|
@@ -34,27 +34,12 @@ static int rtc_base;
|
|
static unsigned long __init get_isa_cmos_time(void)
|
|
static unsigned long __init get_isa_cmos_time(void)
|
|
{
|
|
{
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
unsigned int year, mon, day, hour, min, sec;
|
|
- int i;
|
|
|
|
|
|
|
|
// check to see if the RTC makes sense.....
|
|
// check to see if the RTC makes sense.....
|
|
if ((CMOS_READ(RTC_VALID) & RTC_VRT) == 0)
|
|
if ((CMOS_READ(RTC_VALID) & RTC_VRT) == 0)
|
|
return mktime(1970, 1, 1, 0, 0, 0);
|
|
return mktime(1970, 1, 1, 0, 0, 0);
|
|
|
|
|
|
- /* The Linux interpretation of the CMOS clock register contents:
|
|
|
|
- * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
|
|
|
|
- * RTC registers show the second which has precisely just started.
|
|
|
|
- * Let's hope other operating systems interpret the RTC the same way.
|
|
|
|
- */
|
|
|
|
- /* read RTC exactly on falling edge of update flag */
|
|
|
|
- for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
|
|
|
|
- if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
|
|
|
|
- if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- do { /* Isn't this overkill ? UIP above should guarantee consistency */
|
|
|
|
|
|
+ do {
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
sec = CMOS_READ(RTC_SECONDS);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
min = CMOS_READ(RTC_MINUTES);
|
|
hour = CMOS_READ(RTC_HOURS);
|
|
hour = CMOS_READ(RTC_HOURS);
|