-    u32    i              = 0;
-    s32     error          = 0;
+	u32 ctrl;
+
+	DEBUGFUNC("e1000_force_mac_fc");
+
+	/* Get the current configuration of the Device Control Register */
+	ctrl = er32(CTRL);
+
+	/* Because we didn't get link via the internal auto-negotiation
+	 * mechanism (we either forced link or we got link via PHY
+	 * auto-neg), we have to manually enable/disable transmit an
+	 * receive flow control.
+	 *
+	 * The "Case" statement below enables/disable flow control
+	 * according to the "hw->fc" parameter.
+	 *
+	 * The possible values of the "fc" parameter are:
+	 *      0:  Flow control is completely disabled
+	 *      1:  Rx flow control is enabled (we can receive pause
+	 *          frames but not send pause frames).
+	 *      2:  Tx flow control is enabled (we can send pause frames
+	 *          frames but we do not receive pause frames).
+	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
+	 *  other:  No other values should be possible at this point.
+	 */
 
 
-    if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
-        return -E1000_ERR_SWFW_SYNC;
+	switch (hw->fc) {
+	case E1000_FC_NONE:
+		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+		break;
+	case E1000_FC_RX_PAUSE:
+		ctrl &= (~E1000_CTRL_TFCE);
+		ctrl |= E1000_CTRL_RFCE;
+		break;
+	case E1000_FC_TX_PAUSE:
+		ctrl &= (~E1000_CTRL_RFCE);
+		ctrl |= E1000_CTRL_TFCE;
+		break;
+	case E1000_FC_FULL:
+		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+		break;
+	default:
+		DEBUGOUT("Flow control param set incorrectly\n");
+		return -E1000_ERR_CONFIG;
+	}
 
 
-    for (i = 0; i < words; i++) {
-        register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
-                         ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
-                         E1000_EEPROM_RW_REG_START;
+	/* Disable TX Flow Control for 82542 (rev 2.0) */
+	if (hw->mac_type == e1000_82542_rev2_0)
+		ctrl &= (~E1000_CTRL_TFCE);
 
 
-        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
-        if (error) {
-            break;
-        }
+	ew32(CTRL, ctrl);
+	return E1000_SUCCESS;
+}
 
 
-        ew32(EEWR, register_value);
+/**
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Configures flow control settings after link is established
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
+ */
+static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 mii_nway_adv_reg;
+	u16 mii_nway_lp_ability_reg;
+	u16 speed;
+	u16 duplex;
 
 
-        error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
+	DEBUGFUNC("e1000_config_fc_after_link_up");
 
 
-        if (error) {
-            break;
-        }
-    }
+	/* Check for the case where we have fiber media and auto-neg failed
+	 * so we had to force link.  In this case, we need to force the
+	 * configuration of the MAC to match the "fc" parameter.
+	 */
+	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_internal_serdes)
+		&& (hw->autoneg_failed))
+	    || ((hw->media_type == e1000_media_type_copper)
+		&& (!hw->autoneg))) {
+		ret_val = e1000_force_mac_fc(hw);
+		if (ret_val) {
+			DEBUGOUT("Error forcing flow control settings\n");
+			return ret_val;
+		}
+	}
 
 
-    e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
-    return error;
+	/* Check for the case where we have copper media and auto-neg is
+	 * enabled.  In this case, we need to check and see if Auto-Neg
+	 * has completed, and if so, how the PHY and link partner has
+	 * flow control configured.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+		/* Read the MII Status Register and check to see if AutoNeg
+		 * has completed.  We read this twice because this reg has
+		 * some "sticky" (latched) bits.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+			/* The AutoNeg process has completed, so we now need to
+			 * read both the Auto Negotiation Advertisement Register
+			 * (Address 4) and the Auto_Negotiation Base Page Ability
+			 * Register (Address 5) to determine how flow control was
+			 * negotiated.
+			 */
+			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+						     &mii_nway_adv_reg);
+			if (ret_val)
+				return ret_val;
+			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+						     &mii_nway_lp_ability_reg);
+			if (ret_val)
+				return ret_val;
+
+			/* Two bits in the Auto Negotiation Advertisement Register
+			 * (Address 4) and two bits in the Auto Negotiation Base
+			 * Page Ability Register (Address 5) determine flow control
+			 * for both the PHY and the link partner.  The following
+			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+			 * 1999, describes these PAUSE resolution bits and how flow
+			 * control is determined based upon these settings.
+			 * NOTE:  DC = Don't Care
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			/* Are both PAUSE bits set to 1?  If so, this implies
+			 * Symmetric Flow Control is enabled at both ends.  The
+			 * ASM_DIR bits are irrelevant per the spec.
+			 *
+			 * For Symmetric Flow Control:
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
+			 *
+			 */
+			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+				/* Now we need to check if the user selected RX ONLY
+				 * of pause frames.  In this case, we had to advertise
+				 * FULL flow control because we could not advertise RX
+				 * ONLY. Hence, we must now check to see if we need to
+				 * turn OFF  the TRANSMISSION of PAUSE frames.
+				 */
+				if (hw->original_fc == E1000_FC_FULL) {
+					hw->fc = E1000_FC_FULL;
+					DEBUGOUT("Flow Control = FULL.\n");
+				} else {
+					hw->fc = E1000_FC_RX_PAUSE;
+					DEBUGOUT
+					    ("Flow Control = RX PAUSE frames only.\n");
+				}
+			}
+			/* For receiving PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
+			 *
+			 */
+			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_TX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = TX PAUSE frames only.\n");
+			}
+			/* For transmitting PAUSE frames ONLY.
+			 *
+			 *   LOCAL DEVICE  |   LINK PARTNER
+			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+			 *-------|---------|-------|---------|--------------------
+			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
+			 *
+			 */
+			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
+			{
+				hw->fc = E1000_FC_RX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+			/* Per the IEEE spec, at this point flow control should be
+			 * disabled.  However, we want to consider that we could
+			 * be connected to a legacy switch that doesn't advertise
+			 * desired flow control, but can be forced on the link
+			 * partner.  So if we advertised no flow control, that is
+			 * what we will resolve to.  If we advertised some kind of
+			 * receive capability (Rx Pause Only or Full Flow Control)
+			 * and the link partner advertised none, we will configure
+			 * ourselves to enable Rx Flow Control only.  We can do
+			 * this safely for two reasons:  If the link partner really
+			 * didn't want flow control enabled, and we enable Rx, no
+			 * harm done since we won't be receiving any PAUSE frames
+			 * anyway.  If the intent on the link partner was to have
+			 * flow control enabled, then by us enabling RX only, we
+			 * can at least receive pause frames and process them.
+			 * This is a good idea because in most cases, since we are
+			 * predominantly a server NIC, more times than not we will
+			 * be asked to delay transmission of packets than asking
+			 * our link partner to pause transmission of frames.
+			 */
+			else if ((hw->original_fc == E1000_FC_NONE ||
+				  hw->original_fc == E1000_FC_TX_PAUSE) ||
+				 hw->fc_strict_ieee) {
+				hw->fc = E1000_FC_NONE;
+				DEBUGOUT("Flow Control = NONE.\n");
+			} else {
+				hw->fc = E1000_FC_RX_PAUSE;
+				DEBUGOUT
+				    ("Flow Control = RX PAUSE frames only.\n");
+			}
+
+			/* Now we need to do one last check...  If we auto-
+			 * negotiated to HALF DUPLEX, flow control should not be
+			 * enabled per IEEE 802.3 spec.
+			 */
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+
+			if (duplex == HALF_DUPLEX)
+				hw->fc = E1000_FC_NONE;
+
+			/* Now we call a subroutine to actually force the MAC
+			 * controller to use the correct flow control settings.
+			 */
+			ret_val = e1000_force_mac_fc(hw);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error forcing flow control settings\n");
+				return ret_val;
+			}
+		} else {
+			DEBUGOUT
+			    ("Copper PHY and Auto Neg has not completed.\n");
+		}
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Polls the status bit (bit 1) of the EERD to determine when the read is done.
+/**
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
+ * Checks for link up on the hardware.  If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
 {
 {
-    u32 attempts = 100000;
-    u32 i, reg = 0;
-    s32 done = E1000_ERR_EEPROM;
-
-    for (i = 0; i < attempts; i++) {
-        if (eerd == E1000_EEPROM_POLL_READ)
-            reg = er32(EERD);
-        else
-            reg = er32(EEWR);
-
-        if (reg & E1000_EEPROM_RW_REG_DONE) {
-            done = E1000_SUCCESS;
-            break;
-        }
-        udelay(5);
-    }
-
-    return done;
-}
+	u32 rxcw;
+	u32 ctrl;
+	u32 status;
+	s32 ret_val = E1000_SUCCESS;
 
 
-/***************************************************************************
-* Description:     Determines if the onboard NVM is FLASH or EEPROM.
-*
-* hw - Struct containing variables accessed by shared code
-****************************************************************************/
-static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
-{
-    u32 eecd = 0;
+	DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+	rxcw = er32(RXCW);
 
 
-    DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
+	/*
+	 * If we don't have link (auto-negotiation failed or link partner
+	 * cannot auto-negotiate), and our link partner is not trying to
+	 * auto-negotiate with us (we are receiving idles or data),
+	 * we need to force link up. We also need to give auto-negotiation
+	 * time to complete.
+	 */
+	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+		if (hw->autoneg_failed == 0) {
+			hw->autoneg_failed = 1;
+			goto out;
+		}
+		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
 
 
-    if (hw->mac_type == e1000_ich8lan)
-        return false;
+		/* Disable auto-negotiation in the TXCW register */
+		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
 
 
-    if (hw->mac_type == e1000_82573) {
-        eecd = er32(EECD);
+		/* Force link-up and also force full-duplex. */
+		ctrl = er32(CTRL);
+		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+		ew32(CTRL, ctrl);
+
+		/* Configure Flow Control after forcing link up. */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			goto out;
+		}
+	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+		/*
+		 * If we are forcing link and we are receiving /C/ ordered
+		 * sets, re-enable auto-negotiation in the TXCW register
+		 * and disable forced link in the Device Control register
+		 * in an attempt to auto-negotiate with our link partner.
+		 */
+		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+		ew32(TXCW, hw->txcw);
+		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+		hw->serdes_has_link = true;
+	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
+		/*
+		 * If we force link for non-auto-negotiation switch, check
+		 * link status based on MAC synchronization for internal
+		 * serdes media type.
+		 */
+		/* SYNCH bit and IV bit are sticky. */
+		udelay(10);
+		rxcw = er32(RXCW);
+		if (rxcw & E1000_RXCW_SYNCH) {
+			if (!(rxcw & E1000_RXCW_IV)) {
+				hw->serdes_has_link = true;
+				DEBUGOUT("SERDES: Link up - forced.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - force failed.\n");
+		}
+	}
 
 
-        /* Isolate bits 15 & 16 */
-        eecd = ((eecd >> 15) & 0x03);
+	if (E1000_TXCW_ANE & er32(TXCW)) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_LU) {
+			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
+			udelay(10);
+			rxcw = er32(RXCW);
+			if (rxcw & E1000_RXCW_SYNCH) {
+				if (!(rxcw & E1000_RXCW_IV)) {
+					hw->serdes_has_link = true;
+					DEBUGOUT("SERDES: Link up - autoneg "
+						 "completed successfully.\n");
+				} else {
+					hw->serdes_has_link = false;
+					DEBUGOUT("SERDES: Link down - invalid"
+						 "codewords detected in autoneg.\n");
+				}
+			} else {
+				hw->serdes_has_link = false;
+				DEBUGOUT("SERDES: Link down - no sync.\n");
+			}
+		} else {
+			hw->serdes_has_link = false;
+			DEBUGOUT("SERDES: Link down - autoneg failed\n");
+		}
+	}
 
 
-        /* If both bits are set, device is Flash type */
-        if (eecd == 0x03) {
-            return false;
-        }
-    }
-    return true;
+      out:
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
- * Verifies that the EEPROM has a valid checksum
+/**
+ * e1000_check_for_link
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- *****************************************************************************/
-s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+ * Checks to see if the link status of the hardware has changed.
+ * Called by any function that needs to check the link status of the adapter.
+ */
+s32 e1000_check_for_link(struct e1000_hw *hw)
 {
 {
-    u16 checksum = 0;
-    u16 i, eeprom_data;
-
-    DEBUGFUNC("e1000_validate_eeprom_checksum");
-
-    if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) {
-        /* Check bit 4 of word 10h.  If it is 0, firmware is done updating
-         * 10h-12h.  Checksum may need to be fixed. */
-        e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
-        if ((eeprom_data & 0x10) == 0) {
-            /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum
-             * has already been fixed.  If the checksum is still wrong and this
-             * bit is a 1, we need to return bad checksum.  Otherwise, we need
-             * to set this bit to a 1 and update the checksum. */
-            e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
-            if ((eeprom_data & 0x8000) == 0) {
-                eeprom_data |= 0x8000;
-                e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
-                e1000_update_eeprom_checksum(hw);
-            }
-        }
-    }
-
-    if (hw->mac_type == e1000_ich8lan) {
-        /* Drivers must allocate the shadow ram structure for the
-         * EEPROM checksum to be updated.  Otherwise, this bit as well
-         * as the checksum must both be set correctly for this
-         * validation to pass.
-         */
-        e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
-        if ((eeprom_data & 0x40) == 0) {
-            eeprom_data |= 0x40;
-            e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
-            e1000_update_eeprom_checksum(hw);
-        }
-    }
-
-    for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
-        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        checksum += eeprom_data;
-    }
-
-    if (checksum == (u16)EEPROM_SUM)
-        return E1000_SUCCESS;
-    else {
-        DEBUGOUT("EEPROM Checksum Invalid\n");
-        return -E1000_ERR_EEPROM;
-    }
+	u32 rxcw = 0;
+	u32 ctrl;
+	u32 status;
+	u32 rctl;
+	u32 icr;
+	u32 signal = 0;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_for_link");
+
+	ctrl = er32(CTRL);
+	status = er32(STATUS);
+
+	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
+	 * set when the optics detect a signal. On older adapters, it will be
+	 * cleared when there is a signal.  This applies to fiber media only.
+	 */
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes)) {
+		rxcw = er32(RXCW);
+
+		if (hw->media_type == e1000_media_type_fiber) {
+			signal =
+			    (hw->mac_type >
+			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
+			if (status & E1000_STATUS_LU)
+				hw->get_link_status = false;
+		}
+	}
+
+	/* If we have a copper PHY then we only want to go out to the PHY
+	 * registers to see if Auto-Neg has completed and/or if our link
+	 * status has changed.  The get_link_status flag will be set if we
+	 * receive a Link Status Change interrupt or we have Rx Sequence
+	 * Errors.
+	 */
+	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+		/* First we want to see if the MII Status Register reports
+		 * link.  If so, then we want to get the current speed/duplex
+		 * of the PHY.
+		 * Read the register twice since the link bit is sticky.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (phy_data & MII_SR_LINK_STATUS) {
+			hw->get_link_status = false;
+			/* Check if there was DownShift, must be checked immediately after
+			 * link-up */
+			e1000_check_downshift(hw);
+
+			/* If we are on 82544 or 82543 silicon and speed/duplex
+			 * are forced to 10H or 10F, then we will implement the polarity
+			 * reversal workaround.  We disable interrupts first, and upon
+			 * returning, place the devices interrupt state to its previous
+			 * value except for the link status change interrupt which will
+			 * happen due to the execution of this workaround.
+			 */
+
+			if ((hw->mac_type == e1000_82544
+			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
+			    && (hw->forced_speed_duplex == e1000_10_full
+				|| hw->forced_speed_duplex == e1000_10_half)) {
+				ew32(IMC, 0xffffffff);
+				ret_val =
+				    e1000_polarity_reversal_workaround(hw);
+				icr = er32(ICR);
+				ew32(ICS, (icr & ~E1000_ICS_LSC));
+				ew32(IMS, IMS_ENABLE_MASK);
+			}
+
+		} else {
+			/* No link detected */
+			e1000_config_dsp_after_link_change(hw, false);
+			return 0;
+		}
+
+		/* If we are forcing speed/duplex, then we simply return since
+		 * we have already determined whether we have link or not.
+		 */
+		if (!hw->autoneg)
+			return -E1000_ERR_CONFIG;
+
+		/* optimize the dsp settings for the igp phy */
+		e1000_config_dsp_after_link_change(hw, true);
+
+		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+		 * have Si on board that is 82544 or newer, Auto
+		 * Speed Detection takes care of MAC speed/duplex
+		 * configuration.  So we only need to configure Collision
+		 * Distance in the MAC.  Otherwise, we need to force
+		 * speed/duplex on the MAC to the current PHY speed/duplex
+		 * settings.
+		 */
+		if (hw->mac_type >= e1000_82544)
+			e1000_config_collision_dist(hw);
+		else {
+			ret_val = e1000_config_mac_to_phy(hw);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error configuring MAC to PHY settings\n");
+				return ret_val;
+			}
+		}
+
+		/* Configure Flow Control now that Auto-Neg has completed. First, we
+		 * need to restore the desired flow control settings because we may
+		 * have had to re-autoneg with a different link partner.
+		 */
+		ret_val = e1000_config_fc_after_link_up(hw);
+		if (ret_val) {
+			DEBUGOUT("Error configuring flow control\n");
+			return ret_val;
+		}
+
+		/* At this point we know that we are on copper and we have
+		 * auto-negotiated link.  These are conditions for checking the link
+		 * partner capability register.  We use the link speed to determine if
+		 * TBI compatibility needs to be turned on or off.  If the link is not
+		 * at gigabit speed, then TBI compatibility is not needed.  If we are
+		 * at gigabit speed, we turn on TBI compatibility.
+		 */
+		if (hw->tbi_compatibility_en) {
+			u16 speed, duplex;
+			ret_val =
+			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
+			if (ret_val) {
+				DEBUGOUT
+				    ("Error getting link speed and duplex\n");
+				return ret_val;
+			}
+			if (speed != SPEED_1000) {
+				/* If link speed is not set to gigabit speed, we do not need
+				 * to enable TBI compatibility.
+				 */
+				if (hw->tbi_compatibility_on) {
+					/* If we previously were in the mode, turn it off. */
+					rctl = er32(RCTL);
+					rctl &= ~E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+					hw->tbi_compatibility_on = false;
+				}
+			} else {
+				/* If TBI compatibility is was previously off, turn it on. For
+				 * compatibility with a TBI link partner, we will store bad
+				 * packets. Some frames have an additional byte on the end and
+				 * will look like CRC errors to to the hardware.
+				 */
+				if (!hw->tbi_compatibility_on) {
+					hw->tbi_compatibility_on = true;
+					rctl = er32(RCTL);
+					rctl |= E1000_RCTL_SBP;
+					ew32(RCTL, rctl);
+				}
+			}
+		}
+	}
+
+	if ((hw->media_type == e1000_media_type_fiber) ||
+	    (hw->media_type == e1000_media_type_internal_serdes))
+		e1000_check_for_serdes_link_generic(hw);
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Calculates the EEPROM checksum and writes it to the EEPROM
- *
- * hw - Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- *****************************************************************************/
-s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
+/**
+ * e1000_get_speed_and_duplex
+ * @hw: Struct containing variables accessed by shared code
+ * @speed: Speed of the connection
+ * @duplex: Duplex setting of the connection
+
+ * Detects the current speed and duplex settings of the hardware.
+ */
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
 {
 {
-    u32 ctrl_ext;
-    u16 checksum = 0;
-    u16 i, eeprom_data;
-
-    DEBUGFUNC("e1000_update_eeprom_checksum");
-
-    for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
-        if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        checksum += eeprom_data;
-    }
-    checksum = (u16)EEPROM_SUM - checksum;
-    if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
-        DEBUGOUT("EEPROM Write Error\n");
-        return -E1000_ERR_EEPROM;
-    } else if (hw->eeprom.type == e1000_eeprom_flash) {
-        e1000_commit_shadow_ram(hw);
-    } else if (hw->eeprom.type == e1000_eeprom_ich8) {
-        e1000_commit_shadow_ram(hw);
-        /* Reload the EEPROM, or else modifications will not appear
-         * until after next adapter reset. */
-        ctrl_ext = er32(CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
-        ew32(CTRL_EXT, ctrl_ext);
-        msleep(10);
-    }
-    return E1000_SUCCESS;
+	u32 status;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_get_speed_and_duplex");
+
+	if (hw->mac_type >= e1000_82543) {
+		status = er32(STATUS);
+		if (status & E1000_STATUS_SPEED_1000) {
+			*speed = SPEED_1000;
+			DEBUGOUT("1000 Mbs, ");
+		} else if (status & E1000_STATUS_SPEED_100) {
+			*speed = SPEED_100;
+			DEBUGOUT("100 Mbs, ");
+		} else {
+			*speed = SPEED_10;
+			DEBUGOUT("10 Mbs, ");
+		}
+
+		if (status & E1000_STATUS_FD) {
+			*duplex = FULL_DUPLEX;
+			DEBUGOUT("Full Duplex\n");
+		} else {
+			*duplex = HALF_DUPLEX;
+			DEBUGOUT(" Half Duplex\n");
+		}
+	} else {
+		DEBUGOUT("1000 Mbs, Full Duplex\n");
+		*speed = SPEED_1000;
+		*duplex = FULL_DUPLEX;
+	}
+
+	/* IGP01 PHY may advertise full duplex operation after speed downgrade even
+	 * if it is operating at half duplex.  Here we set the duplex settings to
+	 * match the duplex in the link partner's capabilities.
+	 */
+	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+			*duplex = HALF_DUPLEX;
+		else {
+			ret_val =
+			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
+			if (ret_val)
+				return ret_val;
+			if ((*speed == SPEED_100
+			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
+			    || (*speed == SPEED_10
+				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
+				*duplex = HALF_DUPLEX;
+		}
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Parent function for writing words to the different EEPROM types.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - 16 bit word to be written to the EEPROM
+/**
+ * e1000_wait_autoneg
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * If e1000_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- *****************************************************************************/
-s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+ * Blocks until autoneg completes or times out (~4.5 seconds)
+ */
+static s32 e1000_wait_autoneg(struct e1000_hw *hw)
 {
 {
-    s32 ret;
-    spin_lock(&e1000_eeprom_lock);
-    ret = e1000_do_write_eeprom(hw, offset, words, data);
-    spin_unlock(&e1000_eeprom_lock);
-    return ret;
+	s32 ret_val;
+	u16 i;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_wait_autoneg");
+	DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
+	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Auto-Neg
+		 * Complete bit to be set.
+		 */
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
+			return E1000_SUCCESS;
+		}
+		msleep(100);
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
+/**
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
+{
+	/* Raise the clock input to the Management Data Clock (by setting the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
+}
 
 
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+/**
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
+ * @hw: Struct containing variables accessed by shared code
+ * @ctrl: Device control register's current value
+ */
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
 {
 {
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    s32 status = 0;
-
-    DEBUGFUNC("e1000_write_eeprom");
-
-    /* If eeprom is not yet detected, do so now */
-    if (eeprom->word_size == 0)
-        e1000_init_eeprom_params(hw);
-
-    /* A check for invalid values:  offset too large, too many words, and not
-     * enough words.
-     */
-    if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
-       (words == 0)) {
-        DEBUGOUT("\"words\" parameter out of bounds\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    /* 82573 writes only through eewr */
-    if (eeprom->use_eewr)
-        return e1000_write_eeprom_eewr(hw, offset, words, data);
-
-    if (eeprom->type == e1000_eeprom_ich8)
-        return e1000_write_eeprom_ich8(hw, offset, words, data);
-
-    /* Prepare the EEPROM for writing  */
-    if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
-        return -E1000_ERR_EEPROM;
-
-    if (eeprom->type == e1000_eeprom_microwire) {
-        status = e1000_write_eeprom_microwire(hw, offset, words, data);
-    } else {
-        status = e1000_write_eeprom_spi(hw, offset, words, data);
-        msleep(10);
-    }
-
-    /* Done with writing */
-    e1000_release_eeprom(hw);
-
-    return status;
+	/* Lower the clock input to the Management Data Clock (by clearing the MDC
+	 * bit), and then delay 10 microseconds.
+	 */
+	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
+	E1000_WRITE_FLUSH();
+	udelay(10);
 }
 }
 
 
-/******************************************************************************
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
+/**
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
+ * @hw: Struct containing variables accessed by shared code
+ * @data: Data to send out to the PHY
+ * @count: Number of bits to shift out
  *
  *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 8 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
-				  u16 *data)
+ * Bits are shifted out in MSB to LSB order.
+ */
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
 {
 {
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u16 widx = 0;
+	u32 ctrl;
+	u32 mask;
 
 
-    DEBUGFUNC("e1000_write_eeprom_spi");
+	/* We need to shift "count" number of bits out to the PHY. So, the value
+	 * in the "data" parameter will be shifted out to the PHY one bit at a
+	 * time. In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01;
+	mask <<= (count - 1);
 
 
-    while (widx < words) {
-        u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
+	ctrl = er32(CTRL);
 
 
-        if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
 
 
-        e1000_standby_eeprom(hw);
+	while (mask) {
+		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+		 * then raising and lowering the Management Data Clock. A "0" is
+		 * shifted out to the PHY by setting the MDIO bit to "0" and then
+		 * raising and lowering the clock.
+		 */
+		if (data & mask)
+			ctrl |= E1000_CTRL_MDIO;
+		else
+			ctrl &= ~E1000_CTRL_MDIO;
 
 
-        /*  Send the WRITE ENABLE command (8 bit opcode )  */
-        e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
-                                    eeprom->opcode_bits);
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
 
 
-        e1000_standby_eeprom(hw);
+		udelay(10);
 
 
-        /* Some SPI eeproms use the 8th address bit embedded in the opcode */
-        if ((eeprom->address_bits == 8) && (offset >= 128))
-            write_opcode |= EEPROM_A8_OPCODE_SPI;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		e1000_lower_mdi_clk(hw, &ctrl);
 
 
-        /* Send the Write command (8-bit opcode + addr) */
-        e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
+		mask = mask >> 1;
+	}
+}
 
 
-        e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
-                                eeprom->address_bits);
+/**
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Bits are shifted in in MSB to LSB order.
+ */
+static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+	u32 ctrl;
+	u16 data = 0;
+	u8 i;
 
 
-        /* Send the data */
+	/* In order to read a register from the PHY, we need to shift in a total
+	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
+	 * to avoid contention on the MDIO pin when a read operation is performed.
+	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
+	 * by raising the input to the Management Data Clock (setting the MDC bit),
+	 * and then reading the value of the MDIO bit.
+	 */
+	ctrl = er32(CTRL);
 
 
-        /* Loop to allow for up to whole page write (32 bytes) of eeprom */
-        while (widx < words) {
-            u16 word_out = data[widx];
-            word_out = (word_out >> 8) | (word_out << 8);
-            e1000_shift_out_ee_bits(hw, word_out, 16);
-            widx++;
+	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+	ctrl &= ~E1000_CTRL_MDIO_DIR;
+	ctrl &= ~E1000_CTRL_MDIO;
 
 
-            /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
-             * operation, while the smaller eeproms are capable of an 8-byte
-             * PAGE WRITE operation.  Break the inner loop to pass new address
-             */
-            if ((((offset + widx)*2) % eeprom->page_size) == 0) {
-                e1000_standby_eeprom(hw);
-                break;
-            }
-        }
-    }
+	ew32(CTRL, ctrl);
+	E1000_WRITE_FLUSH();
 
 
-    return E1000_SUCCESS;
-}
+	/* Raise and Lower the clock before reading in the data. This accounts for
+	 * the turnaround bits. The first clock occurred when we clocked out the
+	 * last bit of the Register Address.
+	 */
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	for (data = 0, i = 0; i < 16; i++) {
+		data = data << 1;
+		e1000_raise_mdi_clk(hw, &ctrl);
+		ctrl = er32(CTRL);
+		/* Check to see if we shifted in a "1". */
+		if (ctrl & E1000_CTRL_MDIO)
+			data |= 1;
+		e1000_lower_mdi_clk(hw, &ctrl);
+	}
 
 
-/******************************************************************************
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset within the EEPROM to be written to
- * words - number of words to write
- * data - pointer to array of 16 bit words to be written to the EEPROM
- *
- *****************************************************************************/
-static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
-					u16 words, u16 *data)
-{
-    struct e1000_eeprom_info *eeprom = &hw->eeprom;
-    u32 eecd;
-    u16 words_written = 0;
-    u16 i = 0;
-
-    DEBUGFUNC("e1000_write_eeprom_microwire");
-
-    /* Send the write enable command to the EEPROM (3-bit opcode plus
-     * 6/8-bit dummy address beginning with 11).  It's less work to include
-     * the 11 of the dummy address as part of the opcode than it is to shift
-     * it over the correct number of bits for the address.  This puts the
-     * EEPROM into write/erase mode.
-     */
-    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
-                            (u16)(eeprom->opcode_bits + 2));
-
-    e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
-
-    /* Prepare the EEPROM */
-    e1000_standby_eeprom(hw);
-
-    while (words_written < words) {
-        /* Send the Write command (3-bit opcode + addr) */
-        e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
-                                eeprom->opcode_bits);
-
-        e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
-                                eeprom->address_bits);
-
-        /* Send the data */
-        e1000_shift_out_ee_bits(hw, data[words_written], 16);
-
-        /* Toggle the CS line.  This in effect tells the EEPROM to execute
-         * the previous command.
-         */
-        e1000_standby_eeprom(hw);
-
-        /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
-         * signal that the command has been completed by raising the DO signal.
-         * If DO does not go high in 10 milliseconds, then error out.
-         */
-        for (i = 0; i < 200; i++) {
-            eecd = er32(EECD);
-            if (eecd & E1000_EECD_DO) break;
-            udelay(50);
-        }
-        if (i == 200) {
-            DEBUGOUT("EEPROM Write did not complete\n");
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* Recover from write */
-        e1000_standby_eeprom(hw);
-
-        words_written++;
-    }
-
-    /* Send the write disable command to the EEPROM (3-bit opcode plus
-     * 6/8-bit dummy address beginning with 10).  It's less work to include
-     * the 10 of the dummy address as part of the opcode than it is to shift
-     * it over the correct number of bits for the address.  This takes the
-     * EEPROM out of write/erase mode.
-     */
-    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
-                            (u16)(eeprom->opcode_bits + 2));
-
-    e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
-
-    return E1000_SUCCESS;
+	e1000_raise_mdi_clk(hw, &ctrl);
+	e1000_lower_mdi_clk(hw, &ctrl);
+
+	return data;
 }
 }
 
 
-/******************************************************************************
- * Flushes the cached eeprom to NVM. This is done by saving the modified values
- * in the eeprom cache and the non modified values in the currently active bank
- * to the new bank.
+
+/**
+ * e1000_read_phy_reg - read a phy register
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to read
  *
  *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of  word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
+ * Reads the value from a PHY register, if the value is on a specific non zero
+ * page, sets the page first.
+ */
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
 {
 {
-    u32 attempts = 100000;
-    u32 eecd = 0;
-    u32 flop = 0;
-    u32 i = 0;
-    s32 error = E1000_SUCCESS;
-    u32 old_bank_offset = 0;
-    u32 new_bank_offset = 0;
-    u8 low_byte = 0;
-    u8 high_byte = 0;
-    bool sector_write_failed = false;
-
-    if (hw->mac_type == e1000_82573) {
-        /* The flop register will be used to determine if flash type is STM */
-        flop = er32(FLOP);
-        for (i=0; i < attempts; i++) {
-            eecd = er32(EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            udelay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-
-        /* If STM opcode located in bits 15:8 of flop, reset firmware */
-        if ((flop & 0xFF00) == E1000_STM_OPCODE) {
-            ew32(HICR, E1000_HICR_FW_RESET);
-        }
-
-        /* Perform the flash update */
-        ew32(EECD, eecd | E1000_EECD_FLUPD);
-
-        for (i=0; i < attempts; i++) {
-            eecd = er32(EECD);
-            if ((eecd & E1000_EECD_FLUPD) == 0) {
-                break;
-            }
-            udelay(5);
-        }
-
-        if (i == attempts) {
-            return -E1000_ERR_EEPROM;
-        }
-    }
-
-    if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
-        /* We're writing to the opposite bank so if we're on bank 1,
-         * write to bank 0 etc.  We also need to erase the segment that
-         * is going to be written */
-        if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
-            new_bank_offset = hw->flash_bank_size * 2;
-            old_bank_offset = 0;
-            e1000_erase_ich8_4k_segment(hw, 1);
-        } else {
-            old_bank_offset = hw->flash_bank_size * 2;
-            new_bank_offset = 0;
-            e1000_erase_ich8_4k_segment(hw, 0);
-        }
-
-        sector_write_failed = false;
-        /* Loop for every byte in the shadow RAM,
-         * which is in units of words. */
-        for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-            /* Determine whether to write the value stored
-             * in the other NVM bank or a modified value stored
-             * in the shadow RAM */
-            if (hw->eeprom_shadow_ram[i].modified) {
-                low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word;
-                udelay(100);
-                error = e1000_verify_write_ich8_byte(hw,
-                            (i << 1) + new_bank_offset, low_byte);
-
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = true;
-                else {
-                    high_byte =
-                        (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
-                    udelay(100);
-                }
-            } else {
-                e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
-                                     &low_byte);
-                udelay(100);
-                error = e1000_verify_write_ich8_byte(hw,
-                            (i << 1) + new_bank_offset, low_byte);
-
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = true;
-                else {
-                    e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
-                                         &high_byte);
-                    udelay(100);
-                }
-            }
-
-            /* If the write of the low byte was successful, go ahead and
-             * write the high byte while checking to make sure that if it
-             * is the signature byte, then it is handled properly */
-            if (!sector_write_failed) {
-                /* If the word is 0x13, then make sure the signature bits
-                 * (15:14) are 11b until the commit has completed.
-                 * This will allow us to write 10b which indicates the
-                 * signature is valid.  We want to do this after the write
-                 * has completed so that we don't mark the segment valid
-                 * while the write is still in progress */
-                if (i == E1000_ICH_NVM_SIG_WORD)
-                    high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
-
-                error = e1000_verify_write_ich8_byte(hw,
-                            (i << 1) + new_bank_offset + 1, high_byte);
-                if (error != E1000_SUCCESS)
-                    sector_write_failed = true;
-
-            } else {
-                /* If the write failed then break from the loop and
-                 * return an error */
-                break;
-            }
-        }
-
-        /* Don't bother writing the segment valid bits if sector
-         * programming failed. */
-        if (!sector_write_failed) {
-            /* Finally validate the new segment by setting bit 15:14
-             * to 10b in word 0x13 , this can be done without an
-             * erase as well since these bits are 11 to start with
-             * and we need to change bit 14 to 0b */
-            e1000_read_ich8_byte(hw,
-                                 E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
-                                 &high_byte);
-            high_byte &= 0xBF;
-            error = e1000_verify_write_ich8_byte(hw,
-                        E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
-            /* And invalidate the previously valid segment by setting
-             * its signature word (0x13) high_byte to 0b. This can be
-             * done without an erase because flash erase sets all bits
-             * to 1's. We can write 1's to 0's without an erase */
-            if (error == E1000_SUCCESS) {
-                error = e1000_verify_write_ich8_byte(hw,
-                            E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
-            }
-
-            /* Clear the now not used entry in the cache */
-            for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
-                hw->eeprom_shadow_ram[i].modified = false;
-                hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
-            }
-        }
-    }
-
-    return error;
+	u32 ret_val;
+
+	DEBUGFUNC("e1000_read_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					phy_data);
+
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_read_mac_addr(struct e1000_hw *hw)
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				 u16 *phy_data)
 {
 {
-    u16 offset;
-    u16 eeprom_data, i;
-
-    DEBUGFUNC("e1000_read_mac_addr");
-
-    for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
-        offset = i >> 1;
-        if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
-            DEBUGOUT("EEPROM Read Error\n");
-            return -E1000_ERR_EEPROM;
-        }
-        hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
-        hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
-    }
-
-    switch (hw->mac_type) {
-    default:
-        break;
-    case e1000_82546:
-    case e1000_82546_rev_3:
-    case e1000_82571:
-    case e1000_80003es2lan:
-        if (er32(STATUS) & E1000_STATUS_FUNC_1)
-            hw->perm_mac_addr[5] ^= 0x01;
-        break;
-    }
-
-    for (i = 0; i < NODE_ADDRESS_SIZE; i++)
-        hw->mac_addr[i] = hw->perm_mac_addr[i];
-    return E1000_SUCCESS;
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	DEBUGFUNC("e1000_read_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, and register address in the MDI
+		 * Control register.  The MAC will take care of interfacing with the
+		 * PHY to retrieve the desired data.
+		 */
+		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_READ));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 64; i++) {
+			udelay(50);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			DEBUGOUT("MDI Read did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+		if (mdic & E1000_MDIC_ERROR) {
+			DEBUGOUT("MDI Error\n");
+			return -E1000_ERR_PHY;
+		}
+		*phy_data = (u16) mdic;
+	} else {
+		/* We must first send a preamble through the MDIO pin to signal the
+		 * beginning of an MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the next few fields that are required for a read
+		 * operation.  We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine five different times. The format of
+		 * a MII read instruction consists of a shift out of 14 bits and is
+		 * defined as follows:
+		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+		 * followed by a shift in of 18 bits.  This first two bits shifted in
+		 * are TurnAround bits used to avoid contention on the MDIO pin when a
+		 * READ operation is performed.  These two bits are thrown away
+		 * followed by a shift in of 16 bits which contains the desired data.
+		 */
+		mdic = ((reg_addr) | (phy_addr << 5) |
+			(PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+		e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+		/* Now that we've shifted out the read command to the MII, we need to
+		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
+		 * register address.
+		 */
+		*phy_data = e1000_shift_in_mdi_bits(hw);
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Initializes receive address filters.
- *
- * hw - Struct containing variables accessed by shared code
+/**
+ * e1000_write_phy_reg - write a phy register
  *
  *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive addresss registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- *****************************************************************************/
-static void e1000_init_rx_addrs(struct e1000_hw *hw)
+ * @hw: Struct containing variables accessed by shared code
+ * @reg_addr: address of the PHY register to write
+ * @data: data to write to the PHY
+
+ * Writes a value to a PHY register
+ */
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
 {
 {
-    u32 i;
-    u32 rar_num;
-
-    DEBUGFUNC("e1000_init_rx_addrs");
-
-    /* Setup the receive address. */
-    DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
-    e1000_rar_set(hw, hw->mac_addr, 0);
-
-    rar_num = E1000_RAR_ENTRIES;
-
-    /* Reserve a spot for the Locally Administered Address to work around
-     * an 82571 issue in which a reset on one port will reload the MAC on
-     * the other port. */
-    if ((hw->mac_type == e1000_82571) && (hw->laa_is_present))
-        rar_num -= 1;
-    if (hw->mac_type == e1000_ich8lan)
-        rar_num = E1000_RAR_ENTRIES_ICH8LAN;
-
-    /* Zero out the other 15 receive addresses. */
-    DEBUGOUT("Clearing RAR[1-15]\n");
-    for (i = 1; i < rar_num; i++) {
-        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
-        E1000_WRITE_FLUSH();
-        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
-        E1000_WRITE_FLUSH();
-    }
+	u32 ret_val;
+
+	DEBUGFUNC("e1000_write_phy_reg");
+
+	if ((hw->phy_type == e1000_phy_igp) &&
+	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
+		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
+						 (u16) reg_addr);
+		if (ret_val)
+			return ret_val;
+	}
+
+	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
+					 phy_data);
+
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
- * Hashes an address to determine its location in the multicast table
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr - the multicast address to hash
- *****************************************************************************/
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
+				  u16 phy_data)
 {
 {
-    u32 hash_value = 0;
-
-    /* The portion of the address that is used for the hash table is
-     * determined by the mc_filter_type setting.
-     */
-    switch (hw->mc_filter_type) {
-    /* [0] [1] [2] [3] [4] [5]
-     * 01  AA  00  12  34  56
-     * LSB                 MSB
-     */
-    case 0:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [47:38] i.e. 0x158 for above example address */
-            hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2));
-        } else {
-            /* [47:36] i.e. 0x563 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
-        }
-        break;
-    case 1:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [46:37] i.e. 0x2B1 for above example address */
-            hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3));
-        } else {
-            /* [46:35] i.e. 0xAC6 for above example address */
-            hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
-        }
-        break;
-    case 2:
-        if (hw->mac_type == e1000_ich8lan) {
-            /*[45:36] i.e. 0x163 for above example address */
-            hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
-        } else {
-            /* [45:34] i.e. 0x5D8 for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
-        }
-        break;
-    case 3:
-        if (hw->mac_type == e1000_ich8lan) {
-            /* [43:34] i.e. 0x18D for above example address */
-            hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
-        } else {
-            /* [43:32] i.e. 0x634 for above example address */
-            hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
-        }
-        break;
-    }
-
-    hash_value &= 0xFFF;
-    if (hw->mac_type == e1000_ich8lan)
-        hash_value &= 0x3FF;
-
-    return hash_value;
+	u32 i;
+	u32 mdic = 0;
+	const u32 phy_addr = 1;
+
+	DEBUGFUNC("e1000_write_phy_reg_ex");
+
+	if (reg_addr > MAX_PHY_REG_ADDRESS) {
+		DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+		return -E1000_ERR_PARAM;
+	}
+
+	if (hw->mac_type > e1000_82543) {
+		/* Set up Op-code, Phy Address, register address, and data intended
+		 * for the PHY register in the MDI Control register.  The MAC will take
+		 * care of interfacing with the PHY to send the desired data.
+		 */
+		mdic = (((u32) phy_data) |
+			(reg_addr << E1000_MDIC_REG_SHIFT) |
+			(phy_addr << E1000_MDIC_PHY_SHIFT) |
+			(E1000_MDIC_OP_WRITE));
+
+		ew32(MDIC, mdic);
+
+		/* Poll the ready bit to see if the MDI read completed */
+		for (i = 0; i < 641; i++) {
+			udelay(5);
+			mdic = er32(MDIC);
+			if (mdic & E1000_MDIC_READY)
+				break;
+		}
+		if (!(mdic & E1000_MDIC_READY)) {
+			DEBUGOUT("MDI Write did not complete\n");
+			return -E1000_ERR_PHY;
+		}
+	} else {
+		/* We'll need to use the SW defined pins to shift the write command
+		 * out to the PHY. We first send a preamble to the PHY to signal the
+		 * beginning of the MII instruction.  This is done by sending 32
+		 * consecutive "1" bits.
+		 */
+		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+		/* Now combine the remaining required fields that will indicate a
+		 * write operation. We use this method instead of calling the
+		 * e1000_shift_out_mdi_bits routine for each field in the command. The
+		 * format of a MII write instruction is as follows:
+		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+		 */
+		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+		mdic <<= 16;
+		mdic |= (u32) phy_data;
+
+		e1000_shift_out_mdi_bits(hw, mdic, 32);
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Puts an ethernet address into a receive address register.
+/**
+ * e1000_phy_hw_reset - reset the phy, hardware style
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- * addr - Address to put into receive address register
- * index - Receive address register to write
- *****************************************************************************/
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+ * Returns the PHY to the power-on reset state
+ */
+s32 e1000_phy_hw_reset(struct e1000_hw *hw)
 {
 {
-    u32 rar_low, rar_high;
-
-    /* HW expects these in little endian so we reverse the byte order
-     * from network order (big endian) to little endian
-     */
-    rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
-               ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
-    rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
-
-    /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
-     * unit hang.
-     *
-     * Description:
-     * If there are any Rx frames queued up or otherwise present in the HW
-     * before RSS is enabled, and then we enable RSS, the HW Rx unit will
-     * hang.  To work around this issue, we have to disable receives and
-     * flush out all Rx frames before we enable RSS. To do so, we modify we
-     * redirect all Rx traffic to manageability and then reset the HW.
-     * This flushes away Rx frames, and (since the redirections to
-     * manageability persists across resets) keeps new ones from coming in
-     * while we work.  Then, we clear the Address Valid AV bit for all MAC
-     * addresses and undo the re-direction to manageability.
-     * Now, frames are coming in again, but the MAC won't accept them, so
-     * far so good.  We now proceed to initialize RSS (if necessary) and
-     * configure the Rx unit.  Last, we re-enable the AV bits and continue
-     * on our merry way.
-     */
-    switch (hw->mac_type) {
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_80003es2lan:
-        if (hw->leave_av_bit_off)
-            break;
-    default:
-        /* Indicate to hardware the Address is Valid. */
-        rar_high |= E1000_RAH_AV;
-        break;
-    }
-
-    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
-    E1000_WRITE_FLUSH();
-    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
-    E1000_WRITE_FLUSH();
+	u32 ctrl, ctrl_ext;
+	u32 led_ctrl;
+	s32 ret_val;
+
+	DEBUGFUNC("e1000_phy_hw_reset");
+
+	DEBUGOUT("Resetting Phy...\n");
+
+	if (hw->mac_type > e1000_82543) {
+		/* Read the device control register and assert the E1000_CTRL_PHY_RST
+		 * bit. Then, take it out of reset.
+		 * For e1000 hardware, we delay for 10ms between the assert
+		 * and deassert.
+		 */
+		ctrl = er32(CTRL);
+		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
+		E1000_WRITE_FLUSH();
+
+		msleep(10);
+
+		ew32(CTRL, ctrl);
+		E1000_WRITE_FLUSH();
+
+	} else {
+		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+		 * bit to put the PHY into reset. Then, take it out of reset.
+		 */
+		ctrl_ext = er32(CTRL_EXT);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+		msleep(10);
+		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+		ew32(CTRL_EXT, ctrl_ext);
+		E1000_WRITE_FLUSH();
+	}
+	udelay(150);
+
+	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+		/* Configure activity LED after PHY reset */
+		led_ctrl = er32(LEDCTL);
+		led_ctrl &= IGP_ACTIVITY_LED_MASK;
+		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+		ew32(LEDCTL, led_ctrl);
+	}
+
+	/* Wait for FW to finish PHY configuration. */
+	ret_val = e1000_get_phy_cfg_done(hw);
+	if (ret_val != E1000_SUCCESS)
+		return ret_val;
+
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
- * Writes a value to the specified offset in the VLAN filter table.
+/**
+ * e1000_phy_reset - reset the phy to commit settings
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- * offset - Offset in VLAN filer table to write
- * value - Value to write into VLAN filter table
- *****************************************************************************/
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+ * Resets the PHY
+ * Sets bit 15 of the MII Control register
+ */
+s32 e1000_phy_reset(struct e1000_hw *hw)
 {
 {
-    u32 temp;
-
-    if (hw->mac_type == e1000_ich8lan)
-        return;
-
-    if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
-        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH();
-        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
-        E1000_WRITE_FLUSH();
-    } else {
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
-        E1000_WRITE_FLUSH();
-    }
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_phy_reset");
+
+	switch (hw->phy_type) {
+	case e1000_phy_igp:
+		ret_val = e1000_phy_hw_reset(hw);
+		if (ret_val)
+			return ret_val;
+		break;
+	default:
+		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_data |= MII_CR_RESET;
+		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
+		if (ret_val)
+			return ret_val;
+
+		udelay(1);
+		break;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		e1000_phy_init_script(hw);
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Clears the VLAN filer table
+/**
+ * e1000_detect_gig_phy - check the phy type
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_clear_vfta(struct e1000_hw *hw)
+ * Probes the expected PHY address for known PHY IDs
+ */
+static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
 {
 {
-    u32 offset;
-    u32 vfta_value = 0;
-    u32 vfta_offset = 0;
-    u32 vfta_bit_in_reg = 0;
-
-    if (hw->mac_type == e1000_ich8lan)
-        return;
-
-    if (hw->mac_type == e1000_82573) {
-        if (hw->mng_cookie.vlan_id != 0) {
-            /* The VFTA is a 4096b bit-field, each identifying a single VLAN
-             * ID.  The following operations determine which 32b entry
-             * (i.e. offset) into the array we want to set the VLAN ID
-             * (i.e. bit) of the manageability unit. */
-            vfta_offset = (hw->mng_cookie.vlan_id >>
-                           E1000_VFTA_ENTRY_SHIFT) &
-                          E1000_VFTA_ENTRY_MASK;
-            vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
-                                    E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
-        }
-    }
-    for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
-        /* If the offset we want to clear is the same offset of the
-         * manageability VLAN ID, then clear all bits except that of the
-         * manageability unit */
-        vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
-        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
-        E1000_WRITE_FLUSH();
-    }
-}
+	s32 phy_init_status, ret_val;
+	u16 phy_id_high, phy_id_low;
+	bool match = false;
 
 
-static s32 e1000_id_led_init(struct e1000_hw *hw)
-{
-    u32 ledctl;
-    const u32 ledctl_mask = 0x000000FF;
-    const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
-    const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
-    u16 eeprom_data, i, temp;
-    const u16 led_mask = 0x0F;
-
-    DEBUGFUNC("e1000_id_led_init");
-
-    if (hw->mac_type < e1000_82540) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-
-    ledctl = er32(LEDCTL);
-    hw->ledctl_default = ledctl;
-    hw->ledctl_mode1 = hw->ledctl_default;
-    hw->ledctl_mode2 = hw->ledctl_default;
-
-    if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
-        DEBUGOUT("EEPROM Read Error\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    if ((hw->mac_type == e1000_82573) &&
-        (eeprom_data == ID_LED_RESERVED_82573))
-        eeprom_data = ID_LED_DEFAULT_82573;
-    else if ((eeprom_data == ID_LED_RESERVED_0000) ||
-            (eeprom_data == ID_LED_RESERVED_FFFF)) {
-        if (hw->mac_type == e1000_ich8lan)
-            eeprom_data = ID_LED_DEFAULT_ICH8LAN;
-        else
-            eeprom_data = ID_LED_DEFAULT;
-    }
-
-    for (i = 0; i < 4; i++) {
-        temp = (eeprom_data >> (i << 2)) & led_mask;
-        switch (temp) {
-        case ID_LED_ON1_DEF2:
-        case ID_LED_ON1_ON2:
-        case ID_LED_ON1_OFF2:
-            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode1 |= ledctl_on << (i << 3);
-            break;
-        case ID_LED_OFF1_DEF2:
-        case ID_LED_OFF1_ON2:
-        case ID_LED_OFF1_OFF2:
-            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode1 |= ledctl_off << (i << 3);
-            break;
-        default:
-            /* Do nothing */
-            break;
-        }
-        switch (temp) {
-        case ID_LED_DEF1_ON2:
-        case ID_LED_ON1_ON2:
-        case ID_LED_OFF1_ON2:
-            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode2 |= ledctl_on << (i << 3);
-            break;
-        case ID_LED_DEF1_OFF2:
-        case ID_LED_ON1_OFF2:
-        case ID_LED_OFF1_OFF2:
-            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
-            hw->ledctl_mode2 |= ledctl_off << (i << 3);
-            break;
-        default:
-            /* Do nothing */
-            break;
-        }
-    }
-    return E1000_SUCCESS;
+	DEBUGFUNC("e1000_detect_gig_phy");
+
+	if (hw->phy_id != 0)
+		return E1000_SUCCESS;
+
+	/* Read the PHY ID Registers to identify which PHY is onboard. */
+	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id = (u32) (phy_id_high << 16);
+	udelay(20);
+	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
+	if (ret_val)
+		return ret_val;
+
+	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
+	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
+
+	switch (hw->mac_type) {
+	case e1000_82543:
+		if (hw->phy_id == M88E1000_E_PHY_ID)
+			match = true;
+		break;
+	case e1000_82544:
+		if (hw->phy_id == M88E1000_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (hw->phy_id == M88E1011_I_PHY_ID)
+			match = true;
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (hw->phy_id == IGP01E1000_I_PHY_ID)
+			match = true;
+		break;
+	default:
+		DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+		return -E1000_ERR_CONFIG;
+	}
+	phy_init_status = e1000_set_phy_type(hw);
+
+	if ((match) && (phy_init_status == E1000_SUCCESS)) {
+		DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+		return E1000_SUCCESS;
+	}
+	DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+	return -E1000_ERR_PHY;
 }
 }
 
 
-/******************************************************************************
- * Prepares SW controlable LED for use and saves the current state of the LED.
+/**
+ * e1000_phy_reset_dsp - reset DSP
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_setup_led(struct e1000_hw *hw)
+ * Resets the PHY's DSP
+ */
+static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
 {
 {
-    u32 ledctl;
-    s32 ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("e1000_setup_led");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-    case e1000_82544:
-        /* No setup necessary */
-        break;
-    case e1000_82541:
-    case e1000_82547:
-    case e1000_82541_rev_2:
-    case e1000_82547_rev_2:
-        /* Turn off PHY Smart Power Down (if enabled) */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                     &hw->phy_spd_default);
-        if (ret_val)
-            return ret_val;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      (u16)(hw->phy_spd_default &
-                                      ~IGP01E1000_GMII_SPD));
-        if (ret_val)
-            return ret_val;
-        /* Fall Through */
-    default:
-        if (hw->media_type == e1000_media_type_fiber) {
-            ledctl = er32(LEDCTL);
-            /* Save current LEDCTL settings */
-            hw->ledctl_default = ledctl;
-            /* Turn off LED0 */
-            ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
-                        E1000_LEDCTL_LED0_BLINK |
-                        E1000_LEDCTL_LED0_MODE_MASK);
-            ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
-                       E1000_LEDCTL_LED0_MODE_SHIFT);
-            ew32(LEDCTL, ledctl);
-        } else if (hw->media_type == e1000_media_type_copper)
-            ew32(LEDCTL, hw->ledctl_mode1);
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
+	s32 ret_val;
+	DEBUGFUNC("e1000_phy_reset_dsp");
 
 
+	do {
+		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
+		if (ret_val)
+			break;
+		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
+		if (ret_val)
+			break;
+		ret_val = E1000_SUCCESS;
+	} while (0);
 
 
-/******************************************************************************
- * Used on 82571 and later Si that has LED blink bits.
- * Callers must use their own timer and should have already called
- * e1000_id_led_init()
- * Call e1000_cleanup led() to stop blinking
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_blink_led_start(struct e1000_hw *hw)
-{
-    s16  i;
-    u32 ledctl_blink = 0;
-
-    DEBUGFUNC("e1000_id_led_blink_on");
-
-    if (hw->mac_type < e1000_82571) {
-        /* Nothing to do */
-        return E1000_SUCCESS;
-    }
-    if (hw->media_type == e1000_media_type_fiber) {
-        /* always blink LED0 for PCI-E fiber */
-        ledctl_blink = E1000_LEDCTL_LED0_BLINK |
-                     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
-    } else {
-        /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
-        ledctl_blink = hw->ledctl_mode2;
-        for (i=0; i < 4; i++)
-            if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
-                E1000_LEDCTL_MODE_LED_ON)
-                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
-    }
-
-    ew32(LEDCTL, ledctl_blink);
-
-    return E1000_SUCCESS;
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
- * Restores the saved state of the SW controlable LED.
+/**
+ * e1000_phy_igp_get_info - get igp specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_cleanup_led(struct e1000_hw *hw)
+ * Get PHY information from various PHY registers for igp PHY only.
+ */
+static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
 {
 {
-    s32 ret_val = E1000_SUCCESS;
-
-    DEBUGFUNC("e1000_cleanup_led");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-    case e1000_82544:
-        /* No cleanup necessary */
-        break;
-    case e1000_82541:
-    case e1000_82547:
-    case e1000_82541_rev_2:
-    case e1000_82547_rev_2:
-        /* Turn on PHY Smart Power Down (if previously enabled) */
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
-                                      hw->phy_spd_default);
-        if (ret_val)
-            return ret_val;
-        /* Fall Through */
-    default:
-        if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
-            break;
-        }
-        /* Restore LEDCTL settings */
-        ew32(LEDCTL, hw->ledctl_default);
-        break;
-    }
-
-    return E1000_SUCCESS;
+	s32 ret_val;
+	u16 phy_data, min_length, max_length, average;
+	e1000_rev_polarity polarity;
+
+	DEBUGFUNC("e1000_phy_igp_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	/* IGP01E1000 does not need to support it. */
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
+
+	/* IGP01E1000 always correct polarity reversal */
+	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
+				 IGP01E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+	    IGP01E1000_PSSR_SPEED_1000MBPS) {
+		/* Local/Remote Receiver Information are only valid at 1000 Mbps */
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+		/* Get cable length */
+		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
+		if (ret_val)
+			return ret_val;
+
+		/* Translate to old method */
+		average = (max_length + min_length) / 2;
+
+		if (average <= e1000_igp_cable_length_50)
+			phy_info->cable_length = e1000_cable_length_50;
+		else if (average <= e1000_igp_cable_length_80)
+			phy_info->cable_length = e1000_cable_length_50_80;
+		else if (average <= e1000_igp_cable_length_110)
+			phy_info->cable_length = e1000_cable_length_80_110;
+		else if (average <= e1000_igp_cable_length_140)
+			phy_info->cable_length = e1000_cable_length_110_140;
+		else
+			phy_info->cable_length = e1000_cable_length_140;
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Turns on the software controllable LED
+/**
+ * e1000_phy_m88_get_info - get m88 specific registers
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_led_on(struct e1000_hw *hw)
+ * Get PHY information from various PHY registers for m88 PHY only.
+ */
+static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
+				  struct e1000_phy_info *phy_info)
 {
 {
-    u32 ctrl = er32(CTRL);
-
-    DEBUGFUNC("e1000_led_on");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-        /* Set SW Defineable Pin 0 to turn on the LED */
-        ctrl |= E1000_CTRL_SWDPIN0;
-        ctrl |= E1000_CTRL_SWDPIO0;
-        break;
-    case e1000_82544:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Set SW Defineable Pin 0 to turn on the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else {
-            /* Clear SW Defineable Pin 0 to turn on the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        }
-        break;
-    default:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Clear SW Defineable Pin 0 to turn on the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
-        } else if (hw->media_type == e1000_media_type_copper) {
-            ew32(LEDCTL, hw->ledctl_mode2);
-            return E1000_SUCCESS;
-        }
-        break;
-    }
-
-    ew32(CTRL, ctrl);
-
-    return E1000_SUCCESS;
+	s32 ret_val;
+	u16 phy_data;
+	e1000_rev_polarity polarity;
+
+	DEBUGFUNC("e1000_phy_m88_get_info");
+
+	/* The downshift status is checked only once, after link is established,
+	 * and it stored in the hw->speed_downgraded parameter. */
+	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->extended_10bt_distance =
+	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+	    e1000_10bt_ext_dist_enable_lower :
+	    e1000_10bt_ext_dist_enable_normal;
+
+	phy_info->polarity_correction =
+	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
+
+	/* Check polarity status */
+	ret_val = e1000_check_polarity(hw, &polarity);
+	if (ret_val)
+		return ret_val;
+	phy_info->cable_polarity = polarity;
+
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	phy_info->mdix_mode =
+	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
+				 M88E1000_PSSR_MDIX_SHIFT);
+
+	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+		/* Cable Length Estimation and Local/Remote Receiver Information
+		 * are only valid at 1000 Mbps.
+		 */
+		phy_info->cable_length =
+		    (e1000_cable_length) ((phy_data &
+					   M88E1000_PSSR_CABLE_LENGTH) >>
+					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Turns off the software controllable LED
+/**
+ * e1000_phy_get_info - request phy info
+ * @hw: Struct containing variables accessed by shared code
+ * @phy_info: PHY information structure
  *
  *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-s32 e1000_led_off(struct e1000_hw *hw)
+ * Get PHY information from various PHY registers
+ */
+s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
 {
 {
-    u32 ctrl = er32(CTRL);
-
-    DEBUGFUNC("e1000_led_off");
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-    case e1000_82543:
-        /* Clear SW Defineable Pin 0 to turn off the LED */
-        ctrl &= ~E1000_CTRL_SWDPIN0;
-        ctrl |= E1000_CTRL_SWDPIO0;
-        break;
-    case e1000_82544:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Clear SW Defineable Pin 0 to turn off the LED */
-            ctrl &= ~E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else {
-            /* Set SW Defineable Pin 0 to turn off the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        }
-        break;
-    default:
-        if (hw->media_type == e1000_media_type_fiber) {
-            /* Set SW Defineable Pin 0 to turn off the LED */
-            ctrl |= E1000_CTRL_SWDPIN0;
-            ctrl |= E1000_CTRL_SWDPIO0;
-        } else if (hw->phy_type == e1000_phy_ife) {
-            e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
-                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
-        } else if (hw->media_type == e1000_media_type_copper) {
-            ew32(LEDCTL, hw->ledctl_mode1);
-            return E1000_SUCCESS;
-        }
-        break;
-    }
-
-    ew32(CTRL, ctrl);
-
-    return E1000_SUCCESS;
-}
+	s32 ret_val;
+	u16 phy_data;
 
 
-/******************************************************************************
- * Clears all hardware statistics counters.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+	DEBUGFUNC("e1000_phy_get_info");
+
+	phy_info->cable_length = e1000_cable_length_undefined;
+	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+	phy_info->cable_polarity = e1000_rev_polarity_undefined;
+	phy_info->downshift = e1000_downshift_undefined;
+	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+	phy_info->local_rx = e1000_1000t_rx_status_undefined;
+	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+	if (hw->media_type != e1000_media_type_copper) {
+		DEBUGOUT("PHY info is only valid for copper media\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
+	if (ret_val)
+		return ret_val;
+
+	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+		DEBUGOUT("PHY info is only valid if link is up\n");
+		return -E1000_ERR_CONFIG;
+	}
+
+	if (hw->phy_type == e1000_phy_igp)
+		return e1000_phy_igp_get_info(hw, phy_info);
+	else
+		return e1000_phy_m88_get_info(hw, phy_info);
+}
+
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
 {
 {
-    volatile u32 temp;
-
-    temp = er32(CRCERRS);
-    temp = er32(SYMERRS);
-    temp = er32(MPC);
-    temp = er32(SCC);
-    temp = er32(ECOL);
-    temp = er32(MCC);
-    temp = er32(LATECOL);
-    temp = er32(COLC);
-    temp = er32(DC);
-    temp = er32(SEC);
-    temp = er32(RLEC);
-    temp = er32(XONRXC);
-    temp = er32(XONTXC);
-    temp = er32(XOFFRXC);
-    temp = er32(XOFFTXC);
-    temp = er32(FCRUC);
-
-    if (hw->mac_type != e1000_ich8lan) {
-    temp = er32(PRC64);
-    temp = er32(PRC127);
-    temp = er32(PRC255);
-    temp = er32(PRC511);
-    temp = er32(PRC1023);
-    temp = er32(PRC1522);
-    }
-
-    temp = er32(GPRC);
-    temp = er32(BPRC);
-    temp = er32(MPRC);
-    temp = er32(GPTC);
-    temp = er32(GORCL);
-    temp = er32(GORCH);
-    temp = er32(GOTCL);
-    temp = er32(GOTCH);
-    temp = er32(RNBC);
-    temp = er32(RUC);
-    temp = er32(RFC);
-    temp = er32(ROC);
-    temp = er32(RJC);
-    temp = er32(TORL);
-    temp = er32(TORH);
-    temp = er32(TOTL);
-    temp = er32(TOTH);
-    temp = er32(TPR);
-    temp = er32(TPT);
-
-    if (hw->mac_type != e1000_ich8lan) {
-    temp = er32(PTC64);
-    temp = er32(PTC127);
-    temp = er32(PTC255);
-    temp = er32(PTC511);
-    temp = er32(PTC1023);
-    temp = er32(PTC1522);
-    }
-
-    temp = er32(MPTC);
-    temp = er32(BPTC);
-
-    if (hw->mac_type < e1000_82543) return;
-
-    temp = er32(ALGNERRC);
-    temp = er32(RXERRC);
-    temp = er32(TNCRS);
-    temp = er32(CEXTERR);
-    temp = er32(TSCTC);
-    temp = er32(TSCTFC);
-
-    if (hw->mac_type <= e1000_82544) return;
-
-    temp = er32(MGTPRC);
-    temp = er32(MGTPDC);
-    temp = er32(MGTPTC);
-
-    if (hw->mac_type <= e1000_82547_rev_2) return;
-
-    temp = er32(IAC);
-    temp = er32(ICRXOC);
-
-    if (hw->mac_type == e1000_ich8lan) return;
-
-    temp = er32(ICRXPTC);
-    temp = er32(ICRXATC);
-    temp = er32(ICTXPTC);
-    temp = er32(ICTXATC);
-    temp = er32(ICTXQEC);
-    temp = er32(ICTXQMTC);
-    temp = er32(ICRXDMTC);
+	DEBUGFUNC("e1000_validate_mdi_settings");
+
+	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+		DEBUGOUT("Invalid MDI setting detected\n");
+		hw->mdix = 1;
+		return -E1000_ERR_CONFIG;
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Resets Adaptive IFS to its default state.
+/**
+ * e1000_init_eeprom_params - initialize sw eeprom vars
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- *
- * Call this after e1000_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to true. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- *****************************************************************************/
-void e1000_reset_adaptive(struct e1000_hw *hw)
+ * Sets up eeprom variables in the hw struct.  Must be called after mac_type
+ * is configured.
+ */
+s32 e1000_init_eeprom_params(struct e1000_hw *hw)
 {
 {
-    DEBUGFUNC("e1000_reset_adaptive");
-
-    if (hw->adaptive_ifs) {
-        if (!hw->ifs_params_forced) {
-            hw->current_ifs_val = 0;
-            hw->ifs_min_val = IFS_MIN;
-            hw->ifs_max_val = IFS_MAX;
-            hw->ifs_step_size = IFS_STEP;
-            hw->ifs_ratio = IFS_RATIO;
-        }
-        hw->in_ifs_mode = false;
-        ew32(AIT, 0);
-    } else {
-        DEBUGOUT("Not in Adaptive IFS mode!\n");
-    }
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd = er32(EECD);
+	s32 ret_val = E1000_SUCCESS;
+	u16 eeprom_size;
+
+	DEBUGFUNC("e1000_init_eeprom_params");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->word_size = 64;
+		eeprom->opcode_bits = 3;
+		eeprom->address_bits = 6;
+		eeprom->delay_usec = 50;
+		break;
+	case e1000_82540:
+	case e1000_82545:
+	case e1000_82545_rev_3:
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		eeprom->type = e1000_eeprom_microwire;
+		eeprom->opcode_bits = 3;
+		eeprom->delay_usec = 50;
+		if (eecd & E1000_EECD_SIZE) {
+			eeprom->word_size = 256;
+			eeprom->address_bits = 8;
+		} else {
+			eeprom->word_size = 64;
+			eeprom->address_bits = 6;
+		}
+		break;
+	case e1000_82541:
+	case e1000_82541_rev_2:
+	case e1000_82547:
+	case e1000_82547_rev_2:
+		if (eecd & E1000_EECD_TYPE) {
+			eeprom->type = e1000_eeprom_spi;
+			eeprom->opcode_bits = 8;
+			eeprom->delay_usec = 1;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->page_size = 32;
+				eeprom->address_bits = 16;
+			} else {
+				eeprom->page_size = 8;
+				eeprom->address_bits = 8;
+			}
+		} else {
+			eeprom->type = e1000_eeprom_microwire;
+			eeprom->opcode_bits = 3;
+			eeprom->delay_usec = 50;
+			if (eecd & E1000_EECD_ADDR_BITS) {
+				eeprom->word_size = 256;
+				eeprom->address_bits = 8;
+			} else {
+				eeprom->word_size = 64;
+				eeprom->address_bits = 6;
+			}
+		}
+		break;
+	default:
+		break;
+	}
+
+	if (eeprom->type == e1000_eeprom_spi) {
+		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
+		 * 32KB (incremented by powers of 2).
+		 */
+		/* Set to default value for initial eeprom read. */
+		eeprom->word_size = 64;
+		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
+		if (ret_val)
+			return ret_val;
+		eeprom_size =
+		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
+		/* 256B eeprom size was not supported in earlier hardware, so we
+		 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
+		 * is never the result used in the shifting logic below. */
+		if (eeprom_size)
+			eeprom_size++;
+
+		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
+	}
+	return ret_val;
 }
 }
 
 
-/******************************************************************************
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- *
- * hw - Struct containing variables accessed by shared code
- * tx_packets - Number of transmits since last callback
- * total_collisions - Number of collisions since last callback
- *****************************************************************************/
-void e1000_update_adaptive(struct e1000_hw *hw)
+/**
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
 {
 {
-    DEBUGFUNC("e1000_update_adaptive");
-
-    if (hw->adaptive_ifs) {
-        if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
-            if (hw->tx_packet_delta > MIN_NUM_XMITS) {
-                hw->in_ifs_mode = true;
-                if (hw->current_ifs_val < hw->ifs_max_val) {
-                    if (hw->current_ifs_val == 0)
-                        hw->current_ifs_val = hw->ifs_min_val;
-                    else
-                        hw->current_ifs_val += hw->ifs_step_size;
-                    ew32(AIT, hw->current_ifs_val);
-                }
-            }
-        } else {
-            if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
-                hw->current_ifs_val = 0;
-                hw->in_ifs_mode = false;
-                ew32(AIT, 0);
-            }
-        }
-    } else {
-        DEBUGOUT("Not in Adaptive IFS mode!\n");
-    }
+	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
+	 * wait <delay> microseconds.
+	 */
+	*eecd = *eecd | E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
 }
 }
 
 
-/******************************************************************************
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- *
- * hw - Struct containing variables accessed by shared code
- * frame_len - The length of the frame in question
- * mac_addr - The Ethernet destination address of the frame in question
- *****************************************************************************/
-void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
-			    u32 frame_len, u8 *mac_addr)
+/**
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
+ * @hw: Struct containing variables accessed by shared code
+ * @eecd: EECD's current value
+ */
+static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
 {
 {
-    u64 carry_bit;
-
-    /* First adjust the frame length. */
-    frame_len--;
-    /* We need to adjust the statistics counters, since the hardware
-     * counters overcount this packet as a CRC error and undercount
-     * the packet as a good packet
-     */
-    /* This packet should not be counted as a CRC error.    */
-    stats->crcerrs--;
-    /* This packet does count as a Good Packet Received.    */
-    stats->gprc++;
-
-    /* Adjust the Good Octets received counters             */
-    carry_bit = 0x80000000 & stats->gorcl;
-    stats->gorcl += frame_len;
-    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
-     * Received Count) was one before the addition,
-     * AND it is zero after, then we lost the carry out,
-     * need to add one to Gorch (Good Octets Received Count High).
-     * This could be simplified if all environments supported
-     * 64-bit integers.
-     */
-    if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
-        stats->gorch++;
-    /* Is this a broadcast or multicast?  Check broadcast first,
-     * since the test for a multicast frame will test positive on
-     * a broadcast frame.
-     */
-    if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
-        /* Broadcast packet */
-        stats->bprc++;
-    else if (*mac_addr & 0x01)
-        /* Multicast packet */
-        stats->mprc++;
-
-    if (frame_len == hw->max_frame_size) {
-        /* In this case, the hardware has overcounted the number of
-         * oversize frames.
-         */
-        if (stats->roc > 0)
-            stats->roc--;
-    }
-
-    /* Adjust the bin counters when the extra byte put the frame in the
-     * wrong bin. Remember that the frame_len was adjusted above.
-     */
-    if (frame_len == 64) {
-        stats->prc64++;
-        stats->prc127--;
-    } else if (frame_len == 127) {
-        stats->prc127++;
-        stats->prc255--;
-    } else if (frame_len == 255) {
-        stats->prc255++;
-        stats->prc511--;
-    } else if (frame_len == 511) {
-        stats->prc511++;
-        stats->prc1023--;
-    } else if (frame_len == 1023) {
-        stats->prc1023++;
-        stats->prc1522--;
-    } else if (frame_len == 1522) {
-        stats->prc1522++;
-    }
+	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
+	 * wait 50 microseconds.
+	 */
+	*eecd = *eecd & ~E1000_EECD_SK;
+	ew32(EECD, *eecd);
+	E1000_WRITE_FLUSH();
+	udelay(hw->eeprom.delay_usec);
 }
 }
 
 
-/******************************************************************************
- * Gets the current PCI bus type, speed, and width of the hardware
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-void e1000_get_bus_info(struct e1000_hw *hw)
+/**
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ */
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
 {
 {
-    s32 ret_val;
-    u16 pci_ex_link_status;
-    u32 status;
-
-    switch (hw->mac_type) {
-    case e1000_82542_rev2_0:
-    case e1000_82542_rev2_1:
-        hw->bus_type = e1000_bus_type_pci;
-        hw->bus_speed = e1000_bus_speed_unknown;
-        hw->bus_width = e1000_bus_width_unknown;
-        break;
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-        hw->bus_type = e1000_bus_type_pci_express;
-        hw->bus_speed = e1000_bus_speed_2500;
-        ret_val = e1000_read_pcie_cap_reg(hw,
-                                      PCI_EX_LINK_STATUS,
-                                      &pci_ex_link_status);
-        if (ret_val)
-            hw->bus_width = e1000_bus_width_unknown;
-        else
-            hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
-                          PCI_EX_LINK_WIDTH_SHIFT;
-        break;
-    case e1000_ich8lan:
-        hw->bus_type = e1000_bus_type_pci_express;
-        hw->bus_speed = e1000_bus_speed_2500;
-        hw->bus_width = e1000_bus_width_pciex_1;
-        break;
-    default:
-        status = er32(STATUS);
-        hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
-                       e1000_bus_type_pcix : e1000_bus_type_pci;
-
-        if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
-            hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
-                            e1000_bus_speed_66 : e1000_bus_speed_120;
-        } else if (hw->bus_type == e1000_bus_type_pci) {
-            hw->bus_speed = (status & E1000_STATUS_PCI66) ?
-                            e1000_bus_speed_66 : e1000_bus_speed_33;
-        } else {
-            switch (status & E1000_STATUS_PCIX_SPEED) {
-            case E1000_STATUS_PCIX_SPEED_66:
-                hw->bus_speed = e1000_bus_speed_66;
-                break;
-            case E1000_STATUS_PCIX_SPEED_100:
-                hw->bus_speed = e1000_bus_speed_100;
-                break;
-            case E1000_STATUS_PCIX_SPEED_133:
-                hw->bus_speed = e1000_bus_speed_133;
-                break;
-            default:
-                hw->bus_speed = e1000_bus_speed_reserved;
-                break;
-            }
-        }
-        hw->bus_width = (status & E1000_STATUS_BUS64) ?
-                        e1000_bus_width_64 : e1000_bus_width_32;
-        break;
-    }
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u32 mask;
+
+	/* We need to shift "count" bits out to the EEPROM. So, value in the
+	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
+	 * In order to do this, "data" must be broken down into bits.
+	 */
+	mask = 0x01 << (count - 1);
+	eecd = er32(EECD);
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~E1000_EECD_DO;
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_DO;
+	}
+	do {
+		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+		 * and then raising and then lowering the clock (the SK bit controls
+		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+		 * by setting "DI" to "0" and then raising and then lowering the clock.
+		 */
+		eecd &= ~E1000_EECD_DI;
+
+		if (data & mask)
+			eecd |= E1000_EECD_DI;
+
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+
+		udelay(eeprom->delay_usec);
+
+		e1000_raise_ee_clk(hw, &eecd);
+		e1000_lower_ee_clk(hw, &eecd);
+
+		mask = mask >> 1;
+
+	} while (mask);
+
+	/* We leave the "DI" bit set to "0" when we leave this routine. */
+	eecd &= ~E1000_EECD_DI;
+	ew32(EECD, eecd);
 }
 }
 
 
-/******************************************************************************
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to write to
- * value - value to write
- *****************************************************************************/
-static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
+/**
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
+ * @hw: Struct containing variables accessed by shared code
+ * @count: number of bits to shift in
+ */
+static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
 {
 {
-    unsigned long io_addr = hw->io_base;
-    unsigned long io_data = hw->io_base + 4;
+	u32 eecd;
+	u32 i;
+	u16 data;
+
+	/* In order to read a register from the EEPROM, we need to shift 'count'
+	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+	 * input to the EEPROM (setting the SK bit), and then reading the value of
+	 * the "DO" bit.  During this "shifting in" process the "DI" bit should
+	 * always be clear.
+	 */
+
+	eecd = er32(EECD);
+
+	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+	data = 0;
 
 
-    e1000_io_write(hw, io_addr, offset);
-    e1000_io_write(hw, io_data, value);
+	for (i = 0; i < count; i++) {
+		data = data << 1;
+		e1000_raise_ee_clk(hw, &eecd);
+
+		eecd = er32(EECD);
+
+		eecd &= ~(E1000_EECD_DI);
+		if (eecd & E1000_EECD_DO)
+			data |= 1;
+
+		e1000_lower_ee_clk(hw, &eecd);
+	}
+
+	return data;
 }
 }
 
 
-/******************************************************************************
- * Estimates the cable length.
- *
- * hw - Struct containing variables accessed by shared code
- * min_length - The estimated minimum length
- * max_length - The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
+/**
+ * e1000_acquire_eeprom - Prepares EEPROM for access
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- *****************************************************************************/
-static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
-				  u16 *max_length)
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
+ * function should be called before issuing a command to the EEPROM.
+ */
+static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
 {
 {
-    s32 ret_val;
-    u16 agc_value = 0;
-    u16 i, phy_data;
-    u16 cable_length;
-
-    DEBUGFUNC("e1000_get_cable_length");
-
-    *min_length = *max_length = 0;
-
-    /* Use old method for Phy older than IGP */
-    if (hw->phy_type == e1000_phy_m88) {
-
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
-                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
-        /* Convert the enum value to ranged values */
-        switch (cable_length) {
-        case e1000_cable_length_50:
-            *min_length = 0;
-            *max_length = e1000_igp_cable_length_50;
-            break;
-        case e1000_cable_length_50_80:
-            *min_length = e1000_igp_cable_length_50;
-            *max_length = e1000_igp_cable_length_80;
-            break;
-        case e1000_cable_length_80_110:
-            *min_length = e1000_igp_cable_length_80;
-            *max_length = e1000_igp_cable_length_110;
-            break;
-        case e1000_cable_length_110_140:
-            *min_length = e1000_igp_cable_length_110;
-            *max_length = e1000_igp_cable_length_140;
-            break;
-        case e1000_cable_length_140:
-            *min_length = e1000_igp_cable_length_140;
-            *max_length = e1000_igp_cable_length_170;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-            break;
-        }
-    } else if (hw->phy_type == e1000_phy_gg82563) {
-        ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
-
-        switch (cable_length) {
-        case e1000_gg_cable_length_60:
-            *min_length = 0;
-            *max_length = e1000_igp_cable_length_60;
-            break;
-        case e1000_gg_cable_length_60_115:
-            *min_length = e1000_igp_cable_length_60;
-            *max_length = e1000_igp_cable_length_115;
-            break;
-        case e1000_gg_cable_length_115_150:
-            *min_length = e1000_igp_cable_length_115;
-            *max_length = e1000_igp_cable_length_150;
-            break;
-        case e1000_gg_cable_length_150:
-            *min_length = e1000_igp_cable_length_150;
-            *max_length = e1000_igp_cable_length_180;
-            break;
-        default:
-            return -E1000_ERR_PHY;
-            break;
-        }
-    } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
-        u16 cur_agc_value;
-        u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
-        u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP01E1000_PHY_AGC_A,
-                                                          IGP01E1000_PHY_AGC_B,
-                                                          IGP01E1000_PHY_AGC_C,
-                                                          IGP01E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
-            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
-            /* Value bound check. */
-            if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
-                (cur_agc_value == 0))
-                return -E1000_ERR_PHY;
-
-            agc_value += cur_agc_value;
-
-            /* Update minimal AGC value. */
-            if (min_agc_value > cur_agc_value)
-                min_agc_value = cur_agc_value;
-        }
-
-        /* Remove the minimal AGC result for length < 50m */
-        if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
-            agc_value -= min_agc_value;
-
-            /* Get the average length of the remaining 3 channels */
-            agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
-        } else {
-            /* Get the average length of all the 4 channels. */
-            agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
-        }
-
-        /* Set the range of the calculated length. */
-        *min_length = ((e1000_igp_cable_length_table[agc_value] -
-                       IGP01E1000_AGC_RANGE) > 0) ?
-                       (e1000_igp_cable_length_table[agc_value] -
-                       IGP01E1000_AGC_RANGE) : 0;
-        *max_length = e1000_igp_cable_length_table[agc_value] +
-                      IGP01E1000_AGC_RANGE;
-    } else if (hw->phy_type == e1000_phy_igp_2 ||
-               hw->phy_type == e1000_phy_igp_3) {
-        u16 cur_agc_index, max_agc_index = 0;
-        u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
-        u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
-                                                         {IGP02E1000_PHY_AGC_A,
-                                                          IGP02E1000_PHY_AGC_B,
-                                                          IGP02E1000_PHY_AGC_C,
-                                                          IGP02E1000_PHY_AGC_D};
-        /* Read the AGC registers for all channels */
-        for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
-            ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Getting bits 15:9, which represent the combination of course and
-             * fine gain values.  The result is a number that can be put into
-             * the lookup table to obtain the approximate cable length. */
-            cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
-                            IGP02E1000_AGC_LENGTH_MASK;
-
-            /* Array index bound check. */
-            if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
-                (cur_agc_index == 0))
-                return -E1000_ERR_PHY;
-
-            /* Remove min & max AGC values from calculation. */
-            if (e1000_igp_2_cable_length_table[min_agc_index] >
-                e1000_igp_2_cable_length_table[cur_agc_index])
-                min_agc_index = cur_agc_index;
-            if (e1000_igp_2_cable_length_table[max_agc_index] <
-                e1000_igp_2_cable_length_table[cur_agc_index])
-                max_agc_index = cur_agc_index;
-
-            agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
-        }
-
-        agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
-                      e1000_igp_2_cable_length_table[max_agc_index]);
-        agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
-
-        /* Calculate cable length with the error range of +/- 10 meters. */
-        *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
-                       (agc_value - IGP02E1000_AGC_RANGE) : 0;
-        *max_length = agc_value + IGP02E1000_AGC_RANGE;
-    }
-
-    return E1000_SUCCESS;
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd, i = 0;
+
+	DEBUGFUNC("e1000_acquire_eeprom");
+
+	eecd = er32(EECD);
+
+	/* Request EEPROM Access */
+	if (hw->mac_type > e1000_82544) {
+		eecd |= E1000_EECD_REQ;
+		ew32(EECD, eecd);
+		eecd = er32(EECD);
+		while ((!(eecd & E1000_EECD_GNT)) &&
+		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
+			i++;
+			udelay(5);
+			eecd = er32(EECD);
+		}
+		if (!(eecd & E1000_EECD_GNT)) {
+			eecd &= ~E1000_EECD_REQ;
+			ew32(EECD, eecd);
+			DEBUGOUT("Could not acquire EEPROM grant\n");
+			return -E1000_ERR_EEPROM;
+		}
+	}
+
+	/* Setup EEPROM for Read/Write */
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		/* Clear SK and DI */
+		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+		ew32(EECD, eecd);
+
+		/* Set CS */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Clear SK and CS */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		udelay(1);
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Check the cable polarity
- *
- * hw - Struct containing variables accessed by shared code
- * polarity - output parameter : 0 - Polarity is not reversed
- *                               1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * For phy's older than IGP, this function simply reads the polarity bit in the
- * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0.  If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- *****************************************************************************/
-static s32 e1000_check_polarity(struct e1000_hw *hw,
-				e1000_rev_polarity *polarity)
+/**
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_standby_eeprom(struct e1000_hw *hw)
 {
 {
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_check_polarity");
-
-    if ((hw->phy_type == e1000_phy_m88) ||
-        (hw->phy_type == e1000_phy_gg82563)) {
-        /* return the Polarity bit in the Status register. */
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
-                     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
-                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-
-    } else if (hw->phy_type == e1000_phy_igp ||
-              hw->phy_type == e1000_phy_igp_3 ||
-              hw->phy_type == e1000_phy_igp_2) {
-        /* Read the Status register to check the speed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
-         * find the polarity status */
-        if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
-           IGP01E1000_PSSR_SPEED_1000MBPS) {
-
-            /* Read the GIG initialization PCS register (0x00B4) */
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            /* Check the polarity bits */
-            *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
-                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-        } else {
-            /* For 10 Mbps, read the polarity bit in the status register. (for
-             * 100 Mbps this bit is always 0) */
-            *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
-                         e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-        }
-    } else if (hw->phy_type == e1000_phy_ife) {
-        ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-        *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
-                     IFE_PESC_POLARITY_REVERSED_SHIFT) ?
-                     e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-    }
-    return E1000_SUCCESS;
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+
+	eecd = er32(EECD);
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock high */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Select EEPROM */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+
+		/* Clock low */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	} else if (eeprom->type == e1000_eeprom_spi) {
+		/* Toggle CS to flush commands */
+		eecd |= E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+		eecd &= ~E1000_EECD_CS;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(eeprom->delay_usec);
+	}
 }
 }
 
 
-/******************************************************************************
- * Check if Downshift occured
+/**
+ * e1000_release_eeprom - drop chip select
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - Struct containing variables accessed by shared code
- * downshift - output parameter : 0 - No Downshift ocured.
- *                                1 - Downshift ocured.
- *
- * returns: - E1000_ERR_XXX
- *            E1000_SUCCESS
- *
- * For phy's older than IGP, this function reads the Downshift bit in the Phy
- * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
- * Link Health register.  In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- *****************************************************************************/
-static s32 e1000_check_downshift(struct e1000_hw *hw)
+ * Terminates a command by inverting the EEPROM's chip select pin
+ */
+static void e1000_release_eeprom(struct e1000_hw *hw)
 {
 {
-    s32 ret_val;
-    u16 phy_data;
-
-    DEBUGFUNC("e1000_check_downshift");
-
-    if (hw->phy_type == e1000_phy_igp ||
-        hw->phy_type == e1000_phy_igp_3 ||
-        hw->phy_type == e1000_phy_igp_2) {
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
-    } else if ((hw->phy_type == e1000_phy_m88) ||
-               (hw->phy_type == e1000_phy_gg82563)) {
-        ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
-                                     &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
-                               M88E1000_PSSR_DOWNSHIFT_SHIFT;
-    } else if (hw->phy_type == e1000_phy_ife) {
-        /* e1000_phy_ife supports 10/100 speed only */
-        hw->speed_downgraded = false;
-    }
-
-    return E1000_SUCCESS;
+	u32 eecd;
+
+	DEBUGFUNC("e1000_release_eeprom");
+
+	eecd = er32(EECD);
+
+	if (hw->eeprom.type == e1000_eeprom_spi) {
+		eecd |= E1000_EECD_CS;	/* Pull CS high */
+		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
+
+		ew32(EECD, eecd);
+
+		udelay(hw->eeprom.delay_usec);
+	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
+		/* cleanup eeprom */
+
+		/* CS on Microwire is active-high */
+		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+		ew32(EECD, eecd);
+
+		/* Rising edge of clock */
+		eecd |= E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+
+		/* Falling edge of clock */
+		eecd &= ~E1000_EECD_SK;
+		ew32(EECD, eecd);
+		E1000_WRITE_FLUSH();
+		udelay(hw->eeprom.delay_usec);
+	}
+
+	/* Stop requesting EEPROM access */
+	if (hw->mac_type > e1000_82544) {
+		eecd &= ~E1000_EECD_REQ;
+		ew32(EECD, eecd);
+	}
 }
 }
 
 
-/*****************************************************************************
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
+/**
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
+{
+	u16 retry_count = 0;
+	u8 spi_stat_reg;
 
 
-static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
+	DEBUGFUNC("e1000_spi_eeprom_ready");
+
+	/* Read "Status Register" repeatedly until the LSB is cleared.  The
+	 * EEPROM will signal that the command has been completed by clearing
+	 * bit 0 of the internal status register.  If it's not cleared within
+	 * 5 milliseconds, then error out.
+	 */
+	retry_count = 0;
+	do {
+		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
+					hw->eeprom.opcode_bits);
+		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
+		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
+			break;
+
+		udelay(5);
+		retry_count += 5;
+
+		e1000_standby_eeprom(hw);
+	} while (retry_count < EEPROM_MAX_RETRY_SPI);
+
+	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
+	 * only 0-5mSec on 5V devices)
+	 */
+	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
+		DEBUGOUT("SPI EEPROM Status error\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset of  word in the EEPROM to read
+ * @data: word read from the EEPROM
+ * @words: number of words to read
+ */
+s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 {
 {
-    s32 ret_val;
-    u16 phy_data, phy_saved_data, speed, duplex, i;
-    u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
-                                        {IGP01E1000_PHY_AGC_PARAM_A,
-                                        IGP01E1000_PHY_AGC_PARAM_B,
-                                        IGP01E1000_PHY_AGC_PARAM_C,
-                                        IGP01E1000_PHY_AGC_PARAM_D};
-    u16 min_length, max_length;
-
-    DEBUGFUNC("e1000_config_dsp_after_link_change");
-
-    if (hw->phy_type != e1000_phy_igp)
-        return E1000_SUCCESS;
-
-    if (link_up) {
-        ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
-        if (ret_val) {
-            DEBUGOUT("Error getting link speed and duplex\n");
-            return ret_val;
-        }
-
-        if (speed == SPEED_1000) {
-
-            ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
-            if (ret_val)
-                return ret_val;
-
-            if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
-                min_length >= e1000_igp_cable_length_50) {
-
-                for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-                    ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
-                                                 &phy_data);
-                    if (ret_val)
-                        return ret_val;
-
-                    phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
-                    ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
-                                                  phy_data);
-                    if (ret_val)
-                        return ret_val;
-                }
-                hw->dsp_config_state = e1000_dsp_config_activated;
-            }
-
-            if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
-               (min_length < e1000_igp_cable_length_50)) {
-
-                u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
-                u32 idle_errs = 0;
-
-                /* clear previous idle error counts */
-                ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
-                                             &phy_data);
-                if (ret_val)
-                    return ret_val;
-
-                for (i = 0; i < ffe_idle_err_timeout; i++) {
-                    udelay(1000);
-                    ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
-                                                 &phy_data);
-                    if (ret_val)
-                        return ret_val;
-
-                    idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
-                    if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
-                        hw->ffe_config_state = e1000_ffe_config_active;
-
-                        ret_val = e1000_write_phy_reg(hw,
-                                    IGP01E1000_PHY_DSP_FFE,
-                                    IGP01E1000_PHY_DSP_FFE_CM_CP);
-                        if (ret_val)
-                            return ret_val;
-                        break;
-                    }
-
-                    if (idle_errs)
-                        ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
-                }
-            }
-        }
-    } else {
-        if (hw->dsp_config_state == e1000_dsp_config_activated) {
-            /* Save off the current value of register 0x2F5B to be restored at
-             * the end of the routines. */
-            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            /* Disable the PHY transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-            if (ret_val)
-                return ret_val;
-
-            mdelay(20);
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_FORCE_GIGA);
-            if (ret_val)
-                return ret_val;
-            for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-                ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
-                if (ret_val)
-                    return ret_val;
-
-                phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
-                phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
-                ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_RESTART_AUTONEG);
-            if (ret_val)
-                return ret_val;
-
-            mdelay(20);
-
-            /* Now enable the transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            hw->dsp_config_state = e1000_dsp_config_enabled;
-        }
-
-        if (hw->ffe_config_state == e1000_ffe_config_active) {
-            /* Save off the current value of register 0x2F5B to be restored at
-             * the end of the routines. */
-            ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            /* Disable the PHY transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
-            if (ret_val)
-                return ret_val;
-
-            mdelay(20);
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_FORCE_GIGA);
-            if (ret_val)
-                return ret_val;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
-                                          IGP01E1000_PHY_DSP_FFE_DEFAULT);
-            if (ret_val)
-                return ret_val;
-
-            ret_val = e1000_write_phy_reg(hw, 0x0000,
-                                          IGP01E1000_IEEE_RESTART_AUTONEG);
-            if (ret_val)
-                return ret_val;
-
-            mdelay(20);
-
-            /* Now enable the transmitter */
-            ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
-            if (ret_val)
-                return ret_val;
-
-            hw->ffe_config_state = e1000_ffe_config_enabled;
-        }
-    }
-    return E1000_SUCCESS;
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_read_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
 }
 }
 
 
-/*****************************************************************************
- * Set PHY to class A mode
- * Assumes the following operations will follow to enable the new class mode.
- *  1. Do a PHY soft reset
- *  2. Restart auto-negotiation or force link.
- *
- * hw - Struct containing variables accessed by shared code
- ****************************************************************************/
-static s32 e1000_set_phy_mode(struct e1000_hw *hw)
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				u16 *data)
 {
 {
-    s32 ret_val;
-    u16 eeprom_data;
-
-    DEBUGFUNC("e1000_set_phy_mode");
-
-    if ((hw->mac_type == e1000_82545_rev_3) &&
-        (hw->media_type == e1000_media_type_copper)) {
-        ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
-        if (ret_val) {
-            return ret_val;
-        }
-
-        if ((eeprom_data != EEPROM_RESERVED_WORD) &&
-            (eeprom_data & EEPROM_PHY_CLASS_A)) {
-            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
-            if (ret_val)
-                return ret_val;
-            ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
-            if (ret_val)
-                return ret_val;
-
-            hw->phy_reset_disable = false;
-        }
-    }
-
-    return E1000_SUCCESS;
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 i = 0;
+
+	DEBUGFUNC("e1000_read_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		DEBUGOUT2
+		    ("\"words\" parameter out of bounds. Words = %d, size = %d\n",
+		     offset, eeprom->word_size);
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+	 * directly. In this case, we need to acquire the EEPROM so that
+	 * FW or other port software does not interrupt.
+	 */
+	/* Prepare the EEPROM for bit-bang reading */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
+	 * acquired the EEPROM at this point, so any returns should release it */
+	if (eeprom->type == e1000_eeprom_spi) {
+		u16 word_in;
+		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
+
+		if (e1000_spi_eeprom_ready(hw)) {
+			e1000_release_eeprom(hw);
+			return -E1000_ERR_EEPROM;
+		}
+
+		e1000_standby_eeprom(hw);
+
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			read_opcode |= EEPROM_A8_OPCODE_SPI;
+
+		/* Send the READ command (opcode + addr)  */
+		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
+		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
+					eeprom->address_bits);
+
+		/* Read the data.  The address of the eeprom internally increments with
+		 * each byte (spi) being read, saving on the overhead of eeprom setup
+		 * and tear-down.  The address counter will roll over if reading beyond
+		 * the size of the eeprom, thus allowing the entire memory to be read
+		 * starting from any offset. */
+		for (i = 0; i < words; i++) {
+			word_in = e1000_shift_in_ee_bits(hw, 16);
+			data[i] = (word_in >> 8) | (word_in << 8);
+		}
+	} else if (eeprom->type == e1000_eeprom_microwire) {
+		for (i = 0; i < words; i++) {
+			/* Send the READ command (opcode + addr)  */
+			e1000_shift_out_ee_bits(hw,
+						EEPROM_READ_OPCODE_MICROWIRE,
+						eeprom->opcode_bits);
+			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
+						eeprom->address_bits);
+
+			/* Read the data.  For microwire, each word requires the overhead
+			 * of eeprom setup and tear-down. */
+			data[i] = e1000_shift_in_ee_bits(hw, 16);
+			e1000_standby_eeprom(hw);
+		}
+	}
+
+	/* End this read operation */
+	e1000_release_eeprom(hw);
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/*****************************************************************************
+/**
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * This function sets the lplu state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
- *
- ****************************************************************************/
-
-static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ */
+s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
 {
 {
-    u32 phy_ctrl = 0;
-    s32 ret_val;
-    u16 phy_data;
-    DEBUGFUNC("e1000_set_d3_lplu_state");
-
-    if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
-        && hw->phy_type != e1000_phy_igp_3)
-        return E1000_SUCCESS;
-
-    /* During driver activity LPLU should not be used or it will attain link
-     * from the lowest speeds starting from 10Mbps. The capability is used for
-     * Dx transitions and states */
-    if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
-        if (ret_val)
-            return ret_val;
-    } else if (hw->mac_type == e1000_ich8lan) {
-        /* MAC writes into PHY register based on the state transition
-         * and start auto-negotiation. SW driver can overwrite the settings
-         * in CSR PHY power control E1000_PHY_CTRL register. */
-        phy_ctrl = er32(PHY_CTRL);
-    } else {
-        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == e1000_82541_rev_2 ||
-            hw->mac_type == e1000_82547_rev_2) {
-            phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            if (hw->mac_type == e1000_ich8lan) {
-                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
-                ew32(PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data &= ~IGP02E1000_PM_D3_LPLU;
-                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == e1000_smart_speed_on) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == e1000_smart_speed_off) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-    } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
-               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
-               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
-
-        if (hw->mac_type == e1000_82541_rev_2 ||
-            hw->mac_type == e1000_82547_rev_2) {
-            phy_data |= IGP01E1000_GMII_FLEX_SPD;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
-            if (ret_val)
-                return ret_val;
-        } else {
-            if (hw->mac_type == e1000_ich8lan) {
-                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
-                ew32(PHY_CTRL, phy_ctrl);
-            } else {
-                phy_data |= IGP02E1000_PM_D3_LPLU;
-                ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
-                                              phy_data);
-                if (ret_val)
-                    return ret_val;
-            }
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+
+	if (checksum == (u16) EEPROM_SUM)
+		return E1000_SUCCESS;
+	else {
+		DEBUGOUT("EEPROM Checksum Invalid\n");
+		return -E1000_ERR_EEPROM;
+	}
 }
 }
 
 
-/*****************************************************************************
- *
- * This function sets the lplu d0 state according to the active flag.  When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisment
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- * hw: Struct containing variables accessed by shared code
- * active - true to enable lplu false to disable lplu.
+/**
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- *            E1000_SUCCESS at any other case.
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ */
+s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+	u16 checksum = 0;
+	u16 i, eeprom_data;
+
+	DEBUGFUNC("e1000_update_eeprom_checksum");
+
+	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		checksum += eeprom_data;
+	}
+	checksum = (u16) EEPROM_SUM - checksum;
+	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+		DEBUGOUT("EEPROM Write Error\n");
+		return -E1000_ERR_EEPROM;
+	}
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_write_eeprom - write words to the different EEPROM types.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word to be written to the EEPROM
  *
  *
- ****************************************************************************/
+ * If e1000_update_eeprom_checksum is not called after this function, the
+ * EEPROM will most likely contain an invalid checksum.
+ */
+s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+	s32 ret;
+	spin_lock(&e1000_eeprom_lock);
+	ret = e1000_do_write_eeprom(hw, offset, words, data);
+	spin_unlock(&e1000_eeprom_lock);
+	return ret;
+}
 
 
-static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
+				 u16 *data)
 {
 {
-    u32 phy_ctrl = 0;
-    s32 ret_val;
-    u16 phy_data;
-    DEBUGFUNC("e1000_set_d0_lplu_state");
-
-    if (hw->mac_type <= e1000_82547_rev_2)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == e1000_ich8lan) {
-        phy_ctrl = er32(PHY_CTRL);
-    } else {
-        ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
-        if (ret_val)
-            return ret_val;
-    }
-
-    if (!active) {
-        if (hw->mac_type == e1000_ich8lan) {
-            phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
-            ew32(PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data &= ~IGP02E1000_PM_D0_LPLU;
-            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
-         * Dx states where the power conservation is most important.  During
-         * driver activity we should enable SmartSpeed, so performance is
-         * maintained. */
-        if (hw->smart_speed == e1000_smart_speed_on) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        } else if (hw->smart_speed == e1000_smart_speed_off) {
-            ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                         &phy_data);
-            if (ret_val)
-                return ret_val;
-
-            phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-            ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
-                                          phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-
-    } else {
-
-        if (hw->mac_type == e1000_ich8lan) {
-            phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
-            ew32(PHY_CTRL, phy_ctrl);
-        } else {
-            phy_data |= IGP02E1000_PM_D0_LPLU;
-            ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
-            if (ret_val)
-                return ret_val;
-        }
-
-        /* When LPLU is enabled we should disable SmartSpeed */
-        ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
-        if (ret_val)
-            return ret_val;
-
-        phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
-        ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
-        if (ret_val)
-            return ret_val;
-
-    }
-    return E1000_SUCCESS;
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	s32 status = 0;
+
+	DEBUGFUNC("e1000_write_eeprom");
+
+	/* If eeprom is not yet detected, do so now */
+	if (eeprom->word_size == 0)
+		e1000_init_eeprom_params(hw);
+
+	/* A check for invalid values:  offset too large, too many words, and not
+	 * enough words.
+	 */
+	if ((offset >= eeprom->word_size)
+	    || (words > eeprom->word_size - offset) || (words == 0)) {
+		DEBUGOUT("\"words\" parameter out of bounds\n");
+		return -E1000_ERR_EEPROM;
+	}
+
+	/* Prepare the EEPROM for writing  */
+	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+		return -E1000_ERR_EEPROM;
+
+	if (eeprom->type == e1000_eeprom_microwire) {
+		status = e1000_write_eeprom_microwire(hw, offset, words, data);
+	} else {
+		status = e1000_write_eeprom_spi(hw, offset, words, data);
+		msleep(10);
+	}
+
+	/* Done with writing */
+	e1000_release_eeprom(hw);
+
+	return status;
 }
 }
 
 
-/******************************************************************************
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- *
- * hw - Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_set_vco_speed(struct e1000_hw *hw)
+/**
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
+				  u16 *data)
 {
 {
-    s32  ret_val;
-    u16 default_page = 0;
-    u16 phy_data;
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u16 widx = 0;
 
 
-    DEBUGFUNC("e1000_set_vco_speed");
+	DEBUGFUNC("e1000_write_eeprom_spi");
 
 
-    switch (hw->mac_type) {
-    case e1000_82545_rev_3:
-    case e1000_82546_rev_3:
-       break;
-    default:
-        return E1000_SUCCESS;
-    }
+	while (widx < words) {
+		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
 
 
-    /* Set PHY register 30, page 5, bit 8 to 0 */
+		if (e1000_spi_eeprom_ready(hw))
+			return -E1000_ERR_EEPROM;
 
 
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
-    if (ret_val)
-        return ret_val;
+		e1000_standby_eeprom(hw);
 
 
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
-    if (ret_val)
-        return ret_val;
+		/*  Send the WRITE ENABLE command (8 bit opcode )  */
+		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
+					eeprom->opcode_bits);
 
 
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
+		e1000_standby_eeprom(hw);
 
 
-    phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-    if (ret_val)
-        return ret_val;
+		/* Some SPI eeproms use the 8th address bit embedded in the opcode */
+		if ((eeprom->address_bits == 8) && (offset >= 128))
+			write_opcode |= EEPROM_A8_OPCODE_SPI;
 
 
-    /* Set PHY register 30, page 4, bit 11 to 1 */
+		/* Send the Write command (8-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
 
 
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
-    if (ret_val)
-        return ret_val;
+		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
+					eeprom->address_bits);
 
 
-    ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
-    if (ret_val)
-        return ret_val;
+		/* Send the data */
 
 
-    phy_data |= M88E1000_PHY_VCO_REG_BIT11;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
-    if (ret_val)
-        return ret_val;
+		/* Loop to allow for up to whole page write (32 bytes) of eeprom */
+		while (widx < words) {
+			u16 word_out = data[widx];
+			word_out = (word_out >> 8) | (word_out << 8);
+			e1000_shift_out_ee_bits(hw, word_out, 16);
+			widx++;
 
 
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
-    if (ret_val)
-        return ret_val;
+			/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
+			 * operation, while the smaller eeproms are capable of an 8-byte
+			 * PAGE WRITE operation.  Break the inner loop to pass new address
+			 */
+			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
+				e1000_standby_eeprom(hw);
+				break;
+			}
+		}
+	}
 
 
-    return E1000_SUCCESS;
+	return E1000_SUCCESS;
 }
 }
 
 
+/**
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
+ */
+static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
+					u16 words, u16 *data)
+{
+	struct e1000_eeprom_info *eeprom = &hw->eeprom;
+	u32 eecd;
+	u16 words_written = 0;
+	u16 i = 0;
+
+	DEBUGFUNC("e1000_write_eeprom_microwire");
+
+	/* Send the write enable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 11).  It's less work to include
+	 * the 11 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This puts the
+	 * EEPROM into write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	/* Prepare the EEPROM */
+	e1000_standby_eeprom(hw);
+
+	while (words_written < words) {
+		/* Send the Write command (3-bit opcode + addr) */
+		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
+					eeprom->opcode_bits);
+
+		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
+					eeprom->address_bits);
+
+		/* Send the data */
+		e1000_shift_out_ee_bits(hw, data[words_written], 16);
+
+		/* Toggle the CS line.  This in effect tells the EEPROM to execute
+		 * the previous command.
+		 */
+		e1000_standby_eeprom(hw);
+
+		/* Read DO repeatedly until it is high (equal to '1').  The EEPROM will
+		 * signal that the command has been completed by raising the DO signal.
+		 * If DO does not go high in 10 milliseconds, then error out.
+		 */
+		for (i = 0; i < 200; i++) {
+			eecd = er32(EECD);
+			if (eecd & E1000_EECD_DO)
+				break;
+			udelay(50);
+		}
+		if (i == 200) {
+			DEBUGOUT("EEPROM Write did not complete\n");
+			return -E1000_ERR_EEPROM;
+		}
+
+		/* Recover from write */
+		e1000_standby_eeprom(hw);
 
 
-/*****************************************************************************
- * This function reads the cookie from ARC ram.
+		words_written++;
+	}
+
+	/* Send the write disable command to the EEPROM (3-bit opcode plus
+	 * 6/8-bit dummy address beginning with 10).  It's less work to include
+	 * the 10 of the dummy address as part of the opcode than it is to shift
+	 * it over the correct number of bits for the address.  This takes the
+	 * EEPROM out of write/erase mode.
+	 */
+	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
+				(u16) (eeprom->opcode_bits + 2));
+
+	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * returns: - E1000_SUCCESS .
- ****************************************************************************/
-static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer)
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ */
+s32 e1000_read_mac_addr(struct e1000_hw *hw)
 {
 {
-    u8 i;
-    u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET;
-    u8 length = E1000_MNG_DHCP_COOKIE_LENGTH;
-
-    length = (length >> 2);
-    offset = (offset >> 2);
-
-    for (i = 0; i < length; i++) {
-        *((u32 *)buffer + i) =
-            E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
-    }
-    return E1000_SUCCESS;
-}
+	u16 offset;
+	u16 eeprom_data, i;
 
 
+	DEBUGFUNC("e1000_read_mac_addr");
 
 
-/*****************************************************************************
- * This function checks whether the HOST IF is enabled for command operaton
- * and also checks whether the previous command is completed.
- * It busy waits in case of previous command is not completed.
+	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+		offset = i >> 1;
+		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+			DEBUGOUT("EEPROM Read Error\n");
+			return -E1000_ERR_EEPROM;
+		}
+		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
+		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
+	}
+
+	switch (hw->mac_type) {
+	default:
+		break;
+	case e1000_82546:
+	case e1000_82546_rev_3:
+		if (er32(STATUS) & E1000_STATUS_FUNC_1)
+			hw->perm_mac_addr[5] ^= 0x01;
+		break;
+	}
+
+	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
+		hw->mac_addr[i] = hw->perm_mac_addr[i];
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_init_rx_addrs - Initializes receive address filters.
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
- *            timeout
- *          - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive address registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ */
+static void e1000_init_rx_addrs(struct e1000_hw *hw)
 {
 {
-    u32 hicr;
-    u8 i;
-
-    /* Check that the host interface is enabled. */
-    hicr = er32(HICR);
-    if ((hicr & E1000_HICR_EN) == 0) {
-        DEBUGOUT("E1000_HOST_EN bit disabled.\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    /* check the previous command is completed */
-    for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
-        hicr = er32(HICR);
-        if (!(hicr & E1000_HICR_C))
-            break;
-        mdelay(1);
-    }
-
-    if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
-        DEBUGOUT("Previous command timeout failed .\n");
-        return -E1000_ERR_HOST_INTERFACE_COMMAND;
-    }
-    return E1000_SUCCESS;
+	u32 i;
+	u32 rar_num;
+
+	DEBUGFUNC("e1000_init_rx_addrs");
+
+	/* Setup the receive address. */
+	DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+	e1000_rar_set(hw, hw->mac_addr, 0);
+
+	rar_num = E1000_RAR_ENTRIES;
+
+	/* Zero out the other 15 receive addresses. */
+	DEBUGOUT("Clearing RAR[1-15]\n");
+	for (i = 1; i < rar_num; i++) {
+		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+		E1000_WRITE_FLUSH();
+	}
 }
 }
 
 
-/*****************************************************************************
- * This function writes the buffer content at the offset given on the host if.
- * It also does alignment considerations to do the writes in most efficient way.
- * Also fills up the sum of the buffer in *buffer parameter.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
-				   u16 offset, u8 *sum)
+/**
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
+ * @hw: Struct containing variables accessed by shared code
+ * @mc_addr: the multicast address to hash
+ */
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 {
 {
-    u8 *tmp;
-    u8 *bufptr = buffer;
-    u32 data = 0;
-    u16 remaining, i, j, prev_bytes;
-
-    /* sum = only sum of the data and it is not checksum */
-
-    if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
-        return -E1000_ERR_PARAM;
-    }
-
-    tmp = (u8 *)&data;
-    prev_bytes = offset & 0x3;
-    offset &= 0xFFFC;
-    offset >>= 2;
-
-    if (prev_bytes) {
-        data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
-        for (j = prev_bytes; j < sizeof(u32); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
-        length -= j - prev_bytes;
-        offset++;
-    }
-
-    remaining = length & 0x3;
-    length -= remaining;
-
-    /* Calculate length in DWORDs */
-    length >>= 2;
-
-    /* The device driver writes the relevant command block into the
-     * ram area. */
-    for (i = 0; i < length; i++) {
-        for (j = 0; j < sizeof(u32); j++) {
-            *(tmp + j) = *bufptr++;
-            *sum += *(tmp + j);
-        }
-
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-    if (remaining) {
-        for (j = 0; j < sizeof(u32); j++) {
-            if (j < remaining)
-                *(tmp + j) = *bufptr++;
-            else
-                *(tmp + j) = 0;
-
-            *sum += *(tmp + j);
-        }
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
-    }
-
-    return E1000_SUCCESS;
+	u32 hash_value = 0;
+
+	/* The portion of the address that is used for the hash table is
+	 * determined by the mc_filter_type setting.
+	 */
+	switch (hw->mc_filter_type) {
+		/* [0] [1] [2] [3] [4] [5]
+		 * 01  AA  00  12  34  56
+		 * LSB                 MSB
+		 */
+	case 0:
+		/* [47:36] i.e. 0x563 for above example address */
+		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
+		break;
+	case 1:
+		/* [46:35] i.e. 0xAC6 for above example address */
+		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
+		break;
+	case 2:
+		/* [45:34] i.e. 0x5D8 for above example address */
+		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
+		break;
+	case 3:
+		/* [43:32] i.e. 0x634 for above example address */
+		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
+		break;
+	}
+
+	hash_value &= 0xFFF;
+	return hash_value;
 }
 }
 
 
+/**
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
+ * @hw: Struct containing variables accessed by shared code
+ * @addr: Address to put into receive address register
+ * @index: Receive address register to write
+ */
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+	u32 rar_low, rar_high;
 
 
-/*****************************************************************************
- * This function writes the command header after does the checksum calculation.
- *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
-				      struct e1000_host_mng_command_header *hdr)
+	/* HW expects these in little endian so we reverse the byte order
+	 * from network order (big endian) to little endian
+	 */
+	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
+	 * unit hang.
+	 *
+	 * Description:
+	 * If there are any Rx frames queued up or otherwise present in the HW
+	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
+	 * hang.  To work around this issue, we have to disable receives and
+	 * flush out all Rx frames before we enable RSS. To do so, we modify we
+	 * redirect all Rx traffic to manageability and then reset the HW.
+	 * This flushes away Rx frames, and (since the redirections to
+	 * manageability persists across resets) keeps new ones from coming in
+	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
+	 * addresses and undo the re-direction to manageability.
+	 * Now, frames are coming in again, but the MAC won't accept them, so
+	 * far so good.  We now proceed to initialize RSS (if necessary) and
+	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
+	 * on our merry way.
+	 */
+	switch (hw->mac_type) {
+	default:
+		/* Indicate to hardware the Address is Valid. */
+		rar_high |= E1000_RAH_AV;
+		break;
+	}
+
+	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+	E1000_WRITE_FLUSH();
+	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+	E1000_WRITE_FLUSH();
+}
+
+/**
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: Offset in VLAN filer table to write
+ * @value: Value to write into VLAN filter table
+ */
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 {
 {
-    u16 i;
-    u8 sum;
-    u8 *buffer;
+	u32 temp;
+
+	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+		E1000_WRITE_FLUSH();
+	} else {
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+		E1000_WRITE_FLUSH();
+	}
+}
 
 
-    /* Write the whole command header structure which includes sum of
-     * the buffer */
+/**
+ * e1000_clear_vfta - Clears the VLAN filer table
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_vfta(struct e1000_hw *hw)
+{
+	u32 offset;
+	u32 vfta_value = 0;
+	u32 vfta_offset = 0;
+	u32 vfta_bit_in_reg = 0;
+
+	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+		/* If the offset we want to clear is the same offset of the
+		 * manageability VLAN ID, then clear all bits except that of the
+		 * manageability unit */
+		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
+		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
+		E1000_WRITE_FLUSH();
+	}
+}
 
 
-    u16 length = sizeof(struct e1000_host_mng_command_header);
+static s32 e1000_id_led_init(struct e1000_hw *hw)
+{
+	u32 ledctl;
+	const u32 ledctl_mask = 0x000000FF;
+	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+	u16 eeprom_data, i, temp;
+	const u16 led_mask = 0x0F;
 
 
-    sum = hdr->checksum;
-    hdr->checksum = 0;
+	DEBUGFUNC("e1000_id_led_init");
 
 
-    buffer = (u8 *)hdr;
-    i = length;
-    while (i--)
-        sum += buffer[i];
+	if (hw->mac_type < e1000_82540) {
+		/* Nothing to do */
+		return E1000_SUCCESS;
+	}
 
 
-    hdr->checksum = 0 - sum;
+	ledctl = er32(LEDCTL);
+	hw->ledctl_default = ledctl;
+	hw->ledctl_mode1 = hw->ledctl_default;
+	hw->ledctl_mode2 = hw->ledctl_default;
 
 
-    length >>= 2;
-    /* The device driver writes the relevant command block into the ram area. */
-    for (i = 0; i < length; i++) {
-        E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i));
-        E1000_WRITE_FLUSH();
-    }
+	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+		DEBUGOUT("EEPROM Read Error\n");
+		return -E1000_ERR_EEPROM;
+	}
 
 
-    return E1000_SUCCESS;
-}
+	if ((eeprom_data == ID_LED_RESERVED_0000) ||
+	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
+		eeprom_data = ID_LED_DEFAULT;
+	}
 
 
+	for (i = 0; i < 4; i++) {
+		temp = (eeprom_data >> (i << 2)) & led_mask;
+		switch (temp) {
+		case ID_LED_ON1_DEF2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_ON1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_OFF1_DEF2:
+		case ID_LED_OFF1_ON2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode1 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+		switch (temp) {
+		case ID_LED_DEF1_ON2:
+		case ID_LED_ON1_ON2:
+		case ID_LED_OFF1_ON2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_on << (i << 3);
+			break;
+		case ID_LED_DEF1_OFF2:
+		case ID_LED_ON1_OFF2:
+		case ID_LED_OFF1_OFF2:
+			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+			hw->ledctl_mode2 |= ledctl_off << (i << 3);
+			break;
+		default:
+			/* Do nothing */
+			break;
+		}
+	}
+	return E1000_SUCCESS;
+}
 
 
-/*****************************************************************************
- * This function indicates to ARC that a new command is pending which completes
- * one write operation by the driver.
+/**
+ * e1000_setup_led
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * returns  - E1000_SUCCESS for success.
- ****************************************************************************/
-static s32 e1000_mng_write_commit(struct e1000_hw *hw)
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ */
+s32 e1000_setup_led(struct e1000_hw *hw)
 {
 {
-    u32 hicr;
+	u32 ledctl;
+	s32 ret_val = E1000_SUCCESS;
 
 
-    hicr = er32(HICR);
-    /* Setting this bit tells the ARC that a new command is pending. */
-    ew32(HICR, hicr | E1000_HICR_C);
+	DEBUGFUNC("e1000_setup_led");
 
 
-    return E1000_SUCCESS;
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No setup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn off PHY Smart Power Down (if enabled) */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					     &hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      (u16) (hw->phy_spd_default &
+						     ~IGP01E1000_GMII_SPD));
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			ledctl = er32(LEDCTL);
+			/* Save current LEDCTL settings */
+			hw->ledctl_default = ledctl;
+			/* Turn off LED0 */
+			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+				    E1000_LEDCTL_LED0_BLINK |
+				    E1000_LEDCTL_LED0_MODE_MASK);
+			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+				   E1000_LEDCTL_LED0_MODE_SHIFT);
+			ew32(LEDCTL, ledctl);
+		} else if (hw->media_type == e1000_media_type_copper)
+			ew32(LEDCTL, hw->ledctl_mode1);
+		break;
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
+/**
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_cleanup_led(struct e1000_hw *hw)
+{
+	s32 ret_val = E1000_SUCCESS;
+
+	DEBUGFUNC("e1000_cleanup_led");
 
 
-/*****************************************************************************
- * This function checks the mode of the firmware.
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+	case e1000_82544:
+		/* No cleanup necessary */
+		break;
+	case e1000_82541:
+	case e1000_82547:
+	case e1000_82541_rev_2:
+	case e1000_82547_rev_2:
+		/* Turn on PHY Smart Power Down (if previously enabled) */
+		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+					      hw->phy_spd_default);
+		if (ret_val)
+			return ret_val;
+		/* Fall Through */
+	default:
+		/* Restore LEDCTL settings */
+		ew32(LEDCTL, hw->ledctl_default);
+		break;
+	}
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_on - Turns on the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_on(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	DEBUGFUNC("e1000_led_on");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Set SW Defineable Pin 0 to turn on the LED */
+		ctrl |= E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn on the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn on the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode2);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_led_off - Turns off the software controllable LED
+ * @hw: Struct containing variables accessed by shared code
+ */
+s32 e1000_led_off(struct e1000_hw *hw)
+{
+	u32 ctrl = er32(CTRL);
+
+	DEBUGFUNC("e1000_led_off");
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+	case e1000_82543:
+		/* Clear SW Defineable Pin 0 to turn off the LED */
+		ctrl &= ~E1000_CTRL_SWDPIN0;
+		ctrl |= E1000_CTRL_SWDPIO0;
+		break;
+	case e1000_82544:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Clear SW Defineable Pin 0 to turn off the LED */
+			ctrl &= ~E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		}
+		break;
+	default:
+		if (hw->media_type == e1000_media_type_fiber) {
+			/* Set SW Defineable Pin 0 to turn off the LED */
+			ctrl |= E1000_CTRL_SWDPIN0;
+			ctrl |= E1000_CTRL_SWDPIO0;
+		} else if (hw->media_type == e1000_media_type_copper) {
+			ew32(LEDCTL, hw->ledctl_mode1);
+			return E1000_SUCCESS;
+		}
+		break;
+	}
+
+	ew32(CTRL, ctrl);
+
+	return E1000_SUCCESS;
+}
+
+/**
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
+ * @hw: Struct containing variables accessed by shared code
+ */
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+	volatile u32 temp;
+
+	temp = er32(CRCERRS);
+	temp = er32(SYMERRS);
+	temp = er32(MPC);
+	temp = er32(SCC);
+	temp = er32(ECOL);
+	temp = er32(MCC);
+	temp = er32(LATECOL);
+	temp = er32(COLC);
+	temp = er32(DC);
+	temp = er32(SEC);
+	temp = er32(RLEC);
+	temp = er32(XONRXC);
+	temp = er32(XONTXC);
+	temp = er32(XOFFRXC);
+	temp = er32(XOFFTXC);
+	temp = er32(FCRUC);
+
+	temp = er32(PRC64);
+	temp = er32(PRC127);
+	temp = er32(PRC255);
+	temp = er32(PRC511);
+	temp = er32(PRC1023);
+	temp = er32(PRC1522);
+
+	temp = er32(GPRC);
+	temp = er32(BPRC);
+	temp = er32(MPRC);
+	temp = er32(GPTC);
+	temp = er32(GORCL);
+	temp = er32(GORCH);
+	temp = er32(GOTCL);
+	temp = er32(GOTCH);
+	temp = er32(RNBC);
+	temp = er32(RUC);
+	temp = er32(RFC);
+	temp = er32(ROC);
+	temp = er32(RJC);
+	temp = er32(TORL);
+	temp = er32(TORH);
+	temp = er32(TOTL);
+	temp = er32(TOTH);
+	temp = er32(TPR);
+	temp = er32(TPT);
+
+	temp = er32(PTC64);
+	temp = er32(PTC127);
+	temp = er32(PTC255);
+	temp = er32(PTC511);
+	temp = er32(PTC1023);
+	temp = er32(PTC1522);
+
+	temp = er32(MPTC);
+	temp = er32(BPTC);
+
+	if (hw->mac_type < e1000_82543)
+		return;
+
+	temp = er32(ALGNERRC);
+	temp = er32(RXERRC);
+	temp = er32(TNCRS);
+	temp = er32(CEXTERR);
+	temp = er32(TSCTC);
+	temp = er32(TSCTFC);
+
+	if (hw->mac_type <= e1000_82544)
+		return;
+
+	temp = er32(MGTPRC);
+	temp = er32(MGTPDC);
+	temp = er32(MGTPTC);
+}
+
+/**
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * returns  - true when the mode is IAMT or false.
- ****************************************************************************/
-bool e1000_check_mng_mode(struct e1000_hw *hw)
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to true. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ */
+void e1000_reset_adaptive(struct e1000_hw *hw)
 {
 {
-    u32 fwsm;
-
-    fwsm = er32(FWSM);
-
-    if (hw->mac_type == e1000_ich8lan) {
-        if ((fwsm & E1000_FWSM_MODE_MASK) ==
-            (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-            return true;
-    } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
-               (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
-        return true;
+	DEBUGFUNC("e1000_reset_adaptive");
 
 
-    return false;
+	if (hw->adaptive_ifs) {
+		if (!hw->ifs_params_forced) {
+			hw->current_ifs_val = 0;
+			hw->ifs_min_val = IFS_MIN;
+			hw->ifs_max_val = IFS_MAX;
+			hw->ifs_step_size = IFS_STEP;
+			hw->ifs_ratio = IFS_RATIO;
+		}
+		hw->in_ifs_mode = false;
+		ew32(AIT, 0);
+	} else {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+	}
 }
 }
 
 
-
-/*****************************************************************************
- * This function writes the dhcp info .
- ****************************************************************************/
-s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+/**
+ * e1000_update_adaptive - update adaptive IFS
+ * @hw: Struct containing variables accessed by shared code
+ * @tx_packets: Number of transmits since last callback
+ * @total_collisions: Number of collisions since last callback
+ *
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ */
+void e1000_update_adaptive(struct e1000_hw *hw)
 {
 {
-    s32 ret_val;
-    struct e1000_host_mng_command_header hdr;
-
-    hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
-    hdr.command_length = length;
-    hdr.reserved1 = 0;
-    hdr.reserved2 = 0;
-    hdr.checksum = 0;
-
-    ret_val = e1000_mng_enable_host_if(hw);
-    if (ret_val == E1000_SUCCESS) {
-        ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
-                                          &(hdr.checksum));
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = e1000_mng_write_cmd_header(hw, &hdr);
-            if (ret_val == E1000_SUCCESS)
-                ret_val = e1000_mng_write_commit(hw);
-        }
-    }
-    return ret_val;
+	DEBUGFUNC("e1000_update_adaptive");
+
+	if (hw->adaptive_ifs) {
+		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
+			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
+				hw->in_ifs_mode = true;
+				if (hw->current_ifs_val < hw->ifs_max_val) {
+					if (hw->current_ifs_val == 0)
+						hw->current_ifs_val =
+						    hw->ifs_min_val;
+					else
+						hw->current_ifs_val +=
+						    hw->ifs_step_size;
+					ew32(AIT, hw->current_ifs_val);
+				}
+			}
+		} else {
+			if (hw->in_ifs_mode
+			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+				hw->current_ifs_val = 0;
+				hw->in_ifs_mode = false;
+				ew32(AIT, 0);
+			}
+		}
+	} else {
+		DEBUGOUT("Not in Adaptive IFS mode!\n");
+	}
 }
 }
 
 
-
-/*****************************************************************************
- * This function calculates the checksum.
+/**
+ * e1000_tbi_adjust_stats
+ * @hw: Struct containing variables accessed by shared code
+ * @frame_len: The length of the frame in question
+ * @mac_addr: The Ethernet destination address of the frame in question
  *
  *
- * returns  - checksum of buffer contents.
- ****************************************************************************/
-static u8 e1000_calculate_mng_checksum(char *buffer, u32 length)
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ */
+void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
+			    u32 frame_len, u8 *mac_addr)
 {
 {
-    u8 sum = 0;
-    u32 i;
-
-    if (!buffer)
-        return 0;
+	u64 carry_bit;
 
 
-    for (i=0; i < length; i++)
-        sum += buffer[i];
+	/* First adjust the frame length. */
+	frame_len--;
+	/* We need to adjust the statistics counters, since the hardware
+	 * counters overcount this packet as a CRC error and undercount
+	 * the packet as a good packet
+	 */
+	/* This packet should not be counted as a CRC error.    */
+	stats->crcerrs--;
+	/* This packet does count as a Good Packet Received.    */
+	stats->gprc++;
+
+	/* Adjust the Good Octets received counters             */
+	carry_bit = 0x80000000 & stats->gorcl;
+	stats->gorcl += frame_len;
+	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
+	 * Received Count) was one before the addition,
+	 * AND it is zero after, then we lost the carry out,
+	 * need to add one to Gorch (Good Octets Received Count High).
+	 * This could be simplified if all environments supported
+	 * 64-bit integers.
+	 */
+	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
+		stats->gorch++;
+	/* Is this a broadcast or multicast?  Check broadcast first,
+	 * since the test for a multicast frame will test positive on
+	 * a broadcast frame.
+	 */
+	if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
+		/* Broadcast packet */
+		stats->bprc++;
+	else if (*mac_addr & 0x01)
+		/* Multicast packet */
+		stats->mprc++;
+
+	if (frame_len == hw->max_frame_size) {
+		/* In this case, the hardware has overcounted the number of
+		 * oversize frames.
+		 */
+		if (stats->roc > 0)
+			stats->roc--;
+	}
 
 
-    return (u8)(0 - sum);
+	/* Adjust the bin counters when the extra byte put the frame in the
+	 * wrong bin. Remember that the frame_len was adjusted above.
+	 */
+	if (frame_len == 64) {
+		stats->prc64++;
+		stats->prc127--;
+	} else if (frame_len == 127) {
+		stats->prc127++;
+		stats->prc255--;
+	} else if (frame_len == 255) {
+		stats->prc255++;
+		stats->prc511--;
+	} else if (frame_len == 511) {
+		stats->prc511++;
+		stats->prc1023--;
+	} else if (frame_len == 1023) {
+		stats->prc1023++;
+		stats->prc1522--;
+	} else if (frame_len == 1522) {
+		stats->prc1522++;
+	}
 }
 }
 
 
-/*****************************************************************************
- * This function checks whether tx pkt filtering needs to be enabled or not.
+/**
+ * e1000_get_bus_info
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * returns  - true for packet filtering or false.
- ****************************************************************************/
-bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+ * Gets the current PCI bus type, speed, and width of the hardware
+ */
+void e1000_get_bus_info(struct e1000_hw *hw)
 {
 {
-    /* called in init as well as watchdog timer functions */
-
-    s32 ret_val, checksum;
-    bool tx_filter = false;
-    struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
-    u8 *buffer = (u8 *) &(hw->mng_cookie);
-
-    if (e1000_check_mng_mode(hw)) {
-        ret_val = e1000_mng_enable_host_if(hw);
-        if (ret_val == E1000_SUCCESS) {
-            ret_val = e1000_host_if_read_cookie(hw, buffer);
-            if (ret_val == E1000_SUCCESS) {
-                checksum = hdr->checksum;
-                hdr->checksum = 0;
-                if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
-                    checksum == e1000_calculate_mng_checksum((char *)buffer,
-                                               E1000_MNG_DHCP_COOKIE_LENGTH)) {
-                    if (hdr->status &
-                        E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
-                        tx_filter = true;
-                } else
-                    tx_filter = true;
-            } else
-                tx_filter = true;
-        }
-    }
-
-    hw->tx_pkt_filtering = tx_filter;
-    return tx_filter;
+	u32 status;
+
+	switch (hw->mac_type) {
+	case e1000_82542_rev2_0:
+	case e1000_82542_rev2_1:
+		hw->bus_type = e1000_bus_type_pci;
+		hw->bus_speed = e1000_bus_speed_unknown;
+		hw->bus_width = e1000_bus_width_unknown;
+		break;
+	default:
+		status = er32(STATUS);
+		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+		    e1000_bus_type_pcix : e1000_bus_type_pci;
+
+		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_120;
+		} else if (hw->bus_type == e1000_bus_type_pci) {
+			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+			    e1000_bus_speed_66 : e1000_bus_speed_33;
+		} else {
+			switch (status & E1000_STATUS_PCIX_SPEED) {
+			case E1000_STATUS_PCIX_SPEED_66:
+				hw->bus_speed = e1000_bus_speed_66;
+				break;
+			case E1000_STATUS_PCIX_SPEED_100:
+				hw->bus_speed = e1000_bus_speed_100;
+				break;
+			case E1000_STATUS_PCIX_SPEED_133:
+				hw->bus_speed = e1000_bus_speed_133;
+				break;
+			default:
+				hw->bus_speed = e1000_bus_speed_reserved;
+				break;
+			}
+		}
+		hw->bus_width = (status & E1000_STATUS_BUS64) ?
+		    e1000_bus_width_64 : e1000_bus_width_32;
+		break;
+	}
 }
 }
 
 
-/******************************************************************************
- * Verifies the hardware needs to allow ARPs to be processed by the host
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - true/false
+/**
+ * e1000_write_reg_io
+ * @hw: Struct containing variables accessed by shared code
+ * @offset: offset to write to
+ * @value: value to write
  *
  *
- *****************************************************************************/
-u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ */
+static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
 {
 {
-    u32 manc;
-    u32 fwsm, factps;
-
-    if (hw->asf_firmware_present) {
-        manc = er32(MANC);
-
-        if (!(manc & E1000_MANC_RCV_TCO_EN) ||
-            !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
-            return false;
-        if (e1000_arc_subsystem_valid(hw)) {
-            fwsm = er32(FWSM);
-            factps = er32(FACTPS);
-
-            if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
-                   e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
-                return true;
-        } else
-            if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
-                return true;
-    }
-    return false;
-}
+	unsigned long io_addr = hw->io_base;
+	unsigned long io_data = hw->io_base + 4;
 
 
-static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
-{
-    s32 ret_val;
-    u16 mii_status_reg;
-    u16 i;
-
-    /* Polarity reversal workaround for forced 10F/10H links. */
-
-    /* Disable the transmitter on the PHY */
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-    if (ret_val)
-        return ret_val;
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    /* This loop will early-out if the NO link condition has been met. */
-    for (i = PHY_FORCE_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Link Status bit
-         * to be clear.
-         */
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
-        mdelay(100);
-    }
-
-    /* Recommended delay time after link has been lost */
-    mdelay(1000);
-
-    /* Now we will re-enable th transmitter on the PHY */
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
-    if (ret_val)
-        return ret_val;
-    mdelay(50);
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
-    if (ret_val)
-        return ret_val;
-    mdelay(50);
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
-    if (ret_val)
-        return ret_val;
-    mdelay(50);
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
-    if (ret_val)
-        return ret_val;
-
-    /* This loop will early-out if the link condition has been met. */
-    for (i = PHY_FORCE_TIME; i > 0; i--) {
-        /* Read the MII Status Register and wait for Link Status bit
-         * to be set.
-         */
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
-        if (ret_val)
-            return ret_val;
-
-        if (mii_status_reg & MII_SR_LINK_STATUS) break;
-        mdelay(100);
-    }
-    return E1000_SUCCESS;
+	e1000_io_write(hw, io_addr, offset);
+	e1000_io_write(hw, io_data, value);
 }
 }
 
 
-/***************************************************************************
+/**
+ * e1000_get_cable_length - Estimates the cable length.
+ * @hw: Struct containing variables accessed by shared code
+ * @min_length: The estimated minimum length
+ * @max_length: The estimated maximum length
  *
  *
- * Disables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
  *
  *
- ***************************************************************************/
-static void e1000_set_pci_express_master_disable(struct e1000_hw *hw)
+ * This function always returns a ranged length (minimum & maximum).
+ * So for M88 phy's, this function interprets the one value returned from the
+ * register to the minimum and maximum range.
+ * For IGP phy's, the function calculates the range by the AGC registers.
+ */
+static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
+				  u16 *max_length)
 {
 {
-    u32 ctrl;
-
-    DEBUGFUNC("e1000_set_pci_express_master_disable");
+	s32 ret_val;
+	u16 agc_value = 0;
+	u16 i, phy_data;
+	u16 cable_length;
 
 
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return;
+	DEBUGFUNC("e1000_get_cable_length");
 
 
-    ctrl = er32(CTRL);
-    ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
-    ew32(CTRL, ctrl);
-}
+	*min_length = *max_length = 0;
 
 
-/*******************************************************************************
- *
- * Disables PCI-Express master access and verifies there are no pending requests
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
- *            caused the master requests to be disabled.
- *            E1000_SUCCESS master requests disabled.
- *
- ******************************************************************************/
-s32 e1000_disable_pciex_master(struct e1000_hw *hw)
-{
-    s32 timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */
+	/* Use old method for Phy older than IGP */
+	if (hw->phy_type == e1000_phy_m88) {
 
 
-    DEBUGFUNC("e1000_disable_pciex_master");
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
 
 
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return E1000_SUCCESS;
+		/* Convert the enum value to ranged values */
+		switch (cable_length) {
+		case e1000_cable_length_50:
+			*min_length = 0;
+			*max_length = e1000_igp_cable_length_50;
+			break;
+		case e1000_cable_length_50_80:
+			*min_length = e1000_igp_cable_length_50;
+			*max_length = e1000_igp_cable_length_80;
+			break;
+		case e1000_cable_length_80_110:
+			*min_length = e1000_igp_cable_length_80;
+			*max_length = e1000_igp_cable_length_110;
+			break;
+		case e1000_cable_length_110_140:
+			*min_length = e1000_igp_cable_length_110;
+			*max_length = e1000_igp_cable_length_140;
+			break;
+		case e1000_cable_length_140:
+			*min_length = e1000_igp_cable_length_140;
+			*max_length = e1000_igp_cable_length_170;
+			break;
+		default:
+			return -E1000_ERR_PHY;
+			break;
+		}
+	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
+		u16 cur_agc_value;
+		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
+		u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+		    { IGP01E1000_PHY_AGC_A,
+			IGP01E1000_PHY_AGC_B,
+			IGP01E1000_PHY_AGC_C,
+			IGP01E1000_PHY_AGC_D
+		};
+		/* Read the AGC registers for all channels */
+		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+
+			ret_val =
+			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
+
+			/* Value bound check. */
+			if ((cur_agc_value >=
+			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
+			    || (cur_agc_value == 0))
+				return -E1000_ERR_PHY;
+
+			agc_value += cur_agc_value;
+
+			/* Update minimal AGC value. */
+			if (min_agc_value > cur_agc_value)
+				min_agc_value = cur_agc_value;
+		}
 
 
-    e1000_set_pci_express_master_disable(hw);
+		/* Remove the minimal AGC result for length < 50m */
+		if (agc_value <
+		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
+			agc_value -= min_agc_value;
 
 
-    while (timeout) {
-        if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
-            break;
-        else
-            udelay(100);
-        timeout--;
-    }
+			/* Get the average length of the remaining 3 channels */
+			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
+		} else {
+			/* Get the average length of all the 4 channels. */
+			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
+		}
 
 
-    if (!timeout) {
-        DEBUGOUT("Master requests are pending.\n");
-        return -E1000_ERR_MASTER_REQUESTS_PENDING;
-    }
+		/* Set the range of the calculated length. */
+		*min_length = ((e1000_igp_cable_length_table[agc_value] -
+				IGP01E1000_AGC_RANGE) > 0) ?
+		    (e1000_igp_cable_length_table[agc_value] -
+		     IGP01E1000_AGC_RANGE) : 0;
+		*max_length = e1000_igp_cable_length_table[agc_value] +
+		    IGP01E1000_AGC_RANGE;
+	}
 
 
-    return E1000_SUCCESS;
+	return E1000_SUCCESS;
 }
 }
 
 
-/*******************************************************************************
- *
- * Check for EEPROM Auto Read bit done.
- *
- * hw: Struct containing variables accessed by shared code
+/**
+ * e1000_check_polarity - Check the cable polarity
+ * @hw: Struct containing variables accessed by shared code
+ * @polarity: output parameter : 0 - Polarity is not reversed
+ *                               1 - Polarity is reversed.
  *
  *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
  *
  *
- ******************************************************************************/
-static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
+ * For phy's older than IGP, this function simply reads the polarity bit in the
+ * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
+ * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
+ * return 0.  If the link speed is 1000 Mbps the polarity status is in the
+ * IGP01E1000_PHY_PCS_INIT_REG.
+ */
+static s32 e1000_check_polarity(struct e1000_hw *hw,
+				e1000_rev_polarity *polarity)
 {
 {
-    s32 timeout = AUTO_READ_DONE_TIMEOUT;
-
-    DEBUGFUNC("e1000_get_auto_rd_done");
-
-    switch (hw->mac_type) {
-    default:
-        msleep(5);
-        break;
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-    case e1000_ich8lan:
-        while (timeout) {
-            if (er32(EECD) & E1000_EECD_AUTO_RD)
-                break;
-            else msleep(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
-     * Need to wait for PHY configuration completion before accessing NVM
-     * and PHY. */
-    if (hw->mac_type == e1000_82573)
-        msleep(25);
-
-    return E1000_SUCCESS;
+	s32 ret_val;
+	u16 phy_data;
+
+	DEBUGFUNC("e1000_check_polarity");
+
+	if (hw->phy_type == e1000_phy_m88) {
+		/* return the Polarity bit in the Status register. */
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
+	} else if (hw->phy_type == e1000_phy_igp) {
+		/* Read the Status register to check the speed */
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
+
+		/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
+		 * find the polarity status */
+		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+		    IGP01E1000_PSSR_SPEED_1000MBPS) {
+
+			/* Read the GIG initialization PCS register (0x00B4) */
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			/* Check the polarity bits */
+			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		} else {
+			/* For 10 Mbps, read the polarity bit in the status register. (for
+			 * 100 Mbps this bit is always 0) */
+			*polarity =
+			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+			    e1000_rev_polarity_reversed :
+			    e1000_rev_polarity_normal;
+		}
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/***************************************************************************
- * Checks if the PHY configuration is done
- *
- * hw: Struct containing variables accessed by shared code
+/**
+ * e1000_check_downshift - Check if Downshift occurred
+ * @hw: Struct containing variables accessed by shared code
+ * @downshift: output parameter : 0 - No Downshift occurred.
+ *                                1 - Downshift occurred.
  *
  *
- * returns: - E1000_ERR_RESET if fail to reset MAC
- *            E1000_SUCCESS at any other case.
+ * returns: - E1000_ERR_XXX
+ *            E1000_SUCCESS
  *
  *
- ***************************************************************************/
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+ * For phy's older than IGP, this function reads the Downshift bit in the Phy
+ * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
+ * Link Health register.  In IGP this bit is latched high, so the driver must
+ * read it immediately after link is established.
+ */
+static s32 e1000_check_downshift(struct e1000_hw *hw)
 {
 {
-    s32 timeout = PHY_CFG_TIMEOUT;
-    u32 cfg_mask = E1000_EEPROM_CFG_DONE;
-
-    DEBUGFUNC("e1000_get_phy_cfg_done");
-
-    switch (hw->mac_type) {
-    default:
-        mdelay(10);
-        break;
-    case e1000_80003es2lan:
-        /* Separate *_CFG_DONE_* bit for each port */
-        if (er32(STATUS) & E1000_STATUS_FUNC_1)
-            cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
-        /* Fall Through */
-    case e1000_82571:
-    case e1000_82572:
-        while (timeout) {
-            if (er32(EEMNGCTL) & cfg_mask)
-                break;
-            else
-                msleep(1);
-            timeout--;
-        }
-        if (!timeout) {
-            DEBUGOUT("MNG configuration cycle has not completed.\n");
-            return -E1000_ERR_RESET;
-        }
-        break;
-    }
-
-    return E1000_SUCCESS;
-}
+	s32 ret_val;
+	u16 phy_data;
 
 
-/***************************************************************************
- *
- * Using the combination of SMBI and SWESMBI semaphore bits when resetting
- * adapter or Eeprom access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
- *            E1000_SUCCESS at any other case.
- *
- ***************************************************************************/
-static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
-    s32 timeout;
-    u32 swsm;
-
-    DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
-
-    if (!hw->eeprom_semaphore_present)
-        return E1000_SUCCESS;
-
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Get the SW semaphore. */
-        if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
-            return -E1000_ERR_EEPROM;
-    }
-
-    /* Get the FW semaphore. */
-    timeout = hw->eeprom.word_size + 1;
-    while (timeout) {
-        swsm = er32(SWSM);
-        swsm |= E1000_SWSM_SWESMBI;
-        ew32(SWSM, swsm);
-        /* if we managed to set the bit we got the semaphore. */
-        swsm = er32(SWSM);
-        if (swsm & E1000_SWSM_SWESMBI)
-            break;
-
-        udelay(50);
-        timeout--;
-    }
-
-    if (!timeout) {
-        /* Release semaphores */
-        e1000_put_hw_eeprom_semaphore(hw);
-        DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
-        return -E1000_ERR_EEPROM;
-    }
-
-    return E1000_SUCCESS;
-}
+	DEBUGFUNC("e1000_check_downshift");
 
 
-/***************************************************************************
- * This function clears HW semaphore bits.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - None.
- *
- ***************************************************************************/
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
-{
-    u32 swsm;
+	if (hw->phy_type == e1000_phy_igp) {
+		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
 
 
-    DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
+		hw->speed_downgraded =
+		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
+	} else if (hw->phy_type == e1000_phy_m88) {
+		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
+					     &phy_data);
+		if (ret_val)
+			return ret_val;
 
 
-    if (!hw->eeprom_semaphore_present)
-        return;
+		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
+		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
+	}
 
 
-    swsm = er32(SWSM);
-    if (hw->mac_type == e1000_80003es2lan) {
-        /* Release both semaphores. */
-        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-    } else
-        swsm &= ~(E1000_SWSM_SWESMBI);
-    ew32(SWSM, swsm);
+	return E1000_SUCCESS;
 }
 }
 
 
-/***************************************************************************
- *
- * Obtaining software semaphore bit (SMBI) before resetting PHY.
+/**
+ * e1000_config_dsp_after_link_change
+ * @hw: Struct containing variables accessed by shared code
+ * @link_up: was link up at the time this was called
  *
  *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - E1000_ERR_RESET if fail to obtain semaphore.
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
  *            E1000_SUCCESS at any other case.
  *            E1000_SUCCESS at any other case.
  *
  *
- ***************************************************************************/
-static s32 e1000_get_software_semaphore(struct e1000_hw *hw)
-{
-    s32 timeout = hw->eeprom.word_size + 1;
-    u32 swsm;
-
-    DEBUGFUNC("e1000_get_software_semaphore");
-
-    if (hw->mac_type != e1000_80003es2lan) {
-        return E1000_SUCCESS;
-    }
-
-    while (timeout) {
-        swsm = er32(SWSM);
-        /* If SMBI bit cleared, it is now set and we hold the semaphore */
-        if (!(swsm & E1000_SWSM_SMBI))
-            break;
-        mdelay(1);
-        timeout--;
-    }
-
-    if (!timeout) {
-        DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
-        return -E1000_ERR_RESET;
-    }
-
-    return E1000_SUCCESS;
-}
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
+ * gigabit link is achieved to improve link quality.
+ */
 
 
-/***************************************************************************
- *
- * Release semaphore bit (SMBI).
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static void e1000_release_software_semaphore(struct e1000_hw *hw)
+static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
 {
 {
-    u32 swsm;
-
-    DEBUGFUNC("e1000_release_software_semaphore");
-
-    if (hw->mac_type != e1000_80003es2lan) {
-        return;
-    }
+	s32 ret_val;
+	u16 phy_data, phy_saved_data, speed, duplex, i;
+	u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
+	    { IGP01E1000_PHY_AGC_PARAM_A,
+		IGP01E1000_PHY_AGC_PARAM_B,
+		IGP01E1000_PHY_AGC_PARAM_C,
+		IGP01E1000_PHY_AGC_PARAM_D
+	};
+	u16 min_length, max_length;
+
+	DEBUGFUNC("e1000_config_dsp_after_link_change");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	if (link_up) {
+		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+		if (ret_val) {
+			DEBUGOUT("Error getting link speed and duplex\n");
+			return ret_val;
+		}
 
 
-    swsm = er32(SWSM);
-    /* Release the SW semaphores.*/
-    swsm &= ~E1000_SWSM_SMBI;
-    ew32(SWSM, swsm);
-}
+		if (speed == SPEED_1000) {
+
+			ret_val =
+			    e1000_get_cable_length(hw, &min_length,
+						   &max_length);
+			if (ret_val)
+				return ret_val;
+
+			if ((hw->dsp_config_state == e1000_dsp_config_enabled)
+			    && min_length >= e1000_igp_cable_length_50) {
+
+				for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       dsp_reg_array[i],
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					phy_data &=
+					    ~IGP01E1000_PHY_EDAC_MU_INDEX;
+
+					ret_val =
+					    e1000_write_phy_reg(hw,
+								dsp_reg_array
+								[i], phy_data);
+					if (ret_val)
+						return ret_val;
+				}
+				hw->dsp_config_state =
+				    e1000_dsp_config_activated;
+			}
+
+			if ((hw->ffe_config_state == e1000_ffe_config_enabled)
+			    && (min_length < e1000_igp_cable_length_50)) {
+
+				u16 ffe_idle_err_timeout =
+				    FFE_IDLE_ERR_COUNT_TIMEOUT_20;
+				u32 idle_errs = 0;
+
+				/* clear previous idle error counts */
+				ret_val =
+				    e1000_read_phy_reg(hw, PHY_1000T_STATUS,
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				for (i = 0; i < ffe_idle_err_timeout; i++) {
+					udelay(1000);
+					ret_val =
+					    e1000_read_phy_reg(hw,
+							       PHY_1000T_STATUS,
+							       &phy_data);
+					if (ret_val)
+						return ret_val;
+
+					idle_errs +=
+					    (phy_data &
+					     SR_1000T_IDLE_ERROR_CNT);
+					if (idle_errs >
+					    SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
+					{
+						hw->ffe_config_state =
+						    e1000_ffe_config_active;
+
+						ret_val =
+						    e1000_write_phy_reg(hw,
+									IGP01E1000_PHY_DSP_FFE,
+									IGP01E1000_PHY_DSP_FFE_CM_CP);
+						if (ret_val)
+							return ret_val;
+						break;
+					}
+
+					if (idle_errs)
+						ffe_idle_err_timeout =
+						    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
+				}
+			}
+		}
+	} else {
+		if (hw->dsp_config_state == e1000_dsp_config_activated) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
+
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+				ret_val =
+				    e1000_read_phy_reg(hw, dsp_reg_array[i],
+						       &phy_data);
+				if (ret_val)
+					return ret_val;
+
+				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
+				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
+
+				ret_val =
+				    e1000_write_phy_reg(hw, dsp_reg_array[i],
+							phy_data);
+				if (ret_val)
+					return ret_val;
+			}
+
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
+
+			mdelay(20);
+
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
+
+			if (ret_val)
+				return ret_val;
+
+			hw->dsp_config_state = e1000_dsp_config_enabled;
+		}
 
 
-/******************************************************************************
- * Checks if PHY reset is blocked due to SOL/IDER session, for example.
- * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
- * the caller to figure out how to deal with it.
- *
- * hw - Struct containing variables accessed by shared code
- *
- * returns: - E1000_BLK_PHY_RESET
- *            E1000_SUCCESS
- *
- *****************************************************************************/
-s32 e1000_check_phy_reset_block(struct e1000_hw *hw)
-{
-    u32 manc = 0;
-    u32 fwsm = 0;
-
-    if (hw->mac_type == e1000_ich8lan) {
-        fwsm = er32(FWSM);
-        return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
-                                            : E1000_BLK_PHY_RESET;
-    }
-
-    if (hw->mac_type > e1000_82547_rev_2)
-        manc = er32(MANC);
-    return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
-        E1000_BLK_PHY_RESET : E1000_SUCCESS;
-}
+		if (hw->ffe_config_state == e1000_ffe_config_active) {
+			/* Save off the current value of register 0x2F5B to be restored at
+			 * the end of the routines. */
+			ret_val =
+			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
 
 
-static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw)
-{
-    u32 fwsm;
-
-    /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
-     * may not be provided a DMA clock when no manageability features are
-     * enabled.  We do not want to perform any reads/writes to these registers
-     * if this is the case.  We read FWSM to determine the manageability mode.
-     */
-    switch (hw->mac_type) {
-    case e1000_82571:
-    case e1000_82572:
-    case e1000_82573:
-    case e1000_80003es2lan:
-        fwsm = er32(FWSM);
-        if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
-            return true;
-        break;
-    case e1000_ich8lan:
-        return true;
-    default:
-        break;
-    }
-    return false;
-}
+			if (ret_val)
+				return ret_val;
 
 
+			/* Disable the PHY transmitter */
+			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
 
 
-/******************************************************************************
- * Configure PCI-Ex no-snoop
- *
- * hw - Struct containing variables accessed by shared code.
- * no_snoop - Bitmap of no-snoop events.
- *
- * returns: E1000_SUCCESS
- *
- *****************************************************************************/
-static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
-{
-    u32 gcr_reg = 0;
+			if (ret_val)
+				return ret_val;
 
 
-    DEBUGFUNC("e1000_set_pci_ex_no_snoop");
+			mdelay(20);
 
 
-    if (hw->bus_type == e1000_bus_type_unknown)
-        e1000_get_bus_info(hw);
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_FORCE_GIGA);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
+						IGP01E1000_PHY_DSP_FFE_DEFAULT);
+			if (ret_val)
+				return ret_val;
 
 
-    if (hw->bus_type != e1000_bus_type_pci_express)
-        return E1000_SUCCESS;
+			ret_val = e1000_write_phy_reg(hw, 0x0000,
+						      IGP01E1000_IEEE_RESTART_AUTONEG);
+			if (ret_val)
+				return ret_val;
 
 
-    if (no_snoop) {
-        gcr_reg = er32(GCR);
-        gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
-        gcr_reg |= no_snoop;
-        ew32(GCR, gcr_reg);
-    }
-    if (hw->mac_type == e1000_ich8lan) {
-        u32 ctrl_ext;
+			mdelay(20);
 
 
-        ew32(GCR, PCI_EX_82566_SNOOP_ALL);
+			/* Now enable the transmitter */
+			ret_val =
+			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
 
 
-        ctrl_ext = er32(CTRL_EXT);
-        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
-        ew32(CTRL_EXT, ctrl_ext);
-    }
+			if (ret_val)
+				return ret_val;
 
 
-    return E1000_SUCCESS;
+			hw->ffe_config_state = e1000_ffe_config_enabled;
+		}
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/***************************************************************************
+/**
+ * e1000_set_phy_mode - Set PHY to class A mode
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * Get software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-static s32 e1000_get_software_flag(struct e1000_hw *hw)
+ * Assumes the following operations will follow to enable the new class mode.
+ *  1. Do a PHY soft reset
+ *  2. Restart auto-negotiation or force link.
+ */
+static s32 e1000_set_phy_mode(struct e1000_hw *hw)
 {
 {
-    s32 timeout = PHY_CFG_TIMEOUT;
-    u32 extcnf_ctrl;
-
-    DEBUGFUNC("e1000_get_software_flag");
-
-    if (hw->mac_type == e1000_ich8lan) {
-        while (timeout) {
-            extcnf_ctrl = er32(EXTCNF_CTRL);
-            extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
-            ew32(EXTCNF_CTRL, extcnf_ctrl);
-
-            extcnf_ctrl = er32(EXTCNF_CTRL);
-            if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
-                break;
-            mdelay(1);
-            timeout--;
-        }
-
-        if (!timeout) {
-            DEBUGOUT("FW or HW locks the resource too long.\n");
-            return -E1000_ERR_CONFIG;
-        }
-    }
-
-    return E1000_SUCCESS;
+	s32 ret_val;
+	u16 eeprom_data;
+
+	DEBUGFUNC("e1000_set_phy_mode");
+
+	if ((hw->mac_type == e1000_82545_rev_3) &&
+	    (hw->media_type == e1000_media_type_copper)) {
+		ret_val =
+		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
+				      &eeprom_data);
+		if (ret_val) {
+			return ret_val;
+		}
+
+		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
+						0x000B);
+			if (ret_val)
+				return ret_val;
+			ret_val =
+			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
+						0x8104);
+			if (ret_val)
+				return ret_val;
+
+			hw->phy_reset_disable = false;
+		}
+	}
+
+	return E1000_SUCCESS;
 }
 }
 
 
-/***************************************************************************
- *
- * Release software semaphore FLAG bit (SWFLAG).
- * SWFLAG is used to synchronize the access to all shared resource between
- * SW, FW and HW.
+/**
+ * e1000_set_d3_lplu_state - set d3 link power state
+ * @hw: Struct containing variables accessed by shared code
+ * @active: true to enable lplu false to disable lplu.
  *
  *
- * hw: Struct containing variables accessed by shared code
+ * This function sets the lplu state according to the active flag.  When
+ * activating lplu this function also disables smart speed and vise versa.
+ * lplu will not be activated unless the device autonegotiation advertisement
+ * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
  *
  *
- ***************************************************************************/
-static void e1000_release_software_flag(struct e1000_hw *hw)
+ * returns: - E1000_ERR_PHY if fail to read/write the PHY
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
 {
 {
-    u32 extcnf_ctrl;
+	s32 ret_val;
+	u16 phy_data;
+	DEBUGFUNC("e1000_set_d3_lplu_state");
+
+	if (hw->phy_type != e1000_phy_igp)
+		return E1000_SUCCESS;
+
+	/* During driver activity LPLU should not be used or it will attain link
+	 * from the lowest speeds starting from 10Mbps. The capability is used for
+	 * Dx transitions and states */
+	if (hw->mac_type == e1000_82541_rev_2
+	    || hw->mac_type == e1000_82547_rev_2) {
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
+		if (ret_val)
+			return ret_val;
+	}
 
 
-    DEBUGFUNC("e1000_release_software_flag");
+	if (!active) {
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
 
 
-    if (hw->mac_type == e1000_ich8lan) {
-        extcnf_ctrl= er32(EXTCNF_CTRL);
-        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
-        ew32(EXTCNF_CTRL, extcnf_ctrl);
-    }
+		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
+		 * Dx states where the power conservation is most important.  During
+		 * driver activity we should enable SmartSpeed, so performance is
+		 * maintained. */
+		if (hw->smart_speed == e1000_smart_speed_on) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		} else if (hw->smart_speed == e1000_smart_speed_off) {
+			ret_val =
+			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					       &phy_data);
+			if (ret_val)
+				return ret_val;
+
+			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
+	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
+		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
+		   || (hw->autoneg_advertised ==
+		       AUTONEG_ADVERTISE_10_100_ALL)) {
+
+		if (hw->mac_type == e1000_82541_rev_2 ||
+		    hw->mac_type == e1000_82547_rev_2) {
+			phy_data |= IGP01E1000_GMII_FLEX_SPD;
+			ret_val =
+			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
+						phy_data);
+			if (ret_val)
+				return ret_val;
+		}
 
 
-    return;
-}
+		/* When LPLU is enabled we should disable SmartSpeed */
+		ret_val =
+		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+				       &phy_data);
+		if (ret_val)
+			return ret_val;
 
 
-/******************************************************************************
- * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
- * register.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to read
- * data - word read from the EEPROM
- * words - number of words to read
- *****************************************************************************/
-static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
-				  u16 *data)
-{
-    s32  error = E1000_SUCCESS;
-    u32 flash_bank = 0;
-    u32 act_offset = 0;
-    u32 bank_offset = 0;
-    u16 word = 0;
-    u16 i = 0;
-
-    /* We need to know which is the valid flash bank.  In the event
-     * that we didn't allocate eeprom_shadow_ram, we may not be
-     * managing flash_bank.  So it cannot be trusted and needs
-     * to be updated with each read.
-     */
-    /* Value of bit 22 corresponds to the flash bank we're on. */
-    flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
-
-    /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
-    bank_offset = flash_bank * (hw->flash_bank_size * 2);
-
-    error = e1000_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    for (i = 0; i < words; i++) {
-        if (hw->eeprom_shadow_ram != NULL &&
-            hw->eeprom_shadow_ram[offset+i].modified) {
-            data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
-        } else {
-            /* The NVM part needs a byte offset, hence * 2 */
-            act_offset = bank_offset + ((offset + i) * 2);
-            error = e1000_read_ich8_word(hw, act_offset, &word);
-            if (error != E1000_SUCCESS)
-                break;
-            data[i] = word;
-        }
-    }
-
-    e1000_release_software_flag(hw);
-
-    return error;
-}
+		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+		ret_val =
+		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+					phy_data);
+		if (ret_val)
+			return ret_val;
 
 
-/******************************************************************************
- * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
- * register.  Actually, writes are written to the shadow ram cache in the hw
- * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to
- * the NVM, which occurs when the NVM checksum is updated.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset of word in the EEPROM to write
- * words - number of words to write
- * data - words to write to the EEPROM
- *****************************************************************************/
-static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
-				   u16 *data)
-{
-    u32 i = 0;
-    s32 error = E1000_SUCCESS;
-
-    error = e1000_get_software_flag(hw);
-    if (error != E1000_SUCCESS)
-        return error;
-
-    /* A driver can write to the NVM only if it has eeprom_shadow_ram
-     * allocated.  Subsequent reads to the modified words are read from
-     * this cached structure as well.  Writes will only go into this
-     * cached structure unless it's followed by a call to
-     * e1000_update_eeprom_checksum() where it will commit the changes
-     * and clear the "modified" field.
-     */
-    if (hw->eeprom_shadow_ram != NULL) {
-        for (i = 0; i < words; i++) {
-            if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
-                hw->eeprom_shadow_ram[offset+i].modified = true;
-                hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
-            } else {
-                error = -E1000_ERR_EEPROM;
-                break;
-            }
-        }
-    } else {
-        /* Drivers have the option to not allocate eeprom_shadow_ram as long
-         * as they don't perform any NVM writes.  An attempt in doing so
-         * will result in this error.
-         */
-        error = -E1000_ERR_EEPROM;
-    }
-
-    e1000_release_software_flag(hw);
-
-    return error;
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * This function does initial flash setup so that a new read/write/erase cycle
- * can be started.
+/**
+ * e1000_set_vco_speed
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-static s32 e1000_ich8_cycle_init(struct e1000_hw *hw)
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
+ */
+static s32 e1000_set_vco_speed(struct e1000_hw *hw)
 {
 {
-    union ich8_hws_flash_status hsfsts;
-    s32 error = E1000_ERR_EEPROM;
-    s32 i     = 0;
-
-    DEBUGFUNC("e1000_ich8_cycle_init");
-
-    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
-    /* May be check the Flash Des Valid bit in Hw status */
-    if (hsfsts.hsf_status.fldesvalid == 0) {
-        DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.");
-        return error;
-    }
-
-    /* Clear FCERR in Hw status by writing 1 */
-    /* Clear DAEL in Hw status by writing a 1 */
-    hsfsts.hsf_status.flcerr = 1;
-    hsfsts.hsf_status.dael = 1;
-
-    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-
-    /* Either we should have a hardware SPI cycle in progress bit to check
-     * against, in order to start a new cycle or FDONE bit should be changed
-     * in the hardware so that it is 1 after harware reset, which can then be
-     * used as an indication whether a cycle is in progress or has been
-     * completed .. we should also have some software semaphore mechanism to
-     * guard FDONE or the cycle in progress bit so that two threads access to
-     * those bits can be sequentiallized or a way so that 2 threads dont
-     * start the cycle at the same time */
-
-    if (hsfsts.hsf_status.flcinprog == 0) {
-        /* There is no cycle running at present, so we can start a cycle */
-        /* Begin by setting Flash Cycle Done. */
-        hsfsts.hsf_status.flcdone = 1;
-        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-        error = E1000_SUCCESS;
-    } else {
-        /* otherwise poll for sometime so the current cycle has a chance
-         * to end before giving up. */
-        for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
-            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcinprog == 0) {
-                error = E1000_SUCCESS;
-                break;
-            }
-            udelay(1);
-        }
-        if (error == E1000_SUCCESS) {
-            /* Successful in waiting for previous cycle to timeout,
-             * now set the Flash Cycle Done. */
-            hsfsts.hsf_status.flcdone = 1;
-            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
-        } else {
-            DEBUGOUT("Flash controller busy, cannot get access");
-        }
-    }
-    return error;
-}
+	s32 ret_val;
+	u16 default_page = 0;
+	u16 phy_data;
 
 
-/******************************************************************************
- * This function starts a flash cycle and waits for its completion
- *
- * hw - The pointer to the hw structure
- ****************************************************************************/
-static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout)
-{
-    union ich8_hws_flash_ctrl hsflctl;
-    union ich8_hws_flash_status hsfsts;
-    s32 error = E1000_ERR_EEPROM;
-    u32 i = 0;
-
-    /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
-    hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-    hsflctl.hsf_ctrl.flcgo = 1;
-    E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-    /* wait till FDONE bit is set to 1 */
-    do {
-        hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-        if (hsfsts.hsf_status.flcdone == 1)
-            break;
-        udelay(1);
-        i++;
-    } while (i < timeout);
-    if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
-        error = E1000_SUCCESS;
-    }
-    return error;
-}
+	DEBUGFUNC("e1000_set_vco_speed");
 
 
-/******************************************************************************
- * Reads a byte or word from the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte or word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - Pointer to the word to store the value read.
- *****************************************************************************/
-static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
-				u16 *data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    u32 flash_linear_address;
-    u32 flash_data = 0;
-    s32 error = -E1000_ERR_EEPROM;
-    s32 count = 0;
-
-    DEBUGFUNC("e1000_read_ich8_data");
-
-    if (size < 1  || size > 2 || data == NULL ||
-        index > ICH_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        udelay(1);
-        /* Steps */
-        error = e1000_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size - 1;
-        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
-        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        /* TODO: TBD maybe check the index against the size of flash */
-
-        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
-        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
-
-        /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
-         * sequence a few more times, else read in (shift in) the Flash Data0,
-         * the order is least significant byte first msb to lsb */
-        if (error == E1000_SUCCESS) {
-            flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
-            if (size == 1) {
-                *data = (u8)(flash_data & 0x000000FF);
-            } else if (size == 2) {
-                *data = (u16)(flash_data & 0x0000FFFF);
-            }
-            break;
-        } else {
-            /* If we've gotten here, then things are probably completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
+	switch (hw->mac_type) {
+	case e1000_82545_rev_3:
+	case e1000_82546_rev_3:
+		break;
+	default:
+		return E1000_SUCCESS;
+	}
 
 
-/******************************************************************************
- * Writes One /two bytes to the NVM using the ICH8 flash access registers.
- *
- * hw - The pointer to the hw structure
- * index - The index of the byte/word to read.
- * size - Size of data to read, 1=byte 2=word
- * data - The byte(s) to write to the NVM.
- *****************************************************************************/
-static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size,
-				 u16 data)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    u32 flash_linear_address;
-    u32 flash_data = 0;
-    s32 error = -E1000_ERR_EEPROM;
-    s32 count = 0;
-
-    DEBUGFUNC("e1000_write_ich8_data");
-
-    if (size < 1  || size > 2 || data > size * 0xff ||
-        index > ICH_FLASH_LINEAR_ADDR_MASK)
-        return error;
-
-    flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
-                           hw->flash_base_addr;
-
-    do {
-        udelay(1);
-        /* Steps */
-        error = e1000_ich8_cycle_init(hw);
-        if (error != E1000_SUCCESS)
-            break;
-
-        hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-        /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
-        hsflctl.hsf_ctrl.fldbcount = size -1;
-        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
-        E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-        /* Write the last 24 bits of index into Flash Linear address field in
-         * Flash Address */
-        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
-        if (size == 1)
-            flash_data = (u32)data & 0x00FF;
-        else
-            flash_data = (u32)data;
-
-        E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
-
-        /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
-         * sequence a few more times else done */
-        error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
-        if (error == E1000_SUCCESS) {
-            break;
-        } else {
-            /* If we're here, then things are most likely completely hosed,
-             * but if the error condition is detected, it won't hurt to give
-             * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
-             */
-            hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-            if (hsfsts.hsf_status.flcerr == 1) {
-                /* Repeat for some time before giving up. */
-                continue;
-            } else if (hsfsts.hsf_status.flcdone == 0) {
-                DEBUGOUT("Timeout error - flash cycle did not complete.");
-                break;
-            }
-        }
-    } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
-
-    return error;
-}
+	/* Set PHY register 30, page 5, bit 8 to 0 */
 
 
-/******************************************************************************
- * Reads a single byte from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - Pointer to a byte to store the value read.
- *****************************************************************************/
-static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data)
-{
-    s32 status = E1000_SUCCESS;
-    u16 word = 0;
+	ret_val =
+	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
+	if (ret_val)
+		return ret_val;
 
 
-    status = e1000_read_ich8_data(hw, index, 1, &word);
-    if (status == E1000_SUCCESS) {
-        *data = (u8)word;
-    }
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
+	if (ret_val)
+		return ret_val;
 
 
-    return status;
-}
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
- * Performs verification by reading back the value and then going through
- * a retry algorithm before giving up.
- *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to write.
- * byte - The byte to write to the NVM.
- *****************************************************************************/
-static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte)
-{
-    s32 error = E1000_SUCCESS;
-    s32 program_retries = 0;
+	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
+
+	/* Set PHY register 30, page 4, bit 11 to 1 */
 
 
-    DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
+	if (ret_val)
+		return ret_val;
 
 
-    error = e1000_write_ich8_byte(hw, index, byte);
+	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-    if (error != E1000_SUCCESS) {
-        for (program_retries = 0; program_retries < 100; program_retries++) {
-            DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
-            error = e1000_write_ich8_byte(hw, index, byte);
-            udelay(100);
-            if (error == E1000_SUCCESS)
-                break;
-        }
-    }
+	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
+	if (ret_val)
+		return ret_val;
 
 
-    if (program_retries == 100)
-        error = E1000_ERR_EEPROM;
+	ret_val =
+	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
+	if (ret_val)
+		return ret_val;
 
 
-    return error;
+	return E1000_SUCCESS;
 }
 }
 
 
-/******************************************************************************
- * Writes a single byte to the NVM using the ICH8 flash access registers.
+
+/**
+ * e1000_enable_mng_pass_thru - check for bmc pass through
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw - pointer to e1000_hw structure
- * index - The index of the byte to read.
- * data - The byte to write to the NVM.
- *****************************************************************************/
-static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data)
+ * Verifies the hardware needs to allow ARPs to be processed by the host
+ * returns: - true/false
+ */
+u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
 {
 {
-    s32 status = E1000_SUCCESS;
-    u16 word = (u16)data;
+	u32 manc;
 
 
-    status = e1000_write_ich8_data(hw, index, 1, word);
+	if (hw->asf_firmware_present) {
+		manc = er32(MANC);
 
 
-    return status;
+		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+			return false;
+		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
+			return true;
+	}
+	return false;
 }
 }
 
 
-/******************************************************************************
- * Reads a word from the NVM using the ICH8 flash access registers.
- *
- * hw - pointer to e1000_hw structure
- * index - The starting byte index of the word to read.
- * data - Pointer to a word to store the value read.
- *****************************************************************************/
-static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data)
+static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
 {
 {
-    s32 status = E1000_SUCCESS;
-    status = e1000_read_ich8_data(hw, index, 2, data);
-    return status;
-}
+	s32 ret_val;
+	u16 mii_status_reg;
+	u16 i;
 
 
-/******************************************************************************
- * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
- * based.
- *
- * hw - pointer to e1000_hw structure
- * bank - 0 for first bank, 1 for second bank
- *
- * Note that this function may actually erase as much as 8 or 64 KBytes.  The
- * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
- * bank size may be 4, 8 or 64 KBytes
- *****************************************************************************/
-static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank)
-{
-    union ich8_hws_flash_status hsfsts;
-    union ich8_hws_flash_ctrl hsflctl;
-    u32 flash_linear_address;
-    s32  count = 0;
-    s32  error = E1000_ERR_EEPROM;
-    s32  iteration;
-    s32  sub_sector_size = 0;
-    s32  bank_size;
-    s32  j = 0;
-    s32  error_flag = 0;
-
-    hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-
-    /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
-    /* 00: The Hw sector is 256 bytes, hence we need to erase 16
-     *     consecutive sectors.  The start index for the nth Hw sector can be
-     *     calculated as bank * 4096 + n * 256
-     * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
-     *     The start index for the nth Hw sector can be calculated
-     *     as bank * 4096
-     * 10: The HW sector is 8K bytes
-     * 11: The Hw sector size is 64K bytes */
-    if (hsfsts.hsf_status.berasesz == 0x0) {
-        /* Hw sector size 256 */
-        sub_sector_size = ICH_FLASH_SEG_SIZE_256;
-        bank_size = ICH_FLASH_SECTOR_SIZE;
-        iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
-    } else if (hsfsts.hsf_status.berasesz == 0x1) {
-        bank_size = ICH_FLASH_SEG_SIZE_4K;
-        iteration = 1;
-    } else if (hsfsts.hsf_status.berasesz == 0x3) {
-        bank_size = ICH_FLASH_SEG_SIZE_64K;
-        iteration = 1;
-    } else {
-        return error;
-    }
-
-    for (j = 0; j < iteration ; j++) {
-        do {
-            count++;
-            /* Steps */
-            error = e1000_ich8_cycle_init(hw);
-            if (error != E1000_SUCCESS) {
-                error_flag = 1;
-                break;
-            }
-
-            /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
-             * Control */
-            hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
-            hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
-            E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
-
-            /* Write the last 24 bits of an index within the block into Flash
-             * Linear address field in Flash Address.  This probably needs to
-             * be calculated here based off the on-chip erase sector size and
-             * the software bank size (4, 8 or 64 KBytes) */
-            flash_linear_address = bank * bank_size + j * sub_sector_size;
-            flash_linear_address += hw->flash_base_addr;
-            flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
-
-            E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
-
-            error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
-            /* Check if FCERR is set to 1.  If 1, clear it and try the whole
-             * sequence a few more times else Done */
-            if (error == E1000_SUCCESS) {
-                break;
-            } else {
-                hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
-                if (hsfsts.hsf_status.flcerr == 1) {
-                    /* repeat for some time before giving up */
-                    continue;
-                } else if (hsfsts.hsf_status.flcdone == 0) {
-                    error_flag = 1;
-                    break;
-                }
-            }
-        } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
-        if (error_flag == 1)
-            break;
-    }
-    if (error_flag != 1)
-        error = E1000_SUCCESS;
-    return error;
-}
+	/* Polarity reversal workaround for forced 10F/10H links. */
 
 
-static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
-						 u32 cnf_base_addr,
-						 u32 cnf_size)
-{
-    u32 ret_val = E1000_SUCCESS;
-    u16 word_addr, reg_data, reg_addr;
-    u16 i;
+	/* Disable the transmitter on the PHY */
 
 
-    /* cnf_base_addr is in DWORD */
-    word_addr = (u16)(cnf_base_addr << 1);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
+	if (ret_val)
+		return ret_val;
 
 
-    /* cnf_size is returned in size of dwords */
-    for (i = 0; i < cnf_size; i++) {
-        ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
-        if (ret_val)
-            return ret_val;
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
 
 
-        ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
-        if (ret_val)
-            return ret_val;
+	/* This loop will early-out if the NO link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be clear.
+		 */
 
 
-        ret_val = e1000_get_software_flag(hw);
-        if (ret_val != E1000_SUCCESS)
-            return ret_val;
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
 
 
-        ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data);
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
 
 
-        e1000_release_software_flag(hw);
-    }
+		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
+			break;
+		mdelay(100);
+	}
 
 
-    return ret_val;
+	/* Recommended delay time after link has been lost */
+	mdelay(1000);
+
+	/* Now we will re-enable th transmitter on the PHY */
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
+	if (ret_val)
+		return ret_val;
+	mdelay(50);
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
+	if (ret_val)
+		return ret_val;
+
+	/* This loop will early-out if the link condition has been met. */
+	for (i = PHY_FORCE_TIME; i > 0; i--) {
+		/* Read the MII Status Register and wait for Link Status bit
+		 * to be set.
+		 */
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+		if (ret_val)
+			return ret_val;
+
+		if (mii_status_reg & MII_SR_LINK_STATUS)
+			break;
+		mdelay(100);
+	}
+	return E1000_SUCCESS;
 }
 }
 
 
-
-/******************************************************************************
- * This function initializes the PHY from the NVM on ICH8 platforms. This
- * is needed due to an issue where the NVM configuration is not properly
- * autoloaded after power transitions. Therefore, after each PHY reset, we
- * will load the configuration data out of the NVM manually.
+/**
+ * e1000_get_auto_rd_done
+ * @hw: Struct containing variables accessed by shared code
  *
  *
- * hw: Struct containing variables accessed by shared code
- *****************************************************************************/
-static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
+ * Check for EEPROM Auto Read bit done.
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
 {
 {
-    u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop;
-
-    if (hw->phy_type != e1000_phy_igp_3)
-          return E1000_SUCCESS;
-
-    /* Check if SW needs configure the PHY */
-    reg_data = er32(FEXTNVM);
-    if (!(reg_data & FEXTNVM_SW_CONFIG))
-        return E1000_SUCCESS;
-
-    /* Wait for basic configuration completes before proceeding*/
-    loop = 0;
-    do {
-        reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE;
-        udelay(100);
-        loop++;
-    } while ((!reg_data) && (loop < 50));
-
-    /* Clear the Init Done bit for the next init event */
-    reg_data = er32(STATUS);
-    reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
-    ew32(STATUS, reg_data);
-
-    /* Make sure HW does not configure LCD from PHY extended configuration
-       before SW configuration */
-    reg_data = er32(EXTCNF_CTRL);
-    if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
-        reg_data = er32(EXTCNF_SIZE);
-        cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
-        cnf_size >>= 16;
-        if (cnf_size) {
-            reg_data = er32(EXTCNF_CTRL);
-            cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
-            /* cnf_base_addr is in DWORD */
-            cnf_base_addr >>= 16;
-
-            /* Configure LCD from extended configuration region. */
-            ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
-                                                            cnf_size);
-            if (ret_val)
-                return ret_val;
-        }
-    }
-
-    return E1000_SUCCESS;
+	DEBUGFUNC("e1000_get_auto_rd_done");
+	msleep(5);
+	return E1000_SUCCESS;
 }
 }
 
 
+/**
+ * e1000_get_phy_cfg_done
+ * @hw: Struct containing variables accessed by shared code
+ *
+ * Checks if the PHY configuration is done
+ * returns: - E1000_ERR_RESET if fail to reset MAC
+ *            E1000_SUCCESS at any other case.
+ */
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+	DEBUGFUNC("e1000_get_phy_cfg_done");
+	mdelay(10);
+	return E1000_SUCCESS;
+}

文件差異過大導致無法顯示
+ 345 - 425
drivers/net/e1000/e1000_hw.h


文件差異過大導致無法顯示
+ 99 - 473
drivers/net/e1000/e1000_main.c


+ 0 - 22
drivers/net/e1000/e1000_param.c

@@ -518,22 +518,6 @@ void __devinit e1000_check_options(struct e1000_adapter *adapter)
 			adapter->smart_power_down = opt.def;
 			adapter->smart_power_down = opt.def;
 		}
 		}
 	}
 	}
-	{ /* Kumeran Lock Loss Workaround */
-		opt = (struct e1000_option) {
-			.type = enable_option,
-			.name = "Kumeran Lock Loss Workaround",
-			.err  = "defaulting to Enabled",
-			.def  = OPTION_ENABLED
-		};
-
-		if (num_KumeranLockLoss > bd) {
-			unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
-			e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
-			adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss;
-		} else {
-			adapter->hw.kmrn_lock_loss_workaround_disabled = !opt.def;
-		}
-	}
 
 
 	switch (adapter->hw.media_type) {
 	switch (adapter->hw.media_type) {
 	case e1000_media_type_fiber:
 	case e1000_media_type_fiber:
@@ -626,12 +610,6 @@ static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
 					 .p = dplx_list }}
 					 .p = dplx_list }}
 		};
 		};
 
 
-		if (e1000_check_phy_reset_block(&adapter->hw)) {
-			DPRINTK(PROBE, INFO,
-				"Link active due to SoL/IDER Session. "
-			        "Speed/Duplex/AutoNeg parameter ignored.\n");
-			return;
-		}
 		if (num_Duplex > bd) {
 		if (num_Duplex > bd) {
 			dplx = Duplex[bd];
 			dplx = Duplex[bd];
 			e1000_validate_option(&dplx, &opt, adapter);
 			e1000_validate_option(&dplx, &opt, adapter);

+ 2 - 0
drivers/net/wireless/iwlwifi/iwl-1000.c

@@ -99,6 +99,8 @@ static struct iwl_lib_ops iwl1000_lib = {
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
 	.load_ucode = iwl5000_load_ucode,
 	.load_ucode = iwl5000_load_ucode,
+	.dump_nic_event_log = iwl_dump_nic_event_log,
+	.dump_nic_error_log = iwl_dump_nic_error_log,
 	.init_alive_start = iwl5000_init_alive_start,
 	.init_alive_start = iwl5000_init_alive_start,
 	.alive_notify = iwl5000_alive_notify,
 	.alive_notify = iwl5000_alive_notify,
 	.send_tx_power = iwl5000_send_tx_power,
 	.send_tx_power = iwl5000_send_tx_power,

+ 2 - 0
drivers/net/wireless/iwlwifi/iwl-3945.c

@@ -2839,6 +2839,8 @@ static struct iwl_lib_ops iwl3945_lib = {
 	.txq_free_tfd = iwl3945_hw_txq_free_tfd,
 	.txq_free_tfd = iwl3945_hw_txq_free_tfd,
 	.txq_init = iwl3945_hw_tx_queue_init,
 	.txq_init = iwl3945_hw_tx_queue_init,
 	.load_ucode = iwl3945_load_bsm,
 	.load_ucode = iwl3945_load_bsm,
+	.dump_nic_event_log = iwl3945_dump_nic_event_log,
+	.dump_nic_error_log = iwl3945_dump_nic_error_log,
 	.apm_ops = {
 	.apm_ops = {
 		.init = iwl3945_apm_init,
 		.init = iwl3945_apm_init,
 		.reset = iwl3945_apm_reset,
 		.reset = iwl3945_apm_reset,

+ 2 - 0
drivers/net/wireless/iwlwifi/iwl-3945.h

@@ -209,6 +209,8 @@ extern int __must_check iwl3945_send_cmd(struct iwl_priv *priv,
 					 struct iwl_host_cmd *cmd);
 					 struct iwl_host_cmd *cmd);
 extern unsigned int iwl3945_fill_beacon_frame(struct iwl_priv *priv,
 extern unsigned int iwl3945_fill_beacon_frame(struct iwl_priv *priv,
 					struct ieee80211_hdr *hdr,int left);
 					struct ieee80211_hdr *hdr,int left);
+extern void iwl3945_dump_nic_event_log(struct iwl_priv *priv);
+extern void iwl3945_dump_nic_error_log(struct iwl_priv *priv);
 
 
 /*
 /*
  * Currently used by iwl-3945-rs... look at restructuring so that it doesn't
  * Currently used by iwl-3945-rs... look at restructuring so that it doesn't

+ 2 - 0
drivers/net/wireless/iwlwifi/iwl-4965.c

@@ -2298,6 +2298,8 @@ static struct iwl_lib_ops iwl4965_lib = {
 	.alive_notify = iwl4965_alive_notify,
 	.alive_notify = iwl4965_alive_notify,
 	.init_alive_start = iwl4965_init_alive_start,
 	.init_alive_start = iwl4965_init_alive_start,
 	.load_ucode = iwl4965_load_bsm,
 	.load_ucode = iwl4965_load_bsm,
+	.dump_nic_event_log = iwl_dump_nic_event_log,
+	.dump_nic_error_log = iwl_dump_nic_error_log,
 	.apm_ops = {
 	.apm_ops = {
 		.init = iwl4965_apm_init,
 		.init = iwl4965_apm_init,
 		.reset = iwl4965_apm_reset,
 		.reset = iwl4965_apm_reset,

+ 4 - 0
drivers/net/wireless/iwlwifi/iwl-5000.c

@@ -1535,6 +1535,8 @@ struct iwl_lib_ops iwl5000_lib = {
 	.rx_handler_setup = iwl5000_rx_handler_setup,
 	.rx_handler_setup = iwl5000_rx_handler_setup,
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
+	.dump_nic_event_log = iwl_dump_nic_event_log,
+	.dump_nic_error_log = iwl_dump_nic_error_log,
 	.load_ucode = iwl5000_load_ucode,
 	.load_ucode = iwl5000_load_ucode,
 	.init_alive_start = iwl5000_init_alive_start,
 	.init_alive_start = iwl5000_init_alive_start,
 	.alive_notify = iwl5000_alive_notify,
 	.alive_notify = iwl5000_alive_notify,
@@ -1585,6 +1587,8 @@ static struct iwl_lib_ops iwl5150_lib = {
 	.rx_handler_setup = iwl5000_rx_handler_setup,
 	.rx_handler_setup = iwl5000_rx_handler_setup,
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
+	.dump_nic_event_log = iwl_dump_nic_event_log,
+	.dump_nic_error_log = iwl_dump_nic_error_log,
 	.load_ucode = iwl5000_load_ucode,
 	.load_ucode = iwl5000_load_ucode,
 	.init_alive_start = iwl5000_init_alive_start,
 	.init_alive_start = iwl5000_init_alive_start,
 	.alive_notify = iwl5000_alive_notify,
 	.alive_notify = iwl5000_alive_notify,

+ 2 - 0
drivers/net/wireless/iwlwifi/iwl-6000.c

@@ -100,6 +100,8 @@ static struct iwl_lib_ops iwl6000_lib = {
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.setup_deferred_work = iwl5000_setup_deferred_work,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
 	.is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr,
 	.load_ucode = iwl5000_load_ucode,
 	.load_ucode = iwl5000_load_ucode,
+	.dump_nic_event_log = iwl_dump_nic_event_log,
+	.dump_nic_error_log = iwl_dump_nic_error_log,
 	.init_alive_start = iwl5000_init_alive_start,
 	.init_alive_start = iwl5000_init_alive_start,
 	.alive_notify = iwl5000_alive_notify,
 	.alive_notify = iwl5000_alive_notify,
 	.send_tx_power = iwl5000_send_tx_power,
 	.send_tx_power = iwl5000_send_tx_power,

+ 185 - 0
drivers/net/wireless/iwlwifi/iwl-agn.c

@@ -1526,6 +1526,191 @@ static int iwl_read_ucode(struct iwl_priv *priv)
 	return ret;
 	return ret;
 }
 }
 
 
+#ifdef CONFIG_IWLWIFI_DEBUG
+static const char *desc_lookup_text[] = {
+	"OK",
+	"FAIL",
+	"BAD_PARAM",
+	"BAD_CHECKSUM",
+	"NMI_INTERRUPT_WDG",
+	"SYSASSERT",
+	"FATAL_ERROR",
+	"BAD_COMMAND",
+	"HW_ERROR_TUNE_LOCK",
+	"HW_ERROR_TEMPERATURE",
+	"ILLEGAL_CHAN_FREQ",
+	"VCC_NOT_STABLE",
+	"FH_ERROR",
+	"NMI_INTERRUPT_HOST",
+	"NMI_INTERRUPT_ACTION_PT",
+	"NMI_INTERRUPT_UNKNOWN",
+	"UCODE_VERSION_MISMATCH",
+	"HW_ERROR_ABS_LOCK",
+	"HW_ERROR_CAL_LOCK_FAIL",
+	"NMI_INTERRUPT_INST_ACTION_PT",
+	"NMI_INTERRUPT_DATA_ACTION_PT",
+	"NMI_TRM_HW_ER",
+	"NMI_INTERRUPT_TRM",
+	"NMI_INTERRUPT_BREAK_POINT"
+	"DEBUG_0",
+	"DEBUG_1",
+	"DEBUG_2",
+	"DEBUG_3",
+	"UNKNOWN"
+};
+
+static const char *desc_lookup(int i)
+{
+	int max = ARRAY_SIZE(desc_lookup_text) - 1;
+
+	if (i < 0 || i > max)
+		i = max;
+
+	return desc_lookup_text[i];
+}
+
+#define ERROR_START_OFFSET  (1 * sizeof(u32))
+#define ERROR_ELEM_SIZE     (7 * sizeof(u32))
+
+void iwl_dump_nic_error_log(struct iwl_priv *priv)
+{
+	u32 data2, line;
+	u32 desc, time, count, base, data1;
+	u32 blink1, blink2, ilink1, ilink2;
+
+	if (priv->ucode_type == UCODE_INIT)
+		base = le32_to_cpu(priv->card_alive_init.error_event_table_ptr);
+	else
+		base = le32_to_cpu(priv->card_alive.error_event_table_ptr);
+
+	if (!priv->cfg->ops->lib->is_valid_rtc_data_addr(base)) {
+		IWL_ERR(priv, "Not valid error log pointer 0x%08X\n", base);
+		return;
+	}
+
+	count = iwl_read_targ_mem(priv, base);
+
+	if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
+		IWL_ERR(priv, "Start IWL Error Log Dump:\n");
+		IWL_ERR(priv, "Status: 0x%08lX, count: %d\n",
+			priv->status, count);
+	}
+
+	desc = iwl_read_targ_mem(priv, base + 1 * sizeof(u32));
+	blink1 = iwl_read_targ_mem(priv, base + 3 * sizeof(u32));
+	blink2 = iwl_read_targ_mem(priv, base + 4 * sizeof(u32));
+	ilink1 = iwl_read_targ_mem(priv, base + 5 * sizeof(u32));
+	ilink2 = iwl_read_targ_mem(priv, base + 6 * sizeof(u32));
+	data1 = iwl_read_targ_mem(priv, base + 7 * sizeof(u32));
+	data2 = iwl_read_targ_mem(priv, base + 8 * sizeof(u32));
+	line = iwl_read_targ_mem(priv, base + 9 * sizeof(u32));
+	time = iwl_read_targ_mem(priv, base + 11 * sizeof(u32));
+
+	IWL_ERR(priv, "Desc                               Time       "
+		"data1      data2      line\n");
+	IWL_ERR(priv, "%-28s (#%02d) %010u 0x%08X 0x%08X %u\n",
+		desc_lookup(desc), desc, time, data1, data2, line);
+	IWL_ERR(priv, "blink1  blink2  ilink1  ilink2\n");
+	IWL_ERR(priv, "0x%05X 0x%05X 0x%05X 0x%05X\n", blink1, blink2,
+		ilink1, ilink2);
+
+}
+
+#define EVENT_START_OFFSET  (4 * sizeof(u32))
+
+/**
+ * iwl_print_event_log - Dump error event log to syslog
+ *
+ */
+static void iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
+				u32 num_events, u32 mode)
+{
+	u32 i;
+	u32 base;       /* SRAM byte address of event log header */
+	u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
+	u32 ptr;        /* SRAM byte address of log data */
+	u32 ev, time, data; /* event log data */
+
+	if (num_events == 0)
+		return;
+	if (priv->ucode_type == UCODE_INIT)
+		base = le32_to_cpu(priv->card_alive_init.log_event_table_ptr);
+	else
+		base = le32_to_cpu(priv->card_alive.log_event_table_ptr);
+
+	if (mode == 0)
+		event_size = 2 * sizeof(u32);
+	else
+		event_size = 3 * sizeof(u32);
+
+	ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
+
+	/* "time" is actually "data" for mode 0 (no timestamp).
+	* place event id # at far right for easier visual parsing. */
+	for (i = 0; i < num_events; i++) {
+		ev = iwl_read_targ_mem(priv, ptr);
+		ptr += sizeof(u32);
+		time = iwl_read_targ_mem(priv, ptr);
+		ptr += sizeof(u32);
+		if (mode == 0) {
+			/* data, ev */
+			IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n", time, ev);
+		} else {
+			data = iwl_read_targ_mem(priv, ptr);
+			ptr += sizeof(u32);
+			IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
+					time, data, ev);
+		}
+	}
+}
+
+void iwl_dump_nic_event_log(struct iwl_priv *priv)
+{
+	u32 base;       /* SRAM byte address of event log header */
+	u32 capacity;   /* event log capacity in # entries */
+	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
+	u32 num_wraps;  /* # times uCode wrapped to top of log */
+	u32 next_entry; /* index of next entry to be written by uCode */
+	u32 size;       /* # entries that we'll print */
+
+	if (priv->ucode_type == UCODE_INIT)
+		base = le32_to_cpu(priv->card_alive_init.log_event_table_ptr);
+	else
+		base = le32_to_cpu(priv->card_alive.log_event_table_ptr);
+
+	if (!priv->cfg->ops->lib->is_valid_rtc_data_addr(base)) {
+		IWL_ERR(priv, "Invalid event log pointer 0x%08X\n", base);
+		return;
+	}
+
+	/* event log header */
+	capacity = iwl_read_targ_mem(priv, base);
+	mode = iwl_read_targ_mem(priv, base + (1 * sizeof(u32)));
+	num_wraps = iwl_read_targ_mem(priv, base + (2 * sizeof(u32)));
+	next_entry = iwl_read_targ_mem(priv, base + (3 * sizeof(u32)));
+
+	size = num_wraps ? capacity : next_entry;
+
+	/* bail out if nothing in log */
+	if (size == 0) {
+		IWL_ERR(priv, "Start IWL Event Log Dump: nothing in log\n");
+		return;
+	}
+
+	IWL_ERR(priv, "Start IWL Event Log Dump: display count %d, wraps %d\n",
+			size, num_wraps);
+
+	/* if uCode has wrapped back to top of log, start at the oldest entry,
+	 * i.e the next one that uCode would fill. */
+	if (num_wraps)
+		iwl_print_event_log(priv, next_entry,
+					capacity - next_entry, mode);
+	/* (then/else) start at top of log */
+	iwl_print_event_log(priv, 0, next_entry, mode);
+
+}
+#endif
+
 /**
 /**
  * iwl_alive_start - called after REPLY_ALIVE notification received
  * iwl_alive_start - called after REPLY_ALIVE notification received
  *                   from protocol/runtime uCode (initialization uCode's
  *                   from protocol/runtime uCode (initialization uCode's

+ 2 - 185
drivers/net/wireless/iwlwifi/iwl-core.c

@@ -1309,189 +1309,6 @@ static void iwl_print_rx_config_cmd(struct iwl_priv *priv)
 	IWL_DEBUG_RADIO(priv, "u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
 	IWL_DEBUG_RADIO(priv, "u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
 	IWL_DEBUG_RADIO(priv, "u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
 	IWL_DEBUG_RADIO(priv, "u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
 }
 }
-
-static const char *desc_lookup_text[] = {
-	"OK",
-	"FAIL",
-	"BAD_PARAM",
-	"BAD_CHECKSUM",
-	"NMI_INTERRUPT_WDG",
-	"SYSASSERT",
-	"FATAL_ERROR",
-	"BAD_COMMAND",
-	"HW_ERROR_TUNE_LOCK",
-	"HW_ERROR_TEMPERATURE",
-	"ILLEGAL_CHAN_FREQ",
-	"VCC_NOT_STABLE",
-	"FH_ERROR",
-	"NMI_INTERRUPT_HOST",
-	"NMI_INTERRUPT_ACTION_PT",
-	"NMI_INTERRUPT_UNKNOWN",
-	"UCODE_VERSION_MISMATCH",
-	"HW_ERROR_ABS_LOCK",
-	"HW_ERROR_CAL_LOCK_FAIL",
-	"NMI_INTERRUPT_INST_ACTION_PT",
-	"NMI_INTERRUPT_DATA_ACTION_PT",
-	"NMI_TRM_HW_ER",
-	"NMI_INTERRUPT_TRM",
-	"NMI_INTERRUPT_BREAK_POINT"
-	"DEBUG_0",
-	"DEBUG_1",
-	"DEBUG_2",
-	"DEBUG_3",
-	"UNKNOWN"
-};
-
-static const char *desc_lookup(int i)
-{
-	int max = ARRAY_SIZE(desc_lookup_text) - 1;
-
-	if (i < 0 || i > max)
-		i = max;
-
-	return desc_lookup_text[i];
-}
-
-#define ERROR_START_OFFSET  (1 * sizeof(u32))
-#define ERROR_ELEM_SIZE     (7 * sizeof(u32))
-
-static void iwl_dump_nic_error_log(struct iwl_priv *priv)
-{
-	u32 data2, line;
-	u32 desc, time, count, base, data1;
-	u32 blink1, blink2, ilink1, ilink2;
-
-	if (priv->ucode_type == UCODE_INIT)
-		base = le32_to_cpu(priv->card_alive_init.error_event_table_ptr);
-	else
-		base = le32_to_cpu(priv->card_alive.error_event_table_ptr);
-
-	if (!priv->cfg->ops->lib->is_valid_rtc_data_addr(base)) {
-		IWL_ERR(priv, "Not valid error log pointer 0x%08X\n", base);
-		return;
-	}
-
-	count = iwl_read_targ_mem(priv, base);
-
-	if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) {
-		IWL_ERR(priv, "Start IWL Error Log Dump:\n");
-		IWL_ERR(priv, "Status: 0x%08lX, count: %d\n",
-			priv->status, count);
-	}
-
-	desc = iwl_read_targ_mem(priv, base + 1 * sizeof(u32));
-	blink1 = iwl_read_targ_mem(priv, base + 3 * sizeof(u32));
-	blink2 = iwl_read_targ_mem(priv, base + 4 * sizeof(u32));
-	ilink1 = iwl_read_targ_mem(priv, base + 5 * sizeof(u32));
-	ilink2 = iwl_read_targ_mem(priv, base + 6 * sizeof(u32));
-	data1 = iwl_read_targ_mem(priv, base + 7 * sizeof(u32));
-	data2 = iwl_read_targ_mem(priv, base + 8 * sizeof(u32));
-	line = iwl_read_targ_mem(priv, base + 9 * sizeof(u32));
-	time = iwl_read_targ_mem(priv, base + 11 * sizeof(u32));
-
-	IWL_ERR(priv, "Desc                               Time       "
-		"data1      data2      line\n");
-	IWL_ERR(priv, "%-28s (#%02d) %010u 0x%08X 0x%08X %u\n",
-		desc_lookup(desc), desc, time, data1, data2, line);
-	IWL_ERR(priv, "blink1  blink2  ilink1  ilink2\n");
-	IWL_ERR(priv, "0x%05X 0x%05X 0x%05X 0x%05X\n", blink1, blink2,
-		ilink1, ilink2);
-
-}
-
-#define EVENT_START_OFFSET  (4 * sizeof(u32))
-
-/**
- * iwl_print_event_log - Dump error event log to syslog
- *
- */
-static void iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
-				u32 num_events, u32 mode)
-{
-	u32 i;
-	u32 base;       /* SRAM byte address of event log header */
-	u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
-	u32 ptr;        /* SRAM byte address of log data */
-	u32 ev, time, data; /* event log data */
-
-	if (num_events == 0)
-		return;
-	if (priv->ucode_type == UCODE_INIT)
-		base = le32_to_cpu(priv->card_alive_init.log_event_table_ptr);
-	else
-		base = le32_to_cpu(priv->card_alive.log_event_table_ptr);
-
-	if (mode == 0)
-		event_size = 2 * sizeof(u32);
-	else
-		event_size = 3 * sizeof(u32);
-
-	ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
-
-	/* "time" is actually "data" for mode 0 (no timestamp).
-	* place event id # at far right for easier visual parsing. */
-	for (i = 0; i < num_events; i++) {
-		ev = iwl_read_targ_mem(priv, ptr);
-		ptr += sizeof(u32);
-		time = iwl_read_targ_mem(priv, ptr);
-		ptr += sizeof(u32);
-		if (mode == 0) {
-			/* data, ev */
-			IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n", time, ev);
-		} else {
-			data = iwl_read_targ_mem(priv, ptr);
-			ptr += sizeof(u32);
-			IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
-					time, data, ev);
-		}
-	}
-}
-
-void iwl_dump_nic_event_log(struct iwl_priv *priv)
-{
-	u32 base;       /* SRAM byte address of event log header */
-	u32 capacity;   /* event log capacity in # entries */
-	u32 mode;       /* 0 - no timestamp, 1 - timestamp recorded */
-	u32 num_wraps;  /* # times uCode wrapped to top of log */
-	u32 next_entry; /* index of next entry to be written by uCode */
-	u32 size;       /* # entries that we'll print */
-
-	if (priv->ucode_type == UCODE_INIT)
-		base = le32_to_cpu(priv->card_alive_init.log_event_table_ptr);
-	else
-		base = le32_to_cpu(priv->card_alive.log_event_table_ptr);
-
-	if (!priv->cfg->ops->lib->is_valid_rtc_data_addr(base)) {
-		IWL_ERR(priv, "Invalid event log pointer 0x%08X\n", base);
-		return;
-	}
-
-	/* event log header */
-	capacity = iwl_read_targ_mem(priv, base);
-	mode = iwl_read_targ_mem(priv, base + (1 * sizeof(u32)));
-	num_wraps = iwl_read_targ_mem(priv, base + (2 * sizeof(u32)));
-	next_entry = iwl_read_targ_mem(priv, base + (3 * sizeof(u32)));
-
-	size = num_wraps ? capacity : next_entry;
-
-	/* bail out if nothing in log */
-	if (size == 0) {
-		IWL_ERR(priv, "Start IWL Event Log Dump: nothing in log\n");
-		return;
-	}
-
-	IWL_ERR(priv, "Start IWL Event Log Dump: display count %d, wraps %d\n",
-			size, num_wraps);
-
-	/* if uCode has wrapped back to top of log, start at the oldest entry,
-	 * i.e the next one that uCode would fill. */
-	if (num_wraps)
-		iwl_print_event_log(priv, next_entry,
-					capacity - next_entry, mode);
-	/* (then/else) start at top of log */
-	iwl_print_event_log(priv, 0, next_entry, mode);
-
-}
 #endif
 #endif
 /**
 /**
  * iwl_irq_handle_error - called for HW or SW error interrupt from card
  * iwl_irq_handle_error - called for HW or SW error interrupt from card
@@ -1506,8 +1323,8 @@ void iwl_irq_handle_error(struct iwl_priv *priv)
 
 
 #ifdef CONFIG_IWLWIFI_DEBUG
 #ifdef CONFIG_IWLWIFI_DEBUG
 	if (iwl_get_debug_level(priv) & IWL_DL_FW_ERRORS) {
 	if (iwl_get_debug_level(priv) & IWL_DL_FW_ERRORS) {
-		iwl_dump_nic_error_log(priv);
-		iwl_dump_nic_event_log(priv);
+		priv->cfg->ops->lib->dump_nic_error_log(priv);
+		priv->cfg->ops->lib->dump_nic_event_log(priv);
 		iwl_print_rx_config_cmd(priv);
 		iwl_print_rx_config_cmd(priv);
 	}
 	}
 #endif
 #endif

+ 14 - 0
drivers/net/wireless/iwlwifi/iwl-core.h

@@ -166,6 +166,8 @@ struct iwl_lib_ops {
 	int (*is_valid_rtc_data_addr)(u32 addr);
 	int (*is_valid_rtc_data_addr)(u32 addr);
 	/* 1st ucode load */
 	/* 1st ucode load */
 	int (*load_ucode)(struct iwl_priv *priv);
 	int (*load_ucode)(struct iwl_priv *priv);
+	void (*dump_nic_event_log)(struct iwl_priv *priv);
+	void (*dump_nic_error_log)(struct iwl_priv *priv);
 	/* power management */
 	/* power management */
 	struct iwl_apm_ops apm_ops;
 	struct iwl_apm_ops apm_ops;
 
 
@@ -540,7 +542,19 @@ int iwl_pci_resume(struct pci_dev *pdev);
 /*****************************************************
 /*****************************************************
 *  Error Handling Debugging
 *  Error Handling Debugging
 ******************************************************/
 ******************************************************/
+#ifdef CONFIG_IWLWIFI_DEBUG
 void iwl_dump_nic_event_log(struct iwl_priv *priv);
 void iwl_dump_nic_event_log(struct iwl_priv *priv);
+void iwl_dump_nic_error_log(struct iwl_priv *priv);
+#else
+static inline void iwl_dump_nic_event_log(struct iwl_priv *priv)
+{
+}
+
+static inline void iwl_dump_nic_error_log(struct iwl_priv *priv)
+{
+}
+#endif
+
 void iwl_clear_isr_stats(struct iwl_priv *priv);
 void iwl_clear_isr_stats(struct iwl_priv *priv);
 
 
 /*****************************************************
 /*****************************************************

+ 4 - 4
drivers/net/wireless/iwlwifi/iwl-debugfs.c

@@ -410,7 +410,7 @@ static ssize_t iwl_dbgfs_nvm_read(struct file *file,
 		pos += scnprintf(buf + pos, buf_size - pos, "0x%.4x ", ofs);
 		pos += scnprintf(buf + pos, buf_size - pos, "0x%.4x ", ofs);
 		hex_dump_to_buffer(ptr + ofs, 16 , 16, 2, buf + pos,
 		hex_dump_to_buffer(ptr + ofs, 16 , 16, 2, buf + pos,
 				   buf_size - pos, 0);
 				   buf_size - pos, 0);
-		pos += strlen(buf);
+		pos += strlen(buf + pos);
 		if (buf_size - pos > 0)
 		if (buf_size - pos > 0)
 			buf[pos++] = '\n';
 			buf[pos++] = '\n';
 	}
 	}
@@ -436,7 +436,7 @@ static ssize_t iwl_dbgfs_log_event_write(struct file *file,
 	if (sscanf(buf, "%d", &event_log_flag) != 1)
 	if (sscanf(buf, "%d", &event_log_flag) != 1)
 		return -EFAULT;
 		return -EFAULT;
 	if (event_log_flag == 1)
 	if (event_log_flag == 1)
-		iwl_dump_nic_event_log(priv);
+		priv->cfg->ops->lib->dump_nic_event_log(priv);
 
 
 	return count;
 	return count;
 }
 }
@@ -909,7 +909,7 @@ static ssize_t iwl_dbgfs_traffic_log_read(struct file *file,
 						"0x%.4x ", ofs);
 						"0x%.4x ", ofs);
 				hex_dump_to_buffer(ptr + ofs, 16, 16, 2,
 				hex_dump_to_buffer(ptr + ofs, 16, 16, 2,
 						   buf + pos, bufsz - pos, 0);
 						   buf + pos, bufsz - pos, 0);
-				pos += strlen(buf);
+				pos += strlen(buf + pos);
 				if (bufsz - pos > 0)
 				if (bufsz - pos > 0)
 					buf[pos++] = '\n';
 					buf[pos++] = '\n';
 			}
 			}
@@ -932,7 +932,7 @@ static ssize_t iwl_dbgfs_traffic_log_read(struct file *file,
 						"0x%.4x ", ofs);
 						"0x%.4x ", ofs);
 				hex_dump_to_buffer(ptr + ofs, 16, 16, 2,
 				hex_dump_to_buffer(ptr + ofs, 16, 16, 2,
 						   buf + pos, bufsz - pos, 0);
 						   buf + pos, bufsz - pos, 0);
-				pos += strlen(buf);
+				pos += strlen(buf + pos);
 				if (bufsz - pos > 0)
 				if (bufsz - pos > 0)
 					buf[pos++] = '\n';
 					buf[pos++] = '\n';
 			}
 			}

+ 6 - 0
drivers/net/wireless/iwlwifi/iwl-tx.c

@@ -197,6 +197,12 @@ void iwl_cmd_queue_free(struct iwl_priv *priv)
 		pci_free_consistent(dev, priv->hw_params.tfd_size *
 		pci_free_consistent(dev, priv->hw_params.tfd_size *
 				    txq->q.n_bd, txq->tfds, txq->q.dma_addr);
 				    txq->q.n_bd, txq->tfds, txq->q.dma_addr);
 
 
+	/* deallocate arrays */
+	kfree(txq->cmd);
+	kfree(txq->meta);
+	txq->cmd = NULL;
+	txq->meta = NULL;
+
 	/* 0-fill queue descriptor structure */
 	/* 0-fill queue descriptor structure */
 	memset(txq, 0, sizeof(*txq));
 	memset(txq, 0, sizeof(*txq));
 }
 }

+ 13 - 18
drivers/net/wireless/iwlwifi/iwl3945-base.c

@@ -1481,6 +1481,7 @@ static inline void iwl_synchronize_irq(struct iwl_priv *priv)
 	tasklet_kill(&priv->irq_tasklet);
 	tasklet_kill(&priv->irq_tasklet);
 }
 }
 
 
+#ifdef CONFIG_IWLWIFI_DEBUG
 static const char *desc_lookup(int i)
 static const char *desc_lookup(int i)
 {
 {
 	switch (i) {
 	switch (i) {
@@ -1504,7 +1505,7 @@ static const char *desc_lookup(int i)
 #define ERROR_START_OFFSET  (1 * sizeof(u32))
 #define ERROR_START_OFFSET  (1 * sizeof(u32))
 #define ERROR_ELEM_SIZE     (7 * sizeof(u32))
 #define ERROR_ELEM_SIZE     (7 * sizeof(u32))
 
 
-static void iwl3945_dump_nic_error_log(struct iwl_priv *priv)
+void iwl3945_dump_nic_error_log(struct iwl_priv *priv)
 {
 {
 	u32 i;
 	u32 i;
 	u32 desc, time, count, base, data1;
 	u32 desc, time, count, base, data1;
@@ -1598,7 +1599,7 @@ static void iwl3945_print_event_log(struct iwl_priv *priv, u32 start_idx,
 	}
 	}
 }
 }
 
 
-static void iwl3945_dump_nic_event_log(struct iwl_priv *priv)
+void iwl3945_dump_nic_event_log(struct iwl_priv *priv)
 {
 {
 	u32 base;       /* SRAM byte address of event log header */
 	u32 base;       /* SRAM byte address of event log header */
 	u32 capacity;   /* event log capacity in # entries */
 	u32 capacity;   /* event log capacity in # entries */
@@ -1640,6 +1641,16 @@ static void iwl3945_dump_nic_event_log(struct iwl_priv *priv)
 	iwl3945_print_event_log(priv, 0, next_entry, mode);
 	iwl3945_print_event_log(priv, 0, next_entry, mode);
 
 
 }
 }
+#else
+void iwl3945_dump_nic_event_log(struct iwl_priv *priv)
+{
+}
+
+void iwl3945_dump_nic_error_log(struct iwl_priv *priv)
+{
+}
+
+#endif
 
 
 static void iwl3945_irq_tasklet(struct iwl_priv *priv)
 static void iwl3945_irq_tasklet(struct iwl_priv *priv)
 {
 {
@@ -3683,21 +3694,6 @@ static ssize_t dump_error_log(struct device *d,
 
 
 static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);
 static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log);
 
 
-static ssize_t dump_event_log(struct device *d,
-			      struct device_attribute *attr,
-			      const char *buf, size_t count)
-{
-	struct iwl_priv *priv = dev_get_drvdata(d);
-	char *p = (char *)buf;
-
-	if (p[0] == '1')
-		iwl3945_dump_nic_event_log(priv);
-
-	return strnlen(buf, count);
-}
-
-static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log);
-
 /*****************************************************************************
 /*****************************************************************************
  *
  *
  * driver setup and tear down
  * driver setup and tear down
@@ -3742,7 +3738,6 @@ static struct attribute *iwl3945_sysfs_entries[] = {
 	&dev_attr_antenna.attr,
 	&dev_attr_antenna.attr,
 	&dev_attr_channels.attr,
 	&dev_attr_channels.attr,
 	&dev_attr_dump_errors.attr,
 	&dev_attr_dump_errors.attr,
-	&dev_attr_dump_events.attr,
 	&dev_attr_flags.attr,
 	&dev_attr_flags.attr,
 	&dev_attr_filter_flags.attr,
 	&dev_attr_filter_flags.attr,
 #ifdef CONFIG_IWL3945_SPECTRUM_MEASUREMENT
 #ifdef CONFIG_IWL3945_SPECTRUM_MEASUREMENT

+ 9 - 0
drivers/platform/x86/sony-laptop.c

@@ -1041,6 +1041,9 @@ static int sony_nc_resume(struct acpi_device *device)
 			sony_backlight_update_status(sony_backlight_device) < 0)
 			sony_backlight_update_status(sony_backlight_device) < 0)
 		printk(KERN_WARNING DRV_PFX "unable to restore brightness level\n");
 		printk(KERN_WARNING DRV_PFX "unable to restore brightness level\n");
 
 
+	/* re-read rfkill state */
+	sony_nc_rfkill_update();
+
 	return 0;
 	return 0;
 }
 }
 
 
@@ -1078,6 +1081,8 @@ static int sony_nc_setup_rfkill(struct acpi_device *device,
 	struct rfkill *rfk;
 	struct rfkill *rfk;
 	enum rfkill_type type;
 	enum rfkill_type type;
 	const char *name;
 	const char *name;
+	int result;
+	bool hwblock;
 
 
 	switch (nc_type) {
 	switch (nc_type) {
 	case SONY_WIFI:
 	case SONY_WIFI:
@@ -1105,6 +1110,10 @@ static int sony_nc_setup_rfkill(struct acpi_device *device,
 	if (!rfk)
 	if (!rfk)
 		return -ENOMEM;
 		return -ENOMEM;
 
 
+	sony_call_snc_handle(0x124, 0x200, &result);
+	hwblock = !(result & 0x1);
+	rfkill_set_hw_state(rfk, hwblock);
+
 	err = rfkill_register(rfk);
 	err = rfkill_register(rfk);
 	if (err) {
 	if (err) {
 		rfkill_destroy(rfk);
 		rfkill_destroy(rfk);

+ 1 - 1
include/linux/if_tunnel.h

@@ -44,7 +44,7 @@ struct ip_tunnel_prl {
 	__u16			flags;
 	__u16			flags;
 	__u16			__reserved;
 	__u16			__reserved;
 	__u32			datalen;
 	__u32			datalen;
-	__u32			rs_delay;
+	__u32			__reserved2;
 	/* data follows */
 	/* data follows */
 };
 };
 
 

+ 0 - 7
include/net/ipip.h

@@ -27,18 +27,11 @@ struct ip_tunnel
 	unsigned int			prl_count;	/* # of entries in PRL */
 	unsigned int			prl_count;	/* # of entries in PRL */
 };
 };
 
 
-/* ISATAP: default interval between RS in secondy */
-#define IPTUNNEL_RS_DEFAULT_DELAY	(900)
-
 struct ip_tunnel_prl_entry
 struct ip_tunnel_prl_entry
 {
 {
 	struct ip_tunnel_prl_entry	*next;
 	struct ip_tunnel_prl_entry	*next;
 	__be32				addr;
 	__be32				addr;
 	u16				flags;
 	u16				flags;
-	unsigned long			rs_delay;
-	struct timer_list		rs_timer;
-	struct ip_tunnel		*tunnel;
-	spinlock_t			lock;
 };
 };
 
 
 #define IPTUNNEL_XMIT() do {						\
 #define IPTUNNEL_XMIT() do {						\

+ 1 - 0
include/net/wext.h

@@ -14,6 +14,7 @@ extern int wext_handle_ioctl(struct net *net, struct ifreq *ifr, unsigned int cm
 			     void __user *arg);
 			     void __user *arg);
 extern int compat_wext_handle_ioctl(struct net *net, unsigned int cmd,
 extern int compat_wext_handle_ioctl(struct net *net, unsigned int cmd,
 				    unsigned long arg);
 				    unsigned long arg);
+extern struct iw_statistics *get_wireless_stats(struct net_device *dev);
 #else
 #else
 static inline int wext_proc_init(struct net *net)
 static inline int wext_proc_init(struct net *net)
 {
 {

+ 1 - 0
net/8021q/vlan_netlink.c

@@ -169,6 +169,7 @@ static size_t vlan_get_size(const struct net_device *dev)
 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
 
 
 	return nla_total_size(2) +	/* IFLA_VLAN_ID */
 	return nla_total_size(2) +	/* IFLA_VLAN_ID */
+	       sizeof(struct ifla_vlan_flags) + /* IFLA_VLAN_FLAGS */
 	       vlan_qos_map_size(vlan->nr_ingress_mappings) +
 	       vlan_qos_map_size(vlan->nr_ingress_mappings) +
 	       vlan_qos_map_size(vlan->nr_egress_mappings);
 	       vlan_qos_map_size(vlan->nr_egress_mappings);
 }
 }

+ 10 - 9
net/ax25/af_ax25.c

@@ -641,15 +641,10 @@ static int ax25_setsockopt(struct socket *sock, int level, int optname,
 
 
 	case SO_BINDTODEVICE:
 	case SO_BINDTODEVICE:
 		if (optlen > IFNAMSIZ)
 		if (optlen > IFNAMSIZ)
-			optlen=IFNAMSIZ;
-		if (copy_from_user(devname, optval, optlen)) {
-		res = -EFAULT;
-			break;
-		}
+			optlen = IFNAMSIZ;
 
 
-		dev = dev_get_by_name(&init_net, devname);
-		if (dev == NULL) {
-			res = -ENODEV;
+		if (copy_from_user(devname, optval, optlen)) {
+			res = -EFAULT;
 			break;
 			break;
 		}
 		}
 
 
@@ -657,12 +652,18 @@ static int ax25_setsockopt(struct socket *sock, int level, int optname,
 		   (sock->state != SS_UNCONNECTED ||
 		   (sock->state != SS_UNCONNECTED ||
 		    sk->sk_state == TCP_LISTEN)) {
 		    sk->sk_state == TCP_LISTEN)) {
 			res = -EADDRNOTAVAIL;
 			res = -EADDRNOTAVAIL;
-			dev_put(dev);
+			break;
+		}
+
+		dev = dev_get_by_name(&init_net, devname);
+		if (!dev) {
+			res = -ENODEV;
 			break;
 			break;
 		}
 		}
 
 
 		ax25->ax25_dev = ax25_dev_ax25dev(dev);
 		ax25->ax25_dev = ax25_dev_ax25dev(dev);
 		ax25_fillin_cb(ax25, ax25->ax25_dev);
 		ax25_fillin_cb(ax25, ax25->ax25_dev);
+		dev_put(dev);
 		break;
 		break;
 
 
 	default:
 	default:

+ 1 - 0
net/bridge/br_if.c

@@ -432,6 +432,7 @@ err2:
 	br_fdb_delete_by_port(br, p, 1);
 	br_fdb_delete_by_port(br, p, 1);
 err1:
 err1:
 	kobject_put(&p->kobj);
 	kobject_put(&p->kobj);
+	p = NULL; /* kobject_put frees */
 err0:
 err0:
 	dev_set_promiscuity(dev, -1);
 	dev_set_promiscuity(dev, -1);
 put_back:
 put_back:

+ 5 - 7
net/core/net-sysfs.c

@@ -16,7 +16,7 @@
 #include <net/sock.h>
 #include <net/sock.h>
 #include <linux/rtnetlink.h>
 #include <linux/rtnetlink.h>
 #include <linux/wireless.h>
 #include <linux/wireless.h>
-#include <net/iw_handler.h>
+#include <net/wext.h>
 
 
 #include "net-sysfs.h"
 #include "net-sysfs.h"
 
 
@@ -363,15 +363,13 @@ static ssize_t wireless_show(struct device *d, char *buf,
 					       char *))
 					       char *))
 {
 {
 	struct net_device *dev = to_net_dev(d);
 	struct net_device *dev = to_net_dev(d);
-	const struct iw_statistics *iw = NULL;
+	const struct iw_statistics *iw;
 	ssize_t ret = -EINVAL;
 	ssize_t ret = -EINVAL;
 
 
 	read_lock(&dev_base_lock);
 	read_lock(&dev_base_lock);
 	if (dev_isalive(dev)) {
 	if (dev_isalive(dev)) {
-		if (dev->wireless_handlers &&
-		    dev->wireless_handlers->get_wireless_stats)
-			iw = dev->wireless_handlers->get_wireless_stats(dev);
-		if (iw != NULL)
+		iw = get_wireless_stats(dev);
+		if (iw)
 			ret = (*format)(iw, buf);
 			ret = (*format)(iw, buf);
 	}
 	}
 	read_unlock(&dev_base_lock);
 	read_unlock(&dev_base_lock);
@@ -505,7 +503,7 @@ int netdev_register_kobject(struct net_device *net)
 	*groups++ = &netstat_group;
 	*groups++ = &netstat_group;
 
 
 #ifdef CONFIG_WIRELESS_EXT_SYSFS
 #ifdef CONFIG_WIRELESS_EXT_SYSFS
-	if (net->wireless_handlers && net->wireless_handlers->get_wireless_stats)
+	if (net->wireless_handlers || net->ieee80211_ptr)
 		*groups++ = &wireless_group;
 		*groups++ = &wireless_group;
 #endif
 #endif
 #endif /* CONFIG_SYSFS */
 #endif /* CONFIG_SYSFS */

+ 7 - 8
net/dcb/dcbnl.c

@@ -194,7 +194,7 @@ static int dcbnl_reply(u8 value, u8 event, u8 cmd, u8 attr, u32 pid,
 	nlmsg_end(dcbnl_skb, nlh);
 	nlmsg_end(dcbnl_skb, nlh);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret)
 	if (ret)
-		goto err;
+		return -EINVAL;
 
 
 	return 0;
 	return 0;
 nlmsg_failure:
 nlmsg_failure:
@@ -275,7 +275,7 @@ static int dcbnl_getpfccfg(struct net_device *netdev, struct nlattr **tb,
 
 
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret)
 	if (ret)
-		goto err;
+		goto err_out;
 
 
 	return 0;
 	return 0;
 nlmsg_failure:
 nlmsg_failure:
@@ -316,12 +316,11 @@ static int dcbnl_getperm_hwaddr(struct net_device *netdev, struct nlattr **tb,
 
 
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret)
 	if (ret)
-		goto err;
+		goto err_out;
 
 
 	return 0;
 	return 0;
 
 
 nlmsg_failure:
 nlmsg_failure:
-err:
 	kfree_skb(dcbnl_skb);
 	kfree_skb(dcbnl_skb);
 err_out:
 err_out:
 	return -EINVAL;
 	return -EINVAL;
@@ -383,7 +382,7 @@ static int dcbnl_getcap(struct net_device *netdev, struct nlattr **tb,
 
 
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret)
 	if (ret)
-		goto err;
+		goto err_out;
 
 
 	return 0;
 	return 0;
 nlmsg_failure:
 nlmsg_failure:
@@ -460,7 +459,7 @@ static int dcbnl_getnumtcs(struct net_device *netdev, struct nlattr **tb,
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret) {
 	if (ret) {
 		ret = -EINVAL;
 		ret = -EINVAL;
-		goto err;
+		goto err_out;
 	}
 	}
 
 
 	return 0;
 	return 0;
@@ -799,7 +798,7 @@ static int __dcbnl_pg_getcfg(struct net_device *netdev, struct nlattr **tb,
 
 
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret)
 	if (ret)
-		goto err;
+		goto err_out;
 
 
 	return 0;
 	return 0;
 
 
@@ -1063,7 +1062,7 @@ static int dcbnl_bcn_getcfg(struct net_device *netdev, struct nlattr **tb,
 
 
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	ret = rtnl_unicast(dcbnl_skb, &init_net, pid);
 	if (ret)
 	if (ret)
-		goto err;
+		goto err_out;
 
 
 	return 0;
 	return 0;
 
 

+ 0 - 1
net/ipv6/ndisc.c

@@ -658,7 +658,6 @@ void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr,
 		     &icmp6h, NULL,
 		     &icmp6h, NULL,
 		     send_sllao ? ND_OPT_SOURCE_LL_ADDR : 0);
 		     send_sllao ? ND_OPT_SOURCE_LL_ADDR : 0);
 }
 }
-EXPORT_SYMBOL(ndisc_send_rs);
 
 
 
 
 static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb)
 static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb)

+ 0 - 58
net/ipv6/sit.c

@@ -15,7 +15,6 @@
  * Roger Venning <r.venning@telstra.com>:	6to4 support
  * Roger Venning <r.venning@telstra.com>:	6to4 support
  * Nate Thompson <nate@thebog.net>:		6to4 support
  * Nate Thompson <nate@thebog.net>:		6to4 support
  * Fred Templin <fred.l.templin@boeing.com>:	isatap support
  * Fred Templin <fred.l.templin@boeing.com>:	isatap support
- * Sascha Hlusiak <mail@saschahlusiak.de>:	stateless autoconf for isatap
  */
  */
 
 
 #include <linux/module.h>
 #include <linux/module.h>
@@ -223,44 +222,6 @@ failed:
 	return NULL;
 	return NULL;
 }
 }
 
 
-static void ipip6_tunnel_rs_timer(unsigned long data)
-{
-	struct ip_tunnel_prl_entry *p = (struct ip_tunnel_prl_entry *) data;
-	struct inet6_dev *ifp;
-	struct inet6_ifaddr *addr;
-
-	spin_lock(&p->lock);
-	ifp = __in6_dev_get(p->tunnel->dev);
-
-	read_lock_bh(&ifp->lock);
-	for (addr = ifp->addr_list; addr; addr = addr->if_next) {
-		struct in6_addr rtr;
-
-		if (!(ipv6_addr_type(&addr->addr) & IPV6_ADDR_LINKLOCAL))
-			continue;
-
-		/* Send RS to guessed linklocal address of router
-		 *
-		 * Better: send to ff02::2 encapsuled in unicast directly
-		 * to router-v4 instead of guessing the v6 address.
-		 *
-		 * Cisco/Windows seem to not set the u/l bit correctly,
-		 * so we won't guess right.
-		 */
-		ipv6_addr_set(&rtr,  htonl(0xFE800000), 0, 0, 0);
-		if (!__ipv6_isatap_ifid(rtr.s6_addr + 8,
-					p->addr)) {
-			ndisc_send_rs(p->tunnel->dev, &addr->addr, &rtr);
-		}
-	}
-	read_unlock_bh(&ifp->lock);
-
-	mod_timer(&p->rs_timer, jiffies + HZ * p->rs_delay);
-	spin_unlock(&p->lock);
-
-	return;
-}
-
 static struct ip_tunnel_prl_entry *
 static struct ip_tunnel_prl_entry *
 __ipip6_tunnel_locate_prl(struct ip_tunnel *t, __be32 addr)
 __ipip6_tunnel_locate_prl(struct ip_tunnel *t, __be32 addr)
 {
 {
@@ -319,7 +280,6 @@ static int ipip6_tunnel_get_prl(struct ip_tunnel *t,
 			continue;
 			continue;
 		kp[c].addr = prl->addr;
 		kp[c].addr = prl->addr;
 		kp[c].flags = prl->flags;
 		kp[c].flags = prl->flags;
-		kp[c].rs_delay = prl->rs_delay;
 		c++;
 		c++;
 		if (kprl.addr != htonl(INADDR_ANY))
 		if (kprl.addr != htonl(INADDR_ANY))
 			break;
 			break;
@@ -369,23 +329,11 @@ ipip6_tunnel_add_prl(struct ip_tunnel *t, struct ip_tunnel_prl *a, int chg)
 	}
 	}
 
 
 	p->next = t->prl;
 	p->next = t->prl;
-	p->tunnel = t;
 	t->prl = p;
 	t->prl = p;
 	t->prl_count++;
 	t->prl_count++;
-
-	spin_lock_init(&p->lock);
-	setup_timer(&p->rs_timer, ipip6_tunnel_rs_timer, (unsigned long) p);
 update:
 update:
 	p->addr = a->addr;
 	p->addr = a->addr;
 	p->flags = a->flags;
 	p->flags = a->flags;
-	p->rs_delay = a->rs_delay;
-	if (p->rs_delay == 0)
-		p->rs_delay = IPTUNNEL_RS_DEFAULT_DELAY;
-	spin_lock(&p->lock);
-	del_timer(&p->rs_timer);
-	if (p->flags & PRL_DEFAULT)
-		mod_timer(&p->rs_timer, jiffies + 1);
-	spin_unlock(&p->lock);
 out:
 out:
 	write_unlock(&ipip6_lock);
 	write_unlock(&ipip6_lock);
 	return err;
 	return err;
@@ -404,9 +352,6 @@ ipip6_tunnel_del_prl(struct ip_tunnel *t, struct ip_tunnel_prl *a)
 			if ((*p)->addr == a->addr) {
 			if ((*p)->addr == a->addr) {
 				x = *p;
 				x = *p;
 				*p = x->next;
 				*p = x->next;
-				spin_lock(&x->lock);
-				del_timer(&x->rs_timer);
-				spin_unlock(&x->lock);
 				kfree(x);
 				kfree(x);
 				t->prl_count--;
 				t->prl_count--;
 				goto out;
 				goto out;
@@ -417,9 +362,6 @@ ipip6_tunnel_del_prl(struct ip_tunnel *t, struct ip_tunnel_prl *a)
 		while (t->prl) {
 		while (t->prl) {
 			x = t->prl;
 			x = t->prl;
 			t->prl = t->prl->next;
 			t->prl = t->prl->next;
-			spin_lock(&x->lock);
-			del_timer(&x->rs_timer);
-			spin_unlock(&x->lock);
 			kfree(x);
 			kfree(x);
 			t->prl_count--;
 			t->prl_count--;
 		}
 		}

+ 9 - 9
net/mac80211/mlme.c

@@ -1388,8 +1388,8 @@ ieee80211_rx_mgmt_disassoc(struct ieee80211_sub_if_data *sdata,
 
 
 	reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
 	reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
 
 
-	printk(KERN_DEBUG "%s: disassociated (Reason: %u)\n",
-			sdata->dev->name, reason_code);
+	printk(KERN_DEBUG "%s: disassociated from %pM (Reason: %u)\n",
+			sdata->dev->name, mgmt->sa, reason_code);
 
 
 	ieee80211_set_disassoc(sdata, false);
 	ieee80211_set_disassoc(sdata, false);
 	return RX_MGMT_CFG80211_DISASSOC;
 	return RX_MGMT_CFG80211_DISASSOC;
@@ -1675,7 +1675,7 @@ static void ieee80211_rx_mgmt_probe_resp(struct ieee80211_sub_if_data *sdata,
 
 
 	/* direct probe may be part of the association flow */
 	/* direct probe may be part of the association flow */
 	if (wk && wk->state == IEEE80211_MGD_STATE_PROBE) {
 	if (wk && wk->state == IEEE80211_MGD_STATE_PROBE) {
-		printk(KERN_DEBUG "%s direct probe responded\n",
+		printk(KERN_DEBUG "%s: direct probe responded\n",
 		       sdata->dev->name);
 		       sdata->dev->name);
 		wk->tries = 0;
 		wk->tries = 0;
 		wk->state = IEEE80211_MGD_STATE_AUTH;
 		wk->state = IEEE80211_MGD_STATE_AUTH;
@@ -2502,9 +2502,6 @@ int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata,
 	struct ieee80211_mgd_work *wk;
 	struct ieee80211_mgd_work *wk;
 	const u8 *bssid = NULL;
 	const u8 *bssid = NULL;
 
 
-	printk(KERN_DEBUG "%s: deauthenticating by local choice (reason=%d)\n",
-	       sdata->dev->name, req->reason_code);
-
 	mutex_lock(&ifmgd->mtx);
 	mutex_lock(&ifmgd->mtx);
 
 
 	if (ifmgd->associated && &ifmgd->associated->cbss == req->bss) {
 	if (ifmgd->associated && &ifmgd->associated->cbss == req->bss) {
@@ -2532,6 +2529,9 @@ int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata,
 
 
 	mutex_unlock(&ifmgd->mtx);
 	mutex_unlock(&ifmgd->mtx);
 
 
+	printk(KERN_DEBUG "%s: deauthenticating from %pM by local choice (reason=%d)\n",
+	       sdata->dev->name, bssid, req->reason_code);
+
 	ieee80211_send_deauth_disassoc(sdata, bssid,
 	ieee80211_send_deauth_disassoc(sdata, bssid,
 			IEEE80211_STYPE_DEAUTH, req->reason_code,
 			IEEE80211_STYPE_DEAUTH, req->reason_code,
 			cookie);
 			cookie);
@@ -2545,9 +2545,6 @@ int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata,
 {
 {
 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
 
 
-	printk(KERN_DEBUG "%s: disassociating by local choice (reason=%d)\n",
-	       sdata->dev->name, req->reason_code);
-
 	mutex_lock(&ifmgd->mtx);
 	mutex_lock(&ifmgd->mtx);
 
 
 	/*
 	/*
@@ -2561,6 +2558,9 @@ int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata,
 		return -ENOLINK;
 		return -ENOLINK;
 	}
 	}
 
 
+	printk(KERN_DEBUG "%s: disassociating from %pM by local choice (reason=%d)\n",
+	       sdata->dev->name, req->bss->bssid, req->reason_code);
+
 	ieee80211_set_disassoc(sdata, false);
 	ieee80211_set_disassoc(sdata, false);
 
 
 	mutex_unlock(&ifmgd->mtx);
 	mutex_unlock(&ifmgd->mtx);

+ 1 - 1
net/netlink/af_netlink.c

@@ -1788,7 +1788,7 @@ void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
 	}
 	}
 
 
 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
-			  NLMSG_ERROR, sizeof(struct nlmsgerr), 0);
+			  NLMSG_ERROR, payload, 0);
 	errmsg = nlmsg_data(rep);
 	errmsg = nlmsg_data(rep);
 	errmsg->error = err;
 	errmsg->error = err;
 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));

+ 6 - 1
net/socket.c

@@ -2098,12 +2098,17 @@ SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
 	unsigned long a[6];
 	unsigned long a[6];
 	unsigned long a0, a1;
 	unsigned long a0, a1;
 	int err;
 	int err;
+	unsigned int len;
 
 
 	if (call < 1 || call > SYS_ACCEPT4)
 	if (call < 1 || call > SYS_ACCEPT4)
 		return -EINVAL;
 		return -EINVAL;
 
 
+	len = nargs[call];
+	if (len > sizeof(a))
+		return -EINVAL;
+
 	/* copy_from_user should be SMP safe. */
 	/* copy_from_user should be SMP safe. */
-	if (copy_from_user(a, args, nargs[call]))
+	if (copy_from_user(a, args, len))
 		return -EFAULT;
 		return -EFAULT;
 
 
 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);

+ 2 - 3
net/wireless/sme.c

@@ -762,9 +762,8 @@ int __cfg80211_connect(struct cfg80211_registered_device *rdev,
 		wdev->conn->params.ssid = wdev->ssid;
 		wdev->conn->params.ssid = wdev->ssid;
 		wdev->conn->params.ssid_len = connect->ssid_len;
 		wdev->conn->params.ssid_len = connect->ssid_len;
 
 
-		/* don't care about result -- but fill bssid & channel */
-		if (!wdev->conn->params.bssid || !wdev->conn->params.channel)
-			bss = cfg80211_get_conn_bss(wdev);
+		/* see if we have the bss already */
+		bss = cfg80211_get_conn_bss(wdev);
 
 
 		wdev->sme_state = CFG80211_SME_CONNECTING;
 		wdev->sme_state = CFG80211_SME_CONNECTING;
 		wdev->connect_keys = connkeys;
 		wdev->connect_keys = connkeys;

+ 3 - 5
net/wireless/wext-sme.c

@@ -30,7 +30,8 @@ int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev,
 	if (wdev->wext.keys) {
 	if (wdev->wext.keys) {
 		wdev->wext.keys->def = wdev->wext.default_key;
 		wdev->wext.keys->def = wdev->wext.default_key;
 		wdev->wext.keys->defmgmt = wdev->wext.default_mgmt_key;
 		wdev->wext.keys->defmgmt = wdev->wext.default_mgmt_key;
-		wdev->wext.connect.privacy = true;
+		if (wdev->wext.default_key != -1)
+			wdev->wext.connect.privacy = true;
 	}
 	}
 
 
 	if (!wdev->wext.connect.ssid_len)
 	if (!wdev->wext.connect.ssid_len)
@@ -229,8 +230,7 @@ int cfg80211_mgd_wext_giwessid(struct net_device *dev,
 		data->flags = 1;
 		data->flags = 1;
 		data->length = wdev->wext.connect.ssid_len;
 		data->length = wdev->wext.connect.ssid_len;
 		memcpy(ssid, wdev->wext.connect.ssid, data->length);
 		memcpy(ssid, wdev->wext.connect.ssid, data->length);
-	} else
-		data->flags = 0;
+	}
 	wdev_unlock(wdev);
 	wdev_unlock(wdev);
 
 
 	return 0;
 	return 0;
@@ -306,8 +306,6 @@ int cfg80211_mgd_wext_giwap(struct net_device *dev,
 	wdev_lock(wdev);
 	wdev_lock(wdev);
 	if (wdev->current_bss)
 	if (wdev->current_bss)
 		memcpy(ap_addr->sa_data, wdev->current_bss->pub.bssid, ETH_ALEN);
 		memcpy(ap_addr->sa_data, wdev->current_bss->pub.bssid, ETH_ALEN);
-	else if (wdev->wext.connect.bssid)
-		memcpy(ap_addr->sa_data, wdev->wext.connect.bssid, ETH_ALEN);
 	else
 	else
 		memset(ap_addr->sa_data, 0, ETH_ALEN);
 		memset(ap_addr->sa_data, 0, ETH_ALEN);
 	wdev_unlock(wdev);
 	wdev_unlock(wdev);

+ 7 - 4
net/wireless/wext.c

@@ -470,7 +470,7 @@ static iw_handler get_handler(struct net_device *dev, unsigned int cmd)
 /*
 /*
  * Get statistics out of the driver
  * Get statistics out of the driver
  */
  */
-static struct iw_statistics *get_wireless_stats(struct net_device *dev)
+struct iw_statistics *get_wireless_stats(struct net_device *dev)
 {
 {
 	/* New location */
 	/* New location */
 	if ((dev->wireless_handlers != NULL) &&
 	if ((dev->wireless_handlers != NULL) &&
@@ -773,10 +773,13 @@ static int ioctl_standard_iw_point(struct iw_point *iwp, unsigned int cmd,
 			essid_compat = 1;
 			essid_compat = 1;
 		else if (IW_IS_SET(cmd) && (iwp->length != 0)) {
 		else if (IW_IS_SET(cmd) && (iwp->length != 0)) {
 			char essid[IW_ESSID_MAX_SIZE + 1];
 			char essid[IW_ESSID_MAX_SIZE + 1];
+			unsigned int len;
+			len = iwp->length * descr->token_size;
 
 
-			err = copy_from_user(essid, iwp->pointer,
-					     iwp->length *
-					     descr->token_size);
+			if (len > IW_ESSID_MAX_SIZE)
+				return -EFAULT;
+
+			err = copy_from_user(essid, iwp->pointer, len);
 			if (err)
 			if (err)
 				return -EFAULT;
 				return -EFAULT;
 
 

部分文件因文件數量過多而無法顯示