|
@@ -0,0 +1,525 @@
|
|
|
+/*
|
|
|
+ * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
|
+ * published by the Free Software Foundation.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/types.h>
|
|
|
+#include <linux/kprobes.h>
|
|
|
+#include <linux/slab.h>
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/kprobes.h>
|
|
|
+#include <linux/kdebug.h>
|
|
|
+#include <linux/sched.h>
|
|
|
+#include <linux/uaccess.h>
|
|
|
+#include <asm/cacheflush.h>
|
|
|
+#include <asm/current.h>
|
|
|
+#include <asm/disasm.h>
|
|
|
+
|
|
|
+#define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
|
|
|
+ (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
|
|
|
+
|
|
|
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
|
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
+
|
|
|
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ /* Attempt to probe at unaligned address */
|
|
|
+ if ((unsigned long)p->addr & 0x01)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ /* Address should not be in exception handling code */
|
|
|
+
|
|
|
+ p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
|
|
|
+ p->opcode = *p->addr;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ *p->addr = UNIMP_S_INSTRUCTION;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->addr,
|
|
|
+ (unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ *p->addr = p->opcode;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->addr,
|
|
|
+ (unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ arch_disarm_kprobe(p);
|
|
|
+
|
|
|
+ /* Can we remove the kprobe in the middle of kprobe handling? */
|
|
|
+ if (p->ainsn.t1_addr) {
|
|
|
+ *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
|
+ (unsigned long)p->ainsn.t1_addr +
|
|
|
+ sizeof(kprobe_opcode_t));
|
|
|
+
|
|
|
+ p->ainsn.t1_addr = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (p->ainsn.t2_addr) {
|
|
|
+ *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
|
+ (unsigned long)p->ainsn.t2_addr +
|
|
|
+ sizeof(kprobe_opcode_t));
|
|
|
+
|
|
|
+ p->ainsn.t2_addr = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ kcb->prev_kprobe.kp = kprobe_running();
|
|
|
+ kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
|
|
|
+ kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void __kprobes set_current_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ __get_cpu_var(current_kprobe) = p;
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+ /* Remove the trap instructions inserted for single step and
|
|
|
+ * restore the original instructions
|
|
|
+ */
|
|
|
+ if (p->ainsn.t1_addr) {
|
|
|
+ *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
|
+ (unsigned long)p->ainsn.t1_addr +
|
|
|
+ sizeof(kprobe_opcode_t));
|
|
|
+
|
|
|
+ p->ainsn.t1_addr = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (p->ainsn.t2_addr) {
|
|
|
+ *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
|
+ (unsigned long)p->ainsn.t2_addr +
|
|
|
+ sizeof(kprobe_opcode_t));
|
|
|
+
|
|
|
+ p->ainsn.t2_addr = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ unsigned long next_pc;
|
|
|
+ unsigned long tgt_if_br = 0;
|
|
|
+ int is_branch;
|
|
|
+ unsigned long bta;
|
|
|
+
|
|
|
+ /* Copy the opcode back to the kprobe location and execute the
|
|
|
+ * instruction. Because of this we will not be able to get into the
|
|
|
+ * same kprobe until this kprobe is done
|
|
|
+ */
|
|
|
+ *(p->addr) = p->opcode;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->addr,
|
|
|
+ (unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
|
+
|
|
|
+ /* Now we insert the trap at the next location after this instruction to
|
|
|
+ * single step. If it is a branch we insert the trap at possible branch
|
|
|
+ * targets
|
|
|
+ */
|
|
|
+
|
|
|
+ bta = regs->bta;
|
|
|
+
|
|
|
+ if (regs->status32 & 0x40) {
|
|
|
+ /* We are in a delay slot with the branch taken */
|
|
|
+
|
|
|
+ next_pc = bta & ~0x01;
|
|
|
+
|
|
|
+ if (!p->ainsn.is_short) {
|
|
|
+ if (bta & 0x01)
|
|
|
+ regs->blink += 2;
|
|
|
+ else {
|
|
|
+ /* Branch not taken */
|
|
|
+ next_pc += 2;
|
|
|
+
|
|
|
+ /* next pc is taken from bta after executing the
|
|
|
+ * delay slot instruction
|
|
|
+ */
|
|
|
+ regs->bta += 2;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ is_branch = 0;
|
|
|
+ } else
|
|
|
+ is_branch =
|
|
|
+ disasm_next_pc((unsigned long)p->addr, regs,
|
|
|
+ (struct callee_regs *) current->thread.callee_reg,
|
|
|
+ &next_pc, &tgt_if_br);
|
|
|
+
|
|
|
+ p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
|
|
|
+ p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
|
|
|
+ *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
|
+ (unsigned long)p->ainsn.t1_addr +
|
|
|
+ sizeof(kprobe_opcode_t));
|
|
|
+
|
|
|
+ if (is_branch) {
|
|
|
+ p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
|
|
|
+ p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
|
|
|
+ *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
|
|
|
+
|
|
|
+ flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
|
+ (unsigned long)p->ainsn.t2_addr +
|
|
|
+ sizeof(kprobe_opcode_t));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kprobe *p;
|
|
|
+ struct kprobe_ctlblk *kcb;
|
|
|
+
|
|
|
+ preempt_disable();
|
|
|
+
|
|
|
+ kcb = get_kprobe_ctlblk();
|
|
|
+ p = get_kprobe((unsigned long *)addr);
|
|
|
+
|
|
|
+ if (p) {
|
|
|
+ /*
|
|
|
+ * We have reentered the kprobe_handler, since another kprobe
|
|
|
+ * was hit while within the handler, we save the original
|
|
|
+ * kprobes and single step on the instruction of the new probe
|
|
|
+ * without calling any user handlers to avoid recursive
|
|
|
+ * kprobes.
|
|
|
+ */
|
|
|
+ if (kprobe_running()) {
|
|
|
+ save_previous_kprobe(kcb);
|
|
|
+ set_current_kprobe(p);
|
|
|
+ kprobes_inc_nmissed_count(p);
|
|
|
+ setup_singlestep(p, regs);
|
|
|
+ kcb->kprobe_status = KPROBE_REENTER;
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ set_current_kprobe(p);
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
+
|
|
|
+ /* If we have no pre-handler or it returned 0, we continue with
|
|
|
+ * normal processing. If we have a pre-handler and it returned
|
|
|
+ * non-zero - which is expected from setjmp_pre_handler for
|
|
|
+ * jprobe, we return without single stepping and leave that to
|
|
|
+ * the break-handler which is invoked by a kprobe from
|
|
|
+ * jprobe_return
|
|
|
+ */
|
|
|
+ if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
|
+ setup_singlestep(p, regs);
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 1;
|
|
|
+ } else if (kprobe_running()) {
|
|
|
+ p = __get_cpu_var(current_kprobe);
|
|
|
+ if (p->break_handler && p->break_handler(p, regs)) {
|
|
|
+ setup_singlestep(p, regs);
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* no_kprobe: */
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int __kprobes arc_post_kprobe_handler(unsigned long addr,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kprobe *cur = kprobe_running();
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ if (!cur)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ resume_execution(cur, addr, regs);
|
|
|
+
|
|
|
+ /* Rearm the kprobe */
|
|
|
+ arch_arm_kprobe(cur);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * When we return from trap instruction we go to the next instruction
|
|
|
+ * We restored the actual instruction in resume_exectuiont and we to
|
|
|
+ * return to the same address and execute it
|
|
|
+ */
|
|
|
+ regs->ret = addr;
|
|
|
+
|
|
|
+ if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
|
+ cur->post_handler(cur, regs, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
|
+ restore_previous_kprobe(kcb);
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+
|
|
|
+ reset_current_kprobe();
|
|
|
+
|
|
|
+out:
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Fault can be for the instruction being single stepped or for the
|
|
|
+ * pre/post handlers in the module.
|
|
|
+ * This is applicable for applications like user probes, where we have the
|
|
|
+ * probe in user space and the handlers in the kernel
|
|
|
+ */
|
|
|
+
|
|
|
+int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
|
|
|
+{
|
|
|
+ struct kprobe *cur = kprobe_running();
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ switch (kcb->kprobe_status) {
|
|
|
+ case KPROBE_HIT_SS:
|
|
|
+ case KPROBE_REENTER:
|
|
|
+ /*
|
|
|
+ * We are here because the instruction being single stepped
|
|
|
+ * caused the fault. We reset the current kprobe and allow the
|
|
|
+ * exception handler as if it is regular exception. In our
|
|
|
+ * case it doesn't matter because the system will be halted
|
|
|
+ */
|
|
|
+ resume_execution(cur, (unsigned long)cur->addr, regs);
|
|
|
+
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER)
|
|
|
+ restore_previous_kprobe(kcb);
|
|
|
+ else
|
|
|
+ reset_current_kprobe();
|
|
|
+
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ break;
|
|
|
+
|
|
|
+ case KPROBE_HIT_ACTIVE:
|
|
|
+ case KPROBE_HIT_SSDONE:
|
|
|
+ /*
|
|
|
+ * We are here because the instructions in the pre/post handler
|
|
|
+ * caused the fault.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* We increment the nmissed count for accounting,
|
|
|
+ * we can also use npre/npostfault count for accouting
|
|
|
+ * these specific fault cases.
|
|
|
+ */
|
|
|
+ kprobes_inc_nmissed_count(cur);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We come here because instructions in the pre/post
|
|
|
+ * handler caused the page_fault, this could happen
|
|
|
+ * if handler tries to access user space by
|
|
|
+ * copy_from_user(), get_user() etc. Let the
|
|
|
+ * user-specified handler try to fix it first.
|
|
|
+ */
|
|
|
+ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * In case the user-specified fault handler returned zero,
|
|
|
+ * try to fix up.
|
|
|
+ */
|
|
|
+ if (fixup_exception(regs))
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * fixup_exception() could not handle it,
|
|
|
+ * Let do_page_fault() fix it.
|
|
|
+ */
|
|
|
+ break;
|
|
|
+
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
|
+ unsigned long val, void *data)
|
|
|
+{
|
|
|
+ struct die_args *args = data;
|
|
|
+ unsigned long addr = args->err;
|
|
|
+ int ret = NOTIFY_DONE;
|
|
|
+
|
|
|
+ switch (val) {
|
|
|
+ case DIE_IERR:
|
|
|
+ if (arc_kprobe_handler(addr, args->regs))
|
|
|
+ return NOTIFY_STOP;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case DIE_TRAP:
|
|
|
+ if (arc_post_kprobe_handler(addr, args->regs))
|
|
|
+ return NOTIFY_STOP;
|
|
|
+ break;
|
|
|
+
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+ unsigned long sp_addr = regs->sp;
|
|
|
+
|
|
|
+ kcb->jprobe_saved_regs = *regs;
|
|
|
+ memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
|
|
|
+ regs->ret = (unsigned long)(jp->entry);
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes jprobe_return(void)
|
|
|
+{
|
|
|
+ __asm__ __volatile__("unimp_s");
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+ unsigned long sp_addr;
|
|
|
+
|
|
|
+ *regs = kcb->jprobe_saved_regs;
|
|
|
+ sp_addr = regs->sp;
|
|
|
+ memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr));
|
|
|
+ preempt_enable_no_resched();
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static void __used kretprobe_trampoline_holder(void)
|
|
|
+{
|
|
|
+ __asm__ __volatile__(".global kretprobe_trampoline\n"
|
|
|
+ "kretprobe_trampoline:\n" "nop\n");
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+
|
|
|
+ ri->ret_addr = (kprobe_opcode_t *) regs->blink;
|
|
|
+
|
|
|
+ /* Replace the return addr with trampoline addr */
|
|
|
+ regs->blink = (unsigned long)&kretprobe_trampoline;
|
|
|
+}
|
|
|
+
|
|
|
+static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kretprobe_instance *ri = NULL;
|
|
|
+ struct hlist_head *head, empty_rp;
|
|
|
+ struct hlist_node *node, *tmp;
|
|
|
+ unsigned long flags, orig_ret_address = 0;
|
|
|
+ unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
|
|
|
+
|
|
|
+ INIT_HLIST_HEAD(&empty_rp);
|
|
|
+ kretprobe_hash_lock(current, &head, &flags);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * It is possible to have multiple instances associated with a given
|
|
|
+ * task either because an multiple functions in the call path
|
|
|
+ * have a return probe installed on them, and/or more than one return
|
|
|
+ * return probe was registered for a target function.
|
|
|
+ *
|
|
|
+ * We can handle this because:
|
|
|
+ * - instances are always inserted at the head of the list
|
|
|
+ * - when multiple return probes are registered for the same
|
|
|
+ * function, the first instance's ret_addr will point to the
|
|
|
+ * real return address, and all the rest will point to
|
|
|
+ * kretprobe_trampoline
|
|
|
+ */
|
|
|
+ hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
|
|
|
+ if (ri->task != current)
|
|
|
+ /* another task is sharing our hash bucket */
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (ri->rp && ri->rp->handler)
|
|
|
+ ri->rp->handler(ri, regs);
|
|
|
+
|
|
|
+ orig_ret_address = (unsigned long)ri->ret_addr;
|
|
|
+ recycle_rp_inst(ri, &empty_rp);
|
|
|
+
|
|
|
+ if (orig_ret_address != trampoline_address) {
|
|
|
+ /*
|
|
|
+ * This is the real return address. Any other
|
|
|
+ * instances associated with this task are for
|
|
|
+ * other calls deeper on the call stack
|
|
|
+ */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
|
+ regs->ret = orig_ret_address;
|
|
|
+
|
|
|
+ reset_current_kprobe();
|
|
|
+ kretprobe_hash_unlock(current, &flags);
|
|
|
+ preempt_enable_no_resched();
|
|
|
+
|
|
|
+ hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
|
|
|
+ hlist_del(&ri->hlist);
|
|
|
+ kfree(ri);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* By returning a non zero value, we are telling the kprobe handler
|
|
|
+ * that we don't want the post_handler to run
|
|
|
+ */
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static struct kprobe trampoline_p = {
|
|
|
+ .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
|
|
|
+ .pre_handler = trampoline_probe_handler
|
|
|
+};
|
|
|
+
|
|
|
+int __init arch_init_kprobes(void)
|
|
|
+{
|
|
|
+ /* Registering the trampoline code for the kret probe */
|
|
|
+ return register_kprobe(&trampoline_p);
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+void trap_is_kprobe(unsigned long cause, unsigned long address,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+ notify_die(DIE_TRAP, "kprobe_trap", regs, address, cause, SIGTRAP);
|
|
|
+}
|