|
@@ -0,0 +1,312 @@
|
|
|
+/*
|
|
|
+ * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
|
|
|
+ *
|
|
|
+ * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ *
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program; if not, write to the Free Software
|
|
|
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
|
|
|
+ */
|
|
|
+
|
|
|
+/* See mt2060_priv.h for details */
|
|
|
+
|
|
|
+/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
|
|
|
+
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/moduleparam.h>
|
|
|
+#include <linux/delay.h>
|
|
|
+#include <linux/dvb/frontend.h>
|
|
|
+#include "mt2060.h"
|
|
|
+#include "mt2060_priv.h"
|
|
|
+
|
|
|
+static int debug=0;
|
|
|
+module_param(debug, int, 0644);
|
|
|
+MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
|
|
|
+
|
|
|
+#define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0)
|
|
|
+
|
|
|
+// Reads a single register
|
|
|
+static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
|
|
|
+{
|
|
|
+ struct i2c_msg msg[2] = {
|
|
|
+ { .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 },
|
|
|
+ { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
|
|
|
+ };
|
|
|
+
|
|
|
+ if (i2c_transfer(state->i2c, msg, 2) != 2) {
|
|
|
+ printk(KERN_WARNING "mt2060 I2C read failed\n");
|
|
|
+ return -EREMOTEIO;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+// Writes a single register
|
|
|
+static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
|
|
|
+{
|
|
|
+ u8 buf[2];
|
|
|
+ struct i2c_msg msg = {
|
|
|
+ .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
|
|
|
+ };
|
|
|
+ buf[0]=reg;
|
|
|
+ buf[1]=val;
|
|
|
+
|
|
|
+ if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
|
+ printk(KERN_WARNING "mt2060 I2C write failed\n");
|
|
|
+ return -EREMOTEIO;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+// Writes a set of consecutive registers
|
|
|
+static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
|
|
|
+{
|
|
|
+ struct i2c_msg msg = {
|
|
|
+ .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
|
|
|
+ };
|
|
|
+ if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
|
+ printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
|
|
|
+ return -EREMOTEIO;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+// Initialisation sequences
|
|
|
+// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
|
|
|
+static u8 mt2060_config1[] = {
|
|
|
+ REG_LO1C1,
|
|
|
+ 0x3F, 0x74, 0x00, 0x08, 0x93
|
|
|
+};
|
|
|
+
|
|
|
+// FMCG=2, GP2=0, GP1=0
|
|
|
+static u8 mt2060_config2[] = {
|
|
|
+ REG_MISC_CTRL,
|
|
|
+ 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
|
|
|
+};
|
|
|
+
|
|
|
+// VGAG=3, V1CSE=1
|
|
|
+static u8 mt2060_config3[] = {
|
|
|
+ REG_VGAG,
|
|
|
+ 0x33
|
|
|
+};
|
|
|
+
|
|
|
+int mt2060_init(struct mt2060_state *state)
|
|
|
+{
|
|
|
+ if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
|
|
|
+ return -EREMOTEIO;
|
|
|
+ if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
|
|
|
+ return -EREMOTEIO;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(mt2060_init);
|
|
|
+
|
|
|
+#ifdef MT2060_SPURCHECK
|
|
|
+/* The function below calculates the frequency offset between the output frequency if2
|
|
|
+ and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
|
|
|
+static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
|
|
|
+{
|
|
|
+ int I,J;
|
|
|
+ int dia,diamin,diff;
|
|
|
+ diamin=1000000;
|
|
|
+ for (I = 1; I < 10; I++) {
|
|
|
+ J = ((2*I*lo1)/lo2+1)/2;
|
|
|
+ diff = I*(int)lo1-J*(int)lo2;
|
|
|
+ if (diff < 0) diff=-diff;
|
|
|
+ dia = (diff-(int)if2);
|
|
|
+ if (dia < 0) dia=-dia;
|
|
|
+ if (diamin > dia) diamin=dia;
|
|
|
+ }
|
|
|
+ return diamin;
|
|
|
+}
|
|
|
+
|
|
|
+#define BANDWIDTH 4000 // kHz
|
|
|
+
|
|
|
+/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
|
|
|
+static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
|
|
|
+{
|
|
|
+ u32 Spur,Sp1,Sp2;
|
|
|
+ int I,J;
|
|
|
+ I=0;
|
|
|
+ J=1000;
|
|
|
+
|
|
|
+ Spur=mt2060_spurcalc(lo1,lo2,if2);
|
|
|
+ if (Spur < BANDWIDTH) {
|
|
|
+ /* Potential spurs detected */
|
|
|
+ dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
|
|
|
+ (int)lo1,(int)lo2);
|
|
|
+ I=1000;
|
|
|
+ Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
|
|
|
+ Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
|
|
|
+
|
|
|
+ if (Sp1 < Sp2) {
|
|
|
+ J=-J; I=-I; Spur=Sp2;
|
|
|
+ } else
|
|
|
+ Spur=Sp1;
|
|
|
+
|
|
|
+ while (Spur < BANDWIDTH) {
|
|
|
+ I += J;
|
|
|
+ Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
|
|
|
+ }
|
|
|
+ dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
|
|
|
+ (int)(lo1+I),(int)(lo2+I));
|
|
|
+ }
|
|
|
+ return I;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+#define IF2 36150 // IF2 frequency = 36.150 MHz
|
|
|
+#define FREF 16000 // Quartz oscillator 16 MHz
|
|
|
+
|
|
|
+int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
|
|
|
+{
|
|
|
+ int ret=0;
|
|
|
+ int i=0;
|
|
|
+ u32 freq;
|
|
|
+ u8 lnaband;
|
|
|
+ u32 f_lo1,f_lo2;
|
|
|
+ u32 div1,num1,div2,num2;
|
|
|
+ u8 b[8];
|
|
|
+ u32 if1;
|
|
|
+
|
|
|
+ if1 = state->if1_freq;
|
|
|
+ b[0] = REG_LO1B1;
|
|
|
+ b[1] = 0xFF;
|
|
|
+ mt2060_writeregs(state,b,2);
|
|
|
+
|
|
|
+ freq = fep->frequency / 1000; // Hz -> kHz
|
|
|
+
|
|
|
+ f_lo1 = freq + if1 * 1000;
|
|
|
+ f_lo1 = (f_lo1/250)*250;
|
|
|
+ f_lo2 = f_lo1 - freq - IF2;
|
|
|
+ f_lo2 = (f_lo2/50)*50;
|
|
|
+
|
|
|
+#ifdef MT2060_SPURCHECK
|
|
|
+ // LO-related spurs detection and correction
|
|
|
+ num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
|
|
|
+ f_lo1 += num1;
|
|
|
+ f_lo2 += num1;
|
|
|
+#endif
|
|
|
+ //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
|
|
|
+ div1 = f_lo1 / FREF;
|
|
|
+ num1 = (64 * (f_lo1 % FREF) )/FREF;
|
|
|
+
|
|
|
+ // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
|
|
|
+ div2 = f_lo2 / FREF;
|
|
|
+ num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
|
|
|
+
|
|
|
+ if (freq <= 95000) lnaband = 0xB0; else
|
|
|
+ if (freq <= 180000) lnaband = 0xA0; else
|
|
|
+ if (freq <= 260000) lnaband = 0x90; else
|
|
|
+ if (freq <= 335000) lnaband = 0x80; else
|
|
|
+ if (freq <= 425000) lnaband = 0x70; else
|
|
|
+ if (freq <= 480000) lnaband = 0x60; else
|
|
|
+ if (freq <= 570000) lnaband = 0x50; else
|
|
|
+ if (freq <= 645000) lnaband = 0x40; else
|
|
|
+ if (freq <= 730000) lnaband = 0x30; else
|
|
|
+ if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
|
|
|
+
|
|
|
+ b[0] = REG_LO1C1;
|
|
|
+ b[1] = lnaband | ((num1 >>2) & 0x0F);
|
|
|
+ b[2] = div1;
|
|
|
+ b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
|
|
|
+ b[4] = num2 >> 4;
|
|
|
+ b[5] = ((num2 >>12) & 1) | (div2 << 1);
|
|
|
+
|
|
|
+ dprintk("IF1: %dMHz",(int)if1);
|
|
|
+ dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
|
|
|
+ dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
|
|
|
+ dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
|
|
|
+
|
|
|
+ mt2060_writeregs(state,b,6);
|
|
|
+
|
|
|
+ //Waits for pll lock or timeout
|
|
|
+ i=0;
|
|
|
+ do {
|
|
|
+ mt2060_readreg(state,REG_LO_STATUS,b);
|
|
|
+ if ((b[0] & 0x88)==0x88) break;
|
|
|
+ msleep(4);
|
|
|
+ i++;
|
|
|
+ } while (i<10);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(mt2060_set);
|
|
|
+
|
|
|
+/* from usbsnoop.log */
|
|
|
+static void mt2060_calibrate(struct mt2060_state *state)
|
|
|
+{
|
|
|
+ u8 b = 0;
|
|
|
+ int i = 0;
|
|
|
+
|
|
|
+ if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
|
|
|
+ return;
|
|
|
+ if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
|
|
|
+ return;
|
|
|
+
|
|
|
+ do {
|
|
|
+ b |= (1 << 6); // FM1SS;
|
|
|
+ mt2060_writereg(state, REG_LO2C1,b);
|
|
|
+ msleep(20);
|
|
|
+
|
|
|
+ if (i == 0) {
|
|
|
+ b |= (1 << 7); // FM1CA;
|
|
|
+ mt2060_writereg(state, REG_LO2C1,b);
|
|
|
+ b &= ~(1 << 7); // FM1CA;
|
|
|
+ msleep(20);
|
|
|
+ }
|
|
|
+
|
|
|
+ b &= ~(1 << 6); // FM1SS
|
|
|
+ mt2060_writereg(state, REG_LO2C1,b);
|
|
|
+
|
|
|
+ msleep(20);
|
|
|
+ i++;
|
|
|
+ } while (i < 9);
|
|
|
+
|
|
|
+ i = 0;
|
|
|
+ while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
|
|
|
+ msleep(20);
|
|
|
+
|
|
|
+ if (i < 10) {
|
|
|
+ mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
|
|
|
+ dprintk("calibration was successful: %d",state->fmfreq);
|
|
|
+ } else
|
|
|
+ dprintk("FMCAL timed out");
|
|
|
+}
|
|
|
+
|
|
|
+/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
|
|
|
+int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
|
|
|
+{
|
|
|
+ u8 id = 0;
|
|
|
+ memset(state,0,sizeof(struct mt2060_state));
|
|
|
+
|
|
|
+ state->config = config;
|
|
|
+ state->i2c = i2c;
|
|
|
+ state->if1_freq = if1;
|
|
|
+
|
|
|
+ if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
|
|
|
+ return -ENODEV;
|
|
|
+
|
|
|
+ if (id != PART_REV)
|
|
|
+ return -ENODEV;
|
|
|
+
|
|
|
+ printk(KERN_INFO "MT2060: successfully identified\n");
|
|
|
+
|
|
|
+ mt2060_calibrate(state);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL(mt2060_attach);
|
|
|
+
|
|
|
+MODULE_AUTHOR("Olivier DANET");
|
|
|
+MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
|
|
|
+MODULE_LICENSE("GPL");
|