|
@@ -0,0 +1,1057 @@
|
|
|
+/*
|
|
|
+ * Freescale GPMI NAND Flash Driver
|
|
|
+ *
|
|
|
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
|
|
|
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License along
|
|
|
+ * with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
+ */
|
|
|
+#include <linux/mtd/gpmi-nand.h>
|
|
|
+#include <linux/delay.h>
|
|
|
+#include <linux/clk.h>
|
|
|
+#include <mach/mxs.h>
|
|
|
+
|
|
|
+#include "gpmi-nand.h"
|
|
|
+#include "gpmi-regs.h"
|
|
|
+#include "bch-regs.h"
|
|
|
+
|
|
|
+struct timing_threshod timing_default_threshold = {
|
|
|
+ .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
|
|
|
+ BP_GPMI_TIMING0_DATA_SETUP),
|
|
|
+ .internal_data_setup_in_ns = 0,
|
|
|
+ .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
|
|
|
+ BP_GPMI_CTRL1_RDN_DELAY),
|
|
|
+ .max_dll_clock_period_in_ns = 32,
|
|
|
+ .max_dll_delay_in_ns = 16,
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Clear the bit and poll it cleared. This is usually called with
|
|
|
+ * a reset address and mask being either SFTRST(bit 31) or CLKGATE
|
|
|
+ * (bit 30).
|
|
|
+ */
|
|
|
+static int clear_poll_bit(void __iomem *addr, u32 mask)
|
|
|
+{
|
|
|
+ int timeout = 0x400;
|
|
|
+
|
|
|
+ /* clear the bit */
|
|
|
+ __mxs_clrl(mask, addr);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * SFTRST needs 3 GPMI clocks to settle, the reference manual
|
|
|
+ * recommends to wait 1us.
|
|
|
+ */
|
|
|
+ udelay(1);
|
|
|
+
|
|
|
+ /* poll the bit becoming clear */
|
|
|
+ while ((readl(addr) & mask) && --timeout)
|
|
|
+ /* nothing */;
|
|
|
+
|
|
|
+ return !timeout;
|
|
|
+}
|
|
|
+
|
|
|
+#define MODULE_CLKGATE (1 << 30)
|
|
|
+#define MODULE_SFTRST (1 << 31)
|
|
|
+/*
|
|
|
+ * The current mxs_reset_block() will do two things:
|
|
|
+ * [1] enable the module.
|
|
|
+ * [2] reset the module.
|
|
|
+ *
|
|
|
+ * In most of the cases, it's ok. But there is a hardware bug in the BCH block.
|
|
|
+ * If you try to soft reset the BCH block, it becomes unusable until
|
|
|
+ * the next hard reset. This case occurs in the NAND boot mode. When the board
|
|
|
+ * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
|
|
|
+ * So If the driver tries to reset the BCH again, the BCH will not work anymore.
|
|
|
+ * You will see a DMA timeout in this case.
|
|
|
+ *
|
|
|
+ * To avoid this bug, just add a new parameter `just_enable` for
|
|
|
+ * the mxs_reset_block(), and rewrite it here.
|
|
|
+ */
|
|
|
+int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
|
|
|
+{
|
|
|
+ int ret;
|
|
|
+ int timeout = 0x400;
|
|
|
+
|
|
|
+ /* clear and poll SFTRST */
|
|
|
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
|
|
|
+ if (unlikely(ret))
|
|
|
+ goto error;
|
|
|
+
|
|
|
+ /* clear CLKGATE */
|
|
|
+ __mxs_clrl(MODULE_CLKGATE, reset_addr);
|
|
|
+
|
|
|
+ if (!just_enable) {
|
|
|
+ /* set SFTRST to reset the block */
|
|
|
+ __mxs_setl(MODULE_SFTRST, reset_addr);
|
|
|
+ udelay(1);
|
|
|
+
|
|
|
+ /* poll CLKGATE becoming set */
|
|
|
+ while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
|
|
|
+ /* nothing */;
|
|
|
+ if (unlikely(!timeout))
|
|
|
+ goto error;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* clear and poll SFTRST */
|
|
|
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
|
|
|
+ if (unlikely(ret))
|
|
|
+ goto error;
|
|
|
+
|
|
|
+ /* clear and poll CLKGATE */
|
|
|
+ ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
|
|
|
+ if (unlikely(ret))
|
|
|
+ goto error;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+
|
|
|
+error:
|
|
|
+ pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
|
|
|
+ return -ETIMEDOUT;
|
|
|
+}
|
|
|
+
|
|
|
+int gpmi_init(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ ret = clk_enable(r->clock);
|
|
|
+ if (ret)
|
|
|
+ goto err_out;
|
|
|
+ ret = gpmi_reset_block(r->gpmi_regs, false);
|
|
|
+ if (ret)
|
|
|
+ goto err_out;
|
|
|
+
|
|
|
+ /* Choose NAND mode. */
|
|
|
+ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
|
|
|
+
|
|
|
+ /* Set the IRQ polarity. */
|
|
|
+ writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
|
|
|
+ r->gpmi_regs + HW_GPMI_CTRL1_SET);
|
|
|
+
|
|
|
+ /* Disable Write-Protection. */
|
|
|
+ writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
|
|
|
+
|
|
|
+ /* Select BCH ECC. */
|
|
|
+ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
|
|
|
+
|
|
|
+ clk_disable(r->clock);
|
|
|
+ return 0;
|
|
|
+err_out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/* This function is very useful. It is called only when the bug occur. */
|
|
|
+void gpmi_dump_info(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ struct bch_geometry *geo = &this->bch_geometry;
|
|
|
+ u32 reg;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ pr_err("Show GPMI registers :\n");
|
|
|
+ for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
|
|
|
+ reg = readl(r->gpmi_regs + i * 0x10);
|
|
|
+ pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* start to print out the BCH info */
|
|
|
+ pr_err("BCH Geometry :\n");
|
|
|
+ pr_err("GF length : %u\n", geo->gf_len);
|
|
|
+ pr_err("ECC Strength : %u\n", geo->ecc_strength);
|
|
|
+ pr_err("Page Size in Bytes : %u\n", geo->page_size);
|
|
|
+ pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
|
|
|
+ pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
|
|
|
+ pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
|
|
|
+ pr_err("Payload Size in Bytes : %u\n", geo->payload_size);
|
|
|
+ pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
|
|
|
+ pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
|
|
|
+ pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
|
|
|
+ pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
|
|
|
+}
|
|
|
+
|
|
|
+/* Configures the geometry for BCH. */
|
|
|
+int bch_set_geometry(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ struct bch_geometry *bch_geo = &this->bch_geometry;
|
|
|
+ unsigned int block_count;
|
|
|
+ unsigned int block_size;
|
|
|
+ unsigned int metadata_size;
|
|
|
+ unsigned int ecc_strength;
|
|
|
+ unsigned int page_size;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ if (common_nfc_set_geometry(this))
|
|
|
+ return !0;
|
|
|
+
|
|
|
+ block_count = bch_geo->ecc_chunk_count - 1;
|
|
|
+ block_size = bch_geo->ecc_chunk_size;
|
|
|
+ metadata_size = bch_geo->metadata_size;
|
|
|
+ ecc_strength = bch_geo->ecc_strength >> 1;
|
|
|
+ page_size = bch_geo->page_size;
|
|
|
+
|
|
|
+ ret = clk_enable(r->clock);
|
|
|
+ if (ret)
|
|
|
+ goto err_out;
|
|
|
+
|
|
|
+ ret = gpmi_reset_block(r->bch_regs, true);
|
|
|
+ if (ret)
|
|
|
+ goto err_out;
|
|
|
+
|
|
|
+ /* Configure layout 0. */
|
|
|
+ writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
|
|
|
+ | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
|
|
|
+ | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength)
|
|
|
+ | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size),
|
|
|
+ r->bch_regs + HW_BCH_FLASH0LAYOUT0);
|
|
|
+
|
|
|
+ writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
|
|
|
+ | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength)
|
|
|
+ | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size),
|
|
|
+ r->bch_regs + HW_BCH_FLASH0LAYOUT1);
|
|
|
+
|
|
|
+ /* Set *all* chip selects to use layout 0. */
|
|
|
+ writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
|
|
|
+
|
|
|
+ /* Enable interrupts. */
|
|
|
+ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
|
|
|
+ r->bch_regs + HW_BCH_CTRL_SET);
|
|
|
+
|
|
|
+ clk_disable(r->clock);
|
|
|
+ return 0;
|
|
|
+err_out:
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/* Converts time in nanoseconds to cycles. */
|
|
|
+static unsigned int ns_to_cycles(unsigned int time,
|
|
|
+ unsigned int period, unsigned int min)
|
|
|
+{
|
|
|
+ unsigned int k;
|
|
|
+
|
|
|
+ k = (time + period - 1) / period;
|
|
|
+ return max(k, min);
|
|
|
+}
|
|
|
+
|
|
|
+/* Apply timing to current hardware conditions. */
|
|
|
+static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
|
|
|
+ struct gpmi_nfc_hardware_timing *hw)
|
|
|
+{
|
|
|
+ struct gpmi_nand_platform_data *pdata = this->pdata;
|
|
|
+ struct timing_threshod *nfc = &timing_default_threshold;
|
|
|
+ struct nand_chip *nand = &this->nand;
|
|
|
+ struct nand_timing target = this->timing;
|
|
|
+ bool improved_timing_is_available;
|
|
|
+ unsigned long clock_frequency_in_hz;
|
|
|
+ unsigned int clock_period_in_ns;
|
|
|
+ bool dll_use_half_periods;
|
|
|
+ unsigned int dll_delay_shift;
|
|
|
+ unsigned int max_sample_delay_in_ns;
|
|
|
+ unsigned int address_setup_in_cycles;
|
|
|
+ unsigned int data_setup_in_ns;
|
|
|
+ unsigned int data_setup_in_cycles;
|
|
|
+ unsigned int data_hold_in_cycles;
|
|
|
+ int ideal_sample_delay_in_ns;
|
|
|
+ unsigned int sample_delay_factor;
|
|
|
+ int tEYE;
|
|
|
+ unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
|
|
|
+ unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If there are multiple chips, we need to relax the timings to allow
|
|
|
+ * for signal distortion due to higher capacitance.
|
|
|
+ */
|
|
|
+ if (nand->numchips > 2) {
|
|
|
+ target.data_setup_in_ns += 10;
|
|
|
+ target.data_hold_in_ns += 10;
|
|
|
+ target.address_setup_in_ns += 10;
|
|
|
+ } else if (nand->numchips > 1) {
|
|
|
+ target.data_setup_in_ns += 5;
|
|
|
+ target.data_hold_in_ns += 5;
|
|
|
+ target.address_setup_in_ns += 5;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Check if improved timing information is available. */
|
|
|
+ improved_timing_is_available =
|
|
|
+ (target.tREA_in_ns >= 0) &&
|
|
|
+ (target.tRLOH_in_ns >= 0) &&
|
|
|
+ (target.tRHOH_in_ns >= 0) ;
|
|
|
+
|
|
|
+ /* Inspect the clock. */
|
|
|
+ clock_frequency_in_hz = nfc->clock_frequency_in_hz;
|
|
|
+ clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The NFC quantizes setup and hold parameters in terms of clock cycles.
|
|
|
+ * Here, we quantize the setup and hold timing parameters to the
|
|
|
+ * next-highest clock period to make sure we apply at least the
|
|
|
+ * specified times.
|
|
|
+ *
|
|
|
+ * For data setup and data hold, the hardware interprets a value of zero
|
|
|
+ * as the largest possible delay. This is not what's intended by a zero
|
|
|
+ * in the input parameter, so we impose a minimum of one cycle.
|
|
|
+ */
|
|
|
+ data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
|
|
|
+ clock_period_in_ns, 1);
|
|
|
+ data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
|
|
|
+ clock_period_in_ns, 1);
|
|
|
+ address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
|
|
|
+ clock_period_in_ns, 0);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The clock's period affects the sample delay in a number of ways:
|
|
|
+ *
|
|
|
+ * (1) The NFC HAL tells us the maximum clock period the sample delay
|
|
|
+ * DLL can tolerate. If the clock period is greater than half that
|
|
|
+ * maximum, we must configure the DLL to be driven by half periods.
|
|
|
+ *
|
|
|
+ * (2) We need to convert from an ideal sample delay, in ns, to a
|
|
|
+ * "sample delay factor," which the NFC uses. This factor depends on
|
|
|
+ * whether we're driving the DLL with full or half periods.
|
|
|
+ * Paraphrasing the reference manual:
|
|
|
+ *
|
|
|
+ * AD = SDF x 0.125 x RP
|
|
|
+ *
|
|
|
+ * where:
|
|
|
+ *
|
|
|
+ * AD is the applied delay, in ns.
|
|
|
+ * SDF is the sample delay factor, which is dimensionless.
|
|
|
+ * RP is the reference period, in ns, which is a full clock period
|
|
|
+ * if the DLL is being driven by full periods, or half that if
|
|
|
+ * the DLL is being driven by half periods.
|
|
|
+ *
|
|
|
+ * Let's re-arrange this in a way that's more useful to us:
|
|
|
+ *
|
|
|
+ * 8
|
|
|
+ * SDF = AD x ----
|
|
|
+ * RP
|
|
|
+ *
|
|
|
+ * The reference period is either the clock period or half that, so this
|
|
|
+ * is:
|
|
|
+ *
|
|
|
+ * 8 AD x DDF
|
|
|
+ * SDF = AD x ----- = --------
|
|
|
+ * f x P P
|
|
|
+ *
|
|
|
+ * where:
|
|
|
+ *
|
|
|
+ * f is 1 or 1/2, depending on how we're driving the DLL.
|
|
|
+ * P is the clock period.
|
|
|
+ * DDF is the DLL Delay Factor, a dimensionless value that
|
|
|
+ * incorporates all the constants in the conversion.
|
|
|
+ *
|
|
|
+ * DDF will be either 8 or 16, both of which are powers of two. We can
|
|
|
+ * reduce the cost of this conversion by using bit shifts instead of
|
|
|
+ * multiplication or division. Thus:
|
|
|
+ *
|
|
|
+ * AD << DDS
|
|
|
+ * SDF = ---------
|
|
|
+ * P
|
|
|
+ *
|
|
|
+ * or
|
|
|
+ *
|
|
|
+ * AD = (SDF >> DDS) x P
|
|
|
+ *
|
|
|
+ * where:
|
|
|
+ *
|
|
|
+ * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
|
|
|
+ */
|
|
|
+ if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
|
|
|
+ dll_use_half_periods = true;
|
|
|
+ dll_delay_shift = 3 + 1;
|
|
|
+ } else {
|
|
|
+ dll_use_half_periods = false;
|
|
|
+ dll_delay_shift = 3;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute the maximum sample delay the NFC allows, under current
|
|
|
+ * conditions. If the clock is running too slowly, no sample delay is
|
|
|
+ * possible.
|
|
|
+ */
|
|
|
+ if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
|
|
|
+ max_sample_delay_in_ns = 0;
|
|
|
+ else {
|
|
|
+ /*
|
|
|
+ * Compute the delay implied by the largest sample delay factor
|
|
|
+ * the NFC allows.
|
|
|
+ */
|
|
|
+ max_sample_delay_in_ns =
|
|
|
+ (nfc->max_sample_delay_factor * clock_period_in_ns) >>
|
|
|
+ dll_delay_shift;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Check if the implied sample delay larger than the NFC
|
|
|
+ * actually allows.
|
|
|
+ */
|
|
|
+ if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
|
|
|
+ max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Check if improved timing information is available. If not, we have to
|
|
|
+ * use a less-sophisticated algorithm.
|
|
|
+ */
|
|
|
+ if (!improved_timing_is_available) {
|
|
|
+ /*
|
|
|
+ * Fold the read setup time required by the NFC into the ideal
|
|
|
+ * sample delay.
|
|
|
+ */
|
|
|
+ ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
|
|
|
+ nfc->internal_data_setup_in_ns;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The ideal sample delay may be greater than the maximum
|
|
|
+ * allowed by the NFC. If so, we can trade off sample delay time
|
|
|
+ * for more data setup time.
|
|
|
+ *
|
|
|
+ * In each iteration of the following loop, we add a cycle to
|
|
|
+ * the data setup time and subtract a corresponding amount from
|
|
|
+ * the sample delay until we've satisified the constraints or
|
|
|
+ * can't do any better.
|
|
|
+ */
|
|
|
+ while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
|
|
|
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
|
|
|
+
|
|
|
+ data_setup_in_cycles++;
|
|
|
+ ideal_sample_delay_in_ns -= clock_period_in_ns;
|
|
|
+
|
|
|
+ if (ideal_sample_delay_in_ns < 0)
|
|
|
+ ideal_sample_delay_in_ns = 0;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute the sample delay factor that corresponds most closely
|
|
|
+ * to the ideal sample delay. If the result is too large for the
|
|
|
+ * NFC, use the maximum value.
|
|
|
+ *
|
|
|
+ * Notice that we use the ns_to_cycles function to compute the
|
|
|
+ * sample delay factor. We do this because the form of the
|
|
|
+ * computation is the same as that for calculating cycles.
|
|
|
+ */
|
|
|
+ sample_delay_factor =
|
|
|
+ ns_to_cycles(
|
|
|
+ ideal_sample_delay_in_ns << dll_delay_shift,
|
|
|
+ clock_period_in_ns, 0);
|
|
|
+
|
|
|
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
|
|
|
+ sample_delay_factor = nfc->max_sample_delay_factor;
|
|
|
+
|
|
|
+ /* Skip to the part where we return our results. */
|
|
|
+ goto return_results;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If control arrives here, we have more detailed timing information,
|
|
|
+ * so we can use a better algorithm.
|
|
|
+ */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Fold the read setup time required by the NFC into the maximum
|
|
|
+ * propagation delay.
|
|
|
+ */
|
|
|
+ max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Earlier, we computed the number of clock cycles required to satisfy
|
|
|
+ * the data setup time. Now, we need to know the actual nanoseconds.
|
|
|
+ */
|
|
|
+ data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute tEYE, the width of the data eye when reading from the NAND
|
|
|
+ * Flash. The eye width is fundamentally determined by the data setup
|
|
|
+ * time, perturbed by propagation delays and some characteristics of the
|
|
|
+ * NAND Flash device.
|
|
|
+ *
|
|
|
+ * start of the eye = max_prop_delay + tREA
|
|
|
+ * end of the eye = min_prop_delay + tRHOH + data_setup
|
|
|
+ */
|
|
|
+ tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
|
|
|
+ (int)data_setup_in_ns;
|
|
|
+
|
|
|
+ tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The eye must be open. If it's not, we can try to open it by
|
|
|
+ * increasing its main forcer, the data setup time.
|
|
|
+ *
|
|
|
+ * In each iteration of the following loop, we increase the data setup
|
|
|
+ * time by a single clock cycle. We do this until either the eye is
|
|
|
+ * open or we run into NFC limits.
|
|
|
+ */
|
|
|
+ while ((tEYE <= 0) &&
|
|
|
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
|
|
|
+ /* Give a cycle to data setup. */
|
|
|
+ data_setup_in_cycles++;
|
|
|
+ /* Synchronize the data setup time with the cycles. */
|
|
|
+ data_setup_in_ns += clock_period_in_ns;
|
|
|
+ /* Adjust tEYE accordingly. */
|
|
|
+ tEYE += clock_period_in_ns;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * When control arrives here, the eye is open. The ideal time to sample
|
|
|
+ * the data is in the center of the eye:
|
|
|
+ *
|
|
|
+ * end of the eye + start of the eye
|
|
|
+ * --------------------------------- - data_setup
|
|
|
+ * 2
|
|
|
+ *
|
|
|
+ * After some algebra, this simplifies to the code immediately below.
|
|
|
+ */
|
|
|
+ ideal_sample_delay_in_ns =
|
|
|
+ ((int)max_prop_delay_in_ns +
|
|
|
+ (int)target.tREA_in_ns +
|
|
|
+ (int)min_prop_delay_in_ns +
|
|
|
+ (int)target.tRHOH_in_ns -
|
|
|
+ (int)data_setup_in_ns) >> 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The following figure illustrates some aspects of a NAND Flash read:
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * __ _____________________________________
|
|
|
+ * RDN \_________________/
|
|
|
+ *
|
|
|
+ * <---- tEYE ----->
|
|
|
+ * /-----------------\
|
|
|
+ * Read Data ----------------------------< >---------
|
|
|
+ * \-----------------/
|
|
|
+ * ^ ^ ^ ^
|
|
|
+ * | | | |
|
|
|
+ * |<--Data Setup -->|<--Delay Time -->| |
|
|
|
+ * | | | |
|
|
|
+ * | | |
|
|
|
+ * | |<-- Quantized Delay Time -->|
|
|
|
+ * | | |
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * We have some issues we must now address:
|
|
|
+ *
|
|
|
+ * (1) The *ideal* sample delay time must not be negative. If it is, we
|
|
|
+ * jam it to zero.
|
|
|
+ *
|
|
|
+ * (2) The *ideal* sample delay time must not be greater than that
|
|
|
+ * allowed by the NFC. If it is, we can increase the data setup
|
|
|
+ * time, which will reduce the delay between the end of the data
|
|
|
+ * setup and the center of the eye. It will also make the eye
|
|
|
+ * larger, which might help with the next issue...
|
|
|
+ *
|
|
|
+ * (3) The *quantized* sample delay time must not fall either before the
|
|
|
+ * eye opens or after it closes (the latter is the problem
|
|
|
+ * illustrated in the above figure).
|
|
|
+ */
|
|
|
+
|
|
|
+ /* Jam a negative ideal sample delay to zero. */
|
|
|
+ if (ideal_sample_delay_in_ns < 0)
|
|
|
+ ideal_sample_delay_in_ns = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Extend the data setup as needed to reduce the ideal sample delay
|
|
|
+ * below the maximum permitted by the NFC.
|
|
|
+ */
|
|
|
+ while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
|
|
|
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
|
|
|
+
|
|
|
+ /* Give a cycle to data setup. */
|
|
|
+ data_setup_in_cycles++;
|
|
|
+ /* Synchronize the data setup time with the cycles. */
|
|
|
+ data_setup_in_ns += clock_period_in_ns;
|
|
|
+ /* Adjust tEYE accordingly. */
|
|
|
+ tEYE += clock_period_in_ns;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Decrease the ideal sample delay by one half cycle, to keep it
|
|
|
+ * in the middle of the eye.
|
|
|
+ */
|
|
|
+ ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
|
|
|
+
|
|
|
+ /* Jam a negative ideal sample delay to zero. */
|
|
|
+ if (ideal_sample_delay_in_ns < 0)
|
|
|
+ ideal_sample_delay_in_ns = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Compute the sample delay factor that corresponds to the ideal sample
|
|
|
+ * delay. If the result is too large, then use the maximum allowed
|
|
|
+ * value.
|
|
|
+ *
|
|
|
+ * Notice that we use the ns_to_cycles function to compute the sample
|
|
|
+ * delay factor. We do this because the form of the computation is the
|
|
|
+ * same as that for calculating cycles.
|
|
|
+ */
|
|
|
+ sample_delay_factor =
|
|
|
+ ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
|
|
|
+ clock_period_in_ns, 0);
|
|
|
+
|
|
|
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
|
|
|
+ sample_delay_factor = nfc->max_sample_delay_factor;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * These macros conveniently encapsulate a computation we'll use to
|
|
|
+ * continuously evaluate whether or not the data sample delay is inside
|
|
|
+ * the eye.
|
|
|
+ */
|
|
|
+ #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
|
|
|
+
|
|
|
+ #define QUANTIZED_DELAY \
|
|
|
+ ((int) ((sample_delay_factor * clock_period_in_ns) >> \
|
|
|
+ dll_delay_shift))
|
|
|
+
|
|
|
+ #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
|
|
|
+
|
|
|
+ #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
|
|
|
+
|
|
|
+ /*
|
|
|
+ * While the quantized sample time falls outside the eye, reduce the
|
|
|
+ * sample delay or extend the data setup to move the sampling point back
|
|
|
+ * toward the eye. Do not allow the number of data setup cycles to
|
|
|
+ * exceed the maximum allowed by the NFC.
|
|
|
+ */
|
|
|
+ while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
|
|
|
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
|
|
|
+ /*
|
|
|
+ * If control arrives here, the quantized sample delay falls
|
|
|
+ * outside the eye. Check if it's before the eye opens, or after
|
|
|
+ * the eye closes.
|
|
|
+ */
|
|
|
+ if (QUANTIZED_DELAY > IDEAL_DELAY) {
|
|
|
+ /*
|
|
|
+ * If control arrives here, the quantized sample delay
|
|
|
+ * falls after the eye closes. Decrease the quantized
|
|
|
+ * delay time and then go back to re-evaluate.
|
|
|
+ */
|
|
|
+ if (sample_delay_factor != 0)
|
|
|
+ sample_delay_factor--;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If control arrives here, the quantized sample delay falls
|
|
|
+ * before the eye opens. Shift the sample point by increasing
|
|
|
+ * data setup time. This will also make the eye larger.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* Give a cycle to data setup. */
|
|
|
+ data_setup_in_cycles++;
|
|
|
+ /* Synchronize the data setup time with the cycles. */
|
|
|
+ data_setup_in_ns += clock_period_in_ns;
|
|
|
+ /* Adjust tEYE accordingly. */
|
|
|
+ tEYE += clock_period_in_ns;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Decrease the ideal sample delay by one half cycle, to keep it
|
|
|
+ * in the middle of the eye.
|
|
|
+ */
|
|
|
+ ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
|
|
|
+
|
|
|
+ /* ...and one less period for the delay time. */
|
|
|
+ ideal_sample_delay_in_ns -= clock_period_in_ns;
|
|
|
+
|
|
|
+ /* Jam a negative ideal sample delay to zero. */
|
|
|
+ if (ideal_sample_delay_in_ns < 0)
|
|
|
+ ideal_sample_delay_in_ns = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We have a new ideal sample delay, so re-compute the quantized
|
|
|
+ * delay.
|
|
|
+ */
|
|
|
+ sample_delay_factor =
|
|
|
+ ns_to_cycles(
|
|
|
+ ideal_sample_delay_in_ns << dll_delay_shift,
|
|
|
+ clock_period_in_ns, 0);
|
|
|
+
|
|
|
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
|
|
|
+ sample_delay_factor = nfc->max_sample_delay_factor;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Control arrives here when we're ready to return our results. */
|
|
|
+return_results:
|
|
|
+ hw->data_setup_in_cycles = data_setup_in_cycles;
|
|
|
+ hw->data_hold_in_cycles = data_hold_in_cycles;
|
|
|
+ hw->address_setup_in_cycles = address_setup_in_cycles;
|
|
|
+ hw->use_half_periods = dll_use_half_periods;
|
|
|
+ hw->sample_delay_factor = sample_delay_factor;
|
|
|
+
|
|
|
+ /* Return success. */
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Begin the I/O */
|
|
|
+void gpmi_begin(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ struct timing_threshod *nfc = &timing_default_threshold;
|
|
|
+ unsigned char *gpmi_regs = r->gpmi_regs;
|
|
|
+ unsigned int clock_period_in_ns;
|
|
|
+ uint32_t reg;
|
|
|
+ unsigned int dll_wait_time_in_us;
|
|
|
+ struct gpmi_nfc_hardware_timing hw;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ /* Enable the clock. */
|
|
|
+ ret = clk_enable(r->clock);
|
|
|
+ if (ret) {
|
|
|
+ pr_err("We failed in enable the clk\n");
|
|
|
+ goto err_out;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* set ready/busy timeout */
|
|
|
+ writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT,
|
|
|
+ gpmi_regs + HW_GPMI_TIMING1);
|
|
|
+
|
|
|
+ /* Get the timing information we need. */
|
|
|
+ nfc->clock_frequency_in_hz = clk_get_rate(r->clock);
|
|
|
+ clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
|
|
|
+
|
|
|
+ gpmi_nfc_compute_hardware_timing(this, &hw);
|
|
|
+
|
|
|
+ /* Set up all the simple timing parameters. */
|
|
|
+ reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
|
|
|
+ BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
|
|
|
+ BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ;
|
|
|
+
|
|
|
+ writel(reg, gpmi_regs + HW_GPMI_TIMING0);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD.
|
|
|
+ */
|
|
|
+ writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
|
|
|
+
|
|
|
+ /* Clear out the DLL control fields. */
|
|
|
+ writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR);
|
|
|
+ writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR);
|
|
|
+
|
|
|
+ /* If no sample delay is called for, return immediately. */
|
|
|
+ if (!hw.sample_delay_factor)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Configure the HALF_PERIOD flag. */
|
|
|
+ if (hw.use_half_periods)
|
|
|
+ writel(BM_GPMI_CTRL1_HALF_PERIOD,
|
|
|
+ gpmi_regs + HW_GPMI_CTRL1_SET);
|
|
|
+
|
|
|
+ /* Set the delay factor. */
|
|
|
+ writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor),
|
|
|
+ gpmi_regs + HW_GPMI_CTRL1_SET);
|
|
|
+
|
|
|
+ /* Enable the DLL. */
|
|
|
+ writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * After we enable the GPMI DLL, we have to wait 64 clock cycles before
|
|
|
+ * we can use the GPMI.
|
|
|
+ *
|
|
|
+ * Calculate the amount of time we need to wait, in microseconds.
|
|
|
+ */
|
|
|
+ dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
|
|
|
+
|
|
|
+ if (!dll_wait_time_in_us)
|
|
|
+ dll_wait_time_in_us = 1;
|
|
|
+
|
|
|
+ /* Wait for the DLL to settle. */
|
|
|
+ udelay(dll_wait_time_in_us);
|
|
|
+
|
|
|
+err_out:
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+void gpmi_end(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ clk_disable(r->clock);
|
|
|
+}
|
|
|
+
|
|
|
+/* Clears a BCH interrupt. */
|
|
|
+void gpmi_clear_bch(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
|
|
|
+}
|
|
|
+
|
|
|
+/* Returns the Ready/Busy status of the given chip. */
|
|
|
+int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
|
|
|
+{
|
|
|
+ struct resources *r = &this->resources;
|
|
|
+ uint32_t mask = 0;
|
|
|
+ uint32_t reg = 0;
|
|
|
+
|
|
|
+ if (GPMI_IS_MX23(this)) {
|
|
|
+ mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
|
|
|
+ reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
|
|
|
+ } else if (GPMI_IS_MX28(this)) {
|
|
|
+ mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
|
|
|
+ reg = readl(r->gpmi_regs + HW_GPMI_STAT);
|
|
|
+ } else
|
|
|
+ pr_err("unknow arch.\n");
|
|
|
+ return reg & mask;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void set_dma_type(struct gpmi_nand_data *this,
|
|
|
+ enum dma_ops_type type)
|
|
|
+{
|
|
|
+ this->last_dma_type = this->dma_type;
|
|
|
+ this->dma_type = type;
|
|
|
+}
|
|
|
+
|
|
|
+int gpmi_send_command(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct dma_chan *channel = get_dma_chan(this);
|
|
|
+ struct dma_async_tx_descriptor *desc;
|
|
|
+ struct scatterlist *sgl;
|
|
|
+ int chip = this->current_chip;
|
|
|
+ u32 pio[3];
|
|
|
+
|
|
|
+ /* [1] send out the PIO words */
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
|
|
|
+ | BM_GPMI_CTRL0_ADDRESS_INCREMENT
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
|
|
|
+ pio[1] = pio[2] = 0;
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio,
|
|
|
+ ARRAY_SIZE(pio), DMA_NONE, 0);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 1 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
|
|
|
+ sgl = &this->cmd_sgl;
|
|
|
+
|
|
|
+ sg_init_one(sgl, this->cmd_buffer, this->command_length);
|
|
|
+ dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ sgl, 1, DMA_TO_DEVICE, 1);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 2 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [3] submit the DMA */
|
|
|
+ set_dma_type(this, DMA_FOR_COMMAND);
|
|
|
+ return start_dma_without_bch_irq(this, desc);
|
|
|
+}
|
|
|
+
|
|
|
+int gpmi_send_data(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct dma_async_tx_descriptor *desc;
|
|
|
+ struct dma_chan *channel = get_dma_chan(this);
|
|
|
+ int chip = this->current_chip;
|
|
|
+ uint32_t command_mode;
|
|
|
+ uint32_t address;
|
|
|
+ u32 pio[2];
|
|
|
+
|
|
|
+ /* [1] PIO */
|
|
|
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
|
|
|
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
|
|
|
+
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(address)
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
|
|
|
+ pio[1] = 0;
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio,
|
|
|
+ ARRAY_SIZE(pio), DMA_NONE, 0);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 1 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [2] send DMA request */
|
|
|
+ prepare_data_dma(this, DMA_TO_DEVICE);
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
|
|
|
+ 1, DMA_TO_DEVICE, 1);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 2 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ /* [3] submit the DMA */
|
|
|
+ set_dma_type(this, DMA_FOR_WRITE_DATA);
|
|
|
+ return start_dma_without_bch_irq(this, desc);
|
|
|
+}
|
|
|
+
|
|
|
+int gpmi_read_data(struct gpmi_nand_data *this)
|
|
|
+{
|
|
|
+ struct dma_async_tx_descriptor *desc;
|
|
|
+ struct dma_chan *channel = get_dma_chan(this);
|
|
|
+ int chip = this->current_chip;
|
|
|
+ u32 pio[2];
|
|
|
+
|
|
|
+ /* [1] : send PIO */
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
|
|
|
+ pio[1] = 0;
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio,
|
|
|
+ ARRAY_SIZE(pio), DMA_NONE, 0);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 1 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [2] : send DMA request */
|
|
|
+ prepare_data_dma(this, DMA_FROM_DEVICE);
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
|
|
|
+ 1, DMA_FROM_DEVICE, 1);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 2 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [3] : submit the DMA */
|
|
|
+ set_dma_type(this, DMA_FOR_READ_DATA);
|
|
|
+ return start_dma_without_bch_irq(this, desc);
|
|
|
+}
|
|
|
+
|
|
|
+int gpmi_send_page(struct gpmi_nand_data *this,
|
|
|
+ dma_addr_t payload, dma_addr_t auxiliary)
|
|
|
+{
|
|
|
+ struct bch_geometry *geo = &this->bch_geometry;
|
|
|
+ uint32_t command_mode;
|
|
|
+ uint32_t address;
|
|
|
+ uint32_t ecc_command;
|
|
|
+ uint32_t buffer_mask;
|
|
|
+ struct dma_async_tx_descriptor *desc;
|
|
|
+ struct dma_chan *channel = get_dma_chan(this);
|
|
|
+ int chip = this->current_chip;
|
|
|
+ u32 pio[6];
|
|
|
+
|
|
|
+ /* A DMA descriptor that does an ECC page read. */
|
|
|
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
|
|
|
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
|
|
|
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
|
|
|
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
|
|
|
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
|
|
|
+
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(address)
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
|
|
|
+ pio[1] = 0;
|
|
|
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
|
|
|
+ | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
|
|
|
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
|
|
|
+ pio[3] = geo->page_size;
|
|
|
+ pio[4] = payload;
|
|
|
+ pio[5] = auxiliary;
|
|
|
+
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio,
|
|
|
+ ARRAY_SIZE(pio), DMA_NONE, 0);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 2 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
|
|
|
+ return start_dma_with_bch_irq(this, desc);
|
|
|
+}
|
|
|
+
|
|
|
+int gpmi_read_page(struct gpmi_nand_data *this,
|
|
|
+ dma_addr_t payload, dma_addr_t auxiliary)
|
|
|
+{
|
|
|
+ struct bch_geometry *geo = &this->bch_geometry;
|
|
|
+ uint32_t command_mode;
|
|
|
+ uint32_t address;
|
|
|
+ uint32_t ecc_command;
|
|
|
+ uint32_t buffer_mask;
|
|
|
+ struct dma_async_tx_descriptor *desc;
|
|
|
+ struct dma_chan *channel = get_dma_chan(this);
|
|
|
+ int chip = this->current_chip;
|
|
|
+ u32 pio[6];
|
|
|
+
|
|
|
+ /* [1] Wait for the chip to report ready. */
|
|
|
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
|
|
|
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
|
|
|
+
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(address)
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
|
|
|
+ pio[1] = 0;
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio, 2, DMA_NONE, 0);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 1 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [2] Enable the BCH block and read. */
|
|
|
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
|
|
|
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
|
|
|
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
|
|
|
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
|
|
|
+ | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
|
|
|
+
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(address)
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
|
|
|
+
|
|
|
+ pio[1] = 0;
|
|
|
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
|
|
|
+ | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
|
|
|
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
|
|
|
+ pio[3] = geo->page_size;
|
|
|
+ pio[4] = payload;
|
|
|
+ pio[5] = auxiliary;
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio,
|
|
|
+ ARRAY_SIZE(pio), DMA_NONE, 1);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 2 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [3] Disable the BCH block */
|
|
|
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
|
|
|
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
|
|
|
+
|
|
|
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
|
|
|
+ | BM_GPMI_CTRL0_WORD_LENGTH
|
|
|
+ | BF_GPMI_CTRL0_CS(chip, this)
|
|
|
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
|
|
|
+ | BF_GPMI_CTRL0_ADDRESS(address)
|
|
|
+ | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
|
|
|
+ pio[1] = 0;
|
|
|
+ desc = channel->device->device_prep_slave_sg(channel,
|
|
|
+ (struct scatterlist *)pio, 2, DMA_NONE, 1);
|
|
|
+ if (!desc) {
|
|
|
+ pr_err("step 3 error\n");
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* [4] submit the DMA */
|
|
|
+ set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
|
|
|
+ return start_dma_with_bch_irq(this, desc);
|
|
|
+}
|