|
@@ -19,14 +19,16 @@
|
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
|
|
|
*/
|
|
|
|
|
|
-/* See mt2060_priv.h for details */
|
|
|
-
|
|
|
/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
#include <linux/moduleparam.h>
|
|
|
#include <linux/delay.h>
|
|
|
#include <linux/dvb/frontend.h>
|
|
|
+#include <linux/i2c.h>
|
|
|
+
|
|
|
+#include "dvb_frontend.h"
|
|
|
+
|
|
|
#include "mt2060.h"
|
|
|
#include "mt2060_priv.h"
|
|
|
|
|
@@ -34,17 +36,17 @@ static int debug=0;
|
|
|
module_param(debug, int, 0644);
|
|
|
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
|
|
|
|
|
|
-#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "MT2060: " args); printk("\n"); } } while (0)
|
|
|
+#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
|
|
|
|
|
|
// Reads a single register
|
|
|
-static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
|
|
|
+static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
|
|
|
{
|
|
|
struct i2c_msg msg[2] = {
|
|
|
- { .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 },
|
|
|
- { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
|
|
|
+ { .addr = priv->cfg->i2c_address, .flags = 0, .buf = ®, .len = 1 },
|
|
|
+ { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
|
|
|
};
|
|
|
|
|
|
- if (i2c_transfer(state->i2c, msg, 2) != 2) {
|
|
|
+ if (i2c_transfer(priv->i2c, msg, 2) != 2) {
|
|
|
printk(KERN_WARNING "mt2060 I2C read failed\n");
|
|
|
return -EREMOTEIO;
|
|
|
}
|
|
@@ -52,16 +54,14 @@ static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
|
|
|
}
|
|
|
|
|
|
// Writes a single register
|
|
|
-static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
|
|
|
+static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
|
|
|
{
|
|
|
- u8 buf[2];
|
|
|
+ u8 buf[2] = { reg, val };
|
|
|
struct i2c_msg msg = {
|
|
|
- .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
|
|
|
+ .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
|
|
|
};
|
|
|
- buf[0]=reg;
|
|
|
- buf[1]=val;
|
|
|
|
|
|
- if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
|
+ if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
|
|
|
printk(KERN_WARNING "mt2060 I2C write failed\n");
|
|
|
return -EREMOTEIO;
|
|
|
}
|
|
@@ -69,12 +69,12 @@ static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
|
|
|
}
|
|
|
|
|
|
// Writes a set of consecutive registers
|
|
|
-static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
|
|
|
+static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
|
|
|
{
|
|
|
struct i2c_msg msg = {
|
|
|
- .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
|
|
|
+ .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
|
|
|
};
|
|
|
- if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
|
+ if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
|
|
|
printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
|
|
|
return -EREMOTEIO;
|
|
|
}
|
|
@@ -95,20 +95,6 @@ static u8 mt2060_config2[] = {
|
|
|
};
|
|
|
|
|
|
// VGAG=3, V1CSE=1
|
|
|
-static u8 mt2060_config3[] = {
|
|
|
- REG_VGAG,
|
|
|
- 0x33
|
|
|
-};
|
|
|
-
|
|
|
-int mt2060_init(struct mt2060_state *state)
|
|
|
-{
|
|
|
- if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
|
|
|
- return -EREMOTEIO;
|
|
|
- if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
|
|
|
- return -EREMOTEIO;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(mt2060_init);
|
|
|
|
|
|
#ifdef MT2060_SPURCHECK
|
|
|
/* The function below calculates the frequency offset between the output frequency if2
|
|
@@ -167,8 +153,9 @@ static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
|
|
|
#define IF2 36150 // IF2 frequency = 36.150 MHz
|
|
|
#define FREF 16000 // Quartz oscillator 16 MHz
|
|
|
|
|
|
-int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
|
|
|
+static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
|
|
|
{
|
|
|
+ struct mt2060_priv *priv;
|
|
|
int ret=0;
|
|
|
int i=0;
|
|
|
u32 freq;
|
|
@@ -178,17 +165,23 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
|
|
|
u8 b[8];
|
|
|
u32 if1;
|
|
|
|
|
|
- if1 = state->if1_freq;
|
|
|
+ priv = fe->tuner_priv;
|
|
|
+
|
|
|
+ if1 = priv->if1_freq;
|
|
|
b[0] = REG_LO1B1;
|
|
|
b[1] = 0xFF;
|
|
|
- mt2060_writeregs(state,b,2);
|
|
|
|
|
|
- freq = fep->frequency / 1000; // Hz -> kHz
|
|
|
+ mt2060_writeregs(priv,b,2);
|
|
|
|
|
|
- f_lo1 = freq + if1 * 1000;
|
|
|
- f_lo1 = (f_lo1/250)*250;
|
|
|
- f_lo2 = f_lo1 - freq - IF2;
|
|
|
- f_lo2 = (f_lo2/50)*50;
|
|
|
+ freq = params->frequency / 1000; // Hz -> kHz
|
|
|
+ priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
|
|
|
+
|
|
|
+ f_lo1 = freq + if1 * 1000;
|
|
|
+ f_lo1 = (f_lo1 / 250) * 250;
|
|
|
+ f_lo2 = f_lo1 - freq - IF2;
|
|
|
+ // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
|
|
|
+ f_lo2 = ((f_lo2 + 25) / 50) * 50;
|
|
|
+ priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
|
|
|
|
|
|
#ifdef MT2060_SPURCHECK
|
|
|
// LO-related spurs detection and correction
|
|
@@ -197,12 +190,14 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
|
|
|
f_lo2 += num1;
|
|
|
#endif
|
|
|
//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
|
|
|
- div1 = f_lo1 / FREF;
|
|
|
- num1 = (64 * (f_lo1 % FREF) )/FREF;
|
|
|
+ num1 = f_lo1 / (FREF / 64);
|
|
|
+ div1 = num1 / 64;
|
|
|
+ num1 &= 0x3f;
|
|
|
|
|
|
// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
|
|
|
- div2 = f_lo2 / FREF;
|
|
|
- num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
|
|
|
+ num2 = f_lo2 * 64 / (FREF / 128);
|
|
|
+ div2 = num2 / 8192;
|
|
|
+ num2 &= 0x1fff;
|
|
|
|
|
|
if (freq <= 95000) lnaband = 0xB0; else
|
|
|
if (freq <= 180000) lnaband = 0xA0; else
|
|
@@ -223,85 +218,144 @@ int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
|
|
|
b[5] = ((num2 >>12) & 1) | (div2 << 1);
|
|
|
|
|
|
dprintk("IF1: %dMHz",(int)if1);
|
|
|
- dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
|
|
|
- dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
|
|
|
+ dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
|
|
|
+ dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
|
|
|
dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
|
|
|
|
|
|
- mt2060_writeregs(state,b,6);
|
|
|
+ mt2060_writeregs(priv,b,6);
|
|
|
|
|
|
//Waits for pll lock or timeout
|
|
|
- i=0;
|
|
|
+ i = 0;
|
|
|
do {
|
|
|
- mt2060_readreg(state,REG_LO_STATUS,b);
|
|
|
- if ((b[0] & 0x88)==0x88) break;
|
|
|
+ mt2060_readreg(priv,REG_LO_STATUS,b);
|
|
|
+ if ((b[0] & 0x88)==0x88)
|
|
|
+ break;
|
|
|
msleep(4);
|
|
|
i++;
|
|
|
} while (i<10);
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
-EXPORT_SYMBOL(mt2060_set);
|
|
|
|
|
|
-/* from usbsnoop.log */
|
|
|
-static void mt2060_calibrate(struct mt2060_state *state)
|
|
|
+static void mt2060_calibrate(struct mt2060_priv *priv)
|
|
|
{
|
|
|
u8 b = 0;
|
|
|
int i = 0;
|
|
|
|
|
|
- if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
|
|
|
+ if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
|
|
|
return;
|
|
|
- if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
|
|
|
+ if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
|
|
|
return;
|
|
|
|
|
|
do {
|
|
|
b |= (1 << 6); // FM1SS;
|
|
|
- mt2060_writereg(state, REG_LO2C1,b);
|
|
|
+ mt2060_writereg(priv, REG_LO2C1,b);
|
|
|
msleep(20);
|
|
|
|
|
|
if (i == 0) {
|
|
|
b |= (1 << 7); // FM1CA;
|
|
|
- mt2060_writereg(state, REG_LO2C1,b);
|
|
|
+ mt2060_writereg(priv, REG_LO2C1,b);
|
|
|
b &= ~(1 << 7); // FM1CA;
|
|
|
msleep(20);
|
|
|
}
|
|
|
|
|
|
b &= ~(1 << 6); // FM1SS
|
|
|
- mt2060_writereg(state, REG_LO2C1,b);
|
|
|
+ mt2060_writereg(priv, REG_LO2C1,b);
|
|
|
|
|
|
msleep(20);
|
|
|
i++;
|
|
|
} while (i < 9);
|
|
|
|
|
|
i = 0;
|
|
|
- while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
|
|
|
+ while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
|
|
|
msleep(20);
|
|
|
|
|
|
if (i < 10) {
|
|
|
- mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
|
|
|
- dprintk("calibration was successful: %d", state->fmfreq);
|
|
|
+ mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
|
|
|
+ dprintk("calibration was successful: %d", (int)priv->fmfreq);
|
|
|
} else
|
|
|
dprintk("FMCAL timed out");
|
|
|
}
|
|
|
|
|
|
+static int mt2060_calc_regs(struct dvb_frontend *fe, struct dvb_frontend_parameters *params, u8 *buf, int buf_len)
|
|
|
+{
|
|
|
+ return -ENODEV;
|
|
|
+}
|
|
|
+
|
|
|
+static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
|
|
|
+{
|
|
|
+ struct mt2060_priv *priv = fe->tuner_priv;
|
|
|
+ *frequency = priv->frequency;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
|
|
|
+{
|
|
|
+ struct mt2060_priv *priv = fe->tuner_priv;
|
|
|
+ *bandwidth = priv->bandwidth;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int mt2060_sleep(struct dvb_frontend *fe)
|
|
|
+{
|
|
|
+ struct mt2060_priv *priv = fe->tuner_priv;
|
|
|
+ return mt2060_writereg(priv, REG_VGAG,0x30);
|
|
|
+}
|
|
|
+
|
|
|
+static int mt2060_release(struct dvb_frontend *fe)
|
|
|
+{
|
|
|
+ kfree(fe->tuner_priv);
|
|
|
+ fe->tuner_priv = NULL;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static const struct dvb_tuner_ops mt2060_tuner_ops = {
|
|
|
+ .info = {
|
|
|
+ .name = "Microtune MT2060",
|
|
|
+ .frequency_min = 48000000,
|
|
|
+ .frequency_max = 860000000,
|
|
|
+ .frequency_step = 50000,
|
|
|
+ },
|
|
|
+
|
|
|
+ .release = mt2060_release,
|
|
|
+
|
|
|
+ .sleep = mt2060_sleep,
|
|
|
+
|
|
|
+ .set_params = mt2060_set_params,
|
|
|
+ .calc_regs = mt2060_calc_regs,
|
|
|
+ .get_frequency = mt2060_get_frequency,
|
|
|
+ .get_bandwidth = mt2060_get_bandwidth
|
|
|
+};
|
|
|
+
|
|
|
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
|
|
|
-int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
|
|
|
+int mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
|
|
|
{
|
|
|
+ struct mt2060_priv *priv = NULL;
|
|
|
u8 id = 0;
|
|
|
- memset(state,0,sizeof(struct mt2060_state));
|
|
|
|
|
|
- state->config = config;
|
|
|
- state->i2c = i2c;
|
|
|
- state->if1_freq = if1;
|
|
|
+ priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
|
|
|
+ if (priv == NULL)
|
|
|
+ return -ENOMEM;
|
|
|
|
|
|
- if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
|
|
|
- return -ENODEV;
|
|
|
+ priv->cfg = cfg;
|
|
|
+ priv->i2c = i2c;
|
|
|
+ priv->if1_freq = if1;
|
|
|
|
|
|
- if (id != PART_REV)
|
|
|
+ if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
|
|
|
+ kfree(priv);
|
|
|
return -ENODEV;
|
|
|
+ }
|
|
|
|
|
|
+ if (id != PART_REV) {
|
|
|
+ kfree(priv);
|
|
|
+ return -ENODEV;
|
|
|
+ }
|
|
|
printk(KERN_INFO "MT2060: successfully identified\n");
|
|
|
+ memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
|
|
|
+
|
|
|
+ fe->tuner_priv = priv;
|
|
|
|
|
|
- mt2060_calibrate(state);
|
|
|
+ mt2060_calibrate(priv);
|
|
|
|
|
|
return 0;
|
|
|
}
|