|
@@ -1,7 +1,8 @@
|
|
|
/*
|
|
|
- * PPC64 (POWER4) Huge TLB Page Support for Kernel.
|
|
|
+ * PPC Huge TLB Page Support for Kernel.
|
|
|
*
|
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
|
+ * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
|
|
|
*
|
|
|
* Based on the IA-32 version:
|
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
@@ -11,24 +12,39 @@
|
|
|
#include <linux/io.h>
|
|
|
#include <linux/slab.h>
|
|
|
#include <linux/hugetlb.h>
|
|
|
+#include <linux/of_fdt.h>
|
|
|
+#include <linux/memblock.h>
|
|
|
+#include <linux/bootmem.h>
|
|
|
#include <asm/pgtable.h>
|
|
|
#include <asm/pgalloc.h>
|
|
|
#include <asm/tlb.h>
|
|
|
+#include <asm/setup.h>
|
|
|
|
|
|
#define PAGE_SHIFT_64K 16
|
|
|
#define PAGE_SHIFT_16M 24
|
|
|
#define PAGE_SHIFT_16G 34
|
|
|
|
|
|
-#define MAX_NUMBER_GPAGES 1024
|
|
|
+unsigned int HPAGE_SHIFT;
|
|
|
|
|
|
-/* Tracks the 16G pages after the device tree is scanned and before the
|
|
|
- * huge_boot_pages list is ready. */
|
|
|
-static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
|
|
|
+/*
|
|
|
+ * Tracks gpages after the device tree is scanned and before the
|
|
|
+ * huge_boot_pages list is ready. On 64-bit implementations, this is
|
|
|
+ * just used to track 16G pages and so is a single array. 32-bit
|
|
|
+ * implementations may have more than one gpage size due to limitations
|
|
|
+ * of the memory allocators, so we need multiple arrays
|
|
|
+ */
|
|
|
+#ifdef CONFIG_PPC64
|
|
|
+#define MAX_NUMBER_GPAGES 1024
|
|
|
+static u64 gpage_freearray[MAX_NUMBER_GPAGES];
|
|
|
static unsigned nr_gpages;
|
|
|
-
|
|
|
-/* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
|
|
|
- * will choke on pointers to hugepte tables, which is handy for
|
|
|
- * catching screwups early. */
|
|
|
+#else
|
|
|
+#define MAX_NUMBER_GPAGES 128
|
|
|
+struct psize_gpages {
|
|
|
+ u64 gpage_list[MAX_NUMBER_GPAGES];
|
|
|
+ unsigned int nr_gpages;
|
|
|
+};
|
|
|
+static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
|
|
|
+#endif
|
|
|
|
|
|
static inline int shift_to_mmu_psize(unsigned int shift)
|
|
|
{
|
|
@@ -49,25 +65,6 @@ static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
|
|
|
|
|
|
#define hugepd_none(hpd) ((hpd).pd == 0)
|
|
|
|
|
|
-static inline pte_t *hugepd_page(hugepd_t hpd)
|
|
|
-{
|
|
|
- BUG_ON(!hugepd_ok(hpd));
|
|
|
- return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
|
|
|
-}
|
|
|
-
|
|
|
-static inline unsigned int hugepd_shift(hugepd_t hpd)
|
|
|
-{
|
|
|
- return hpd.pd & HUGEPD_SHIFT_MASK;
|
|
|
-}
|
|
|
-
|
|
|
-static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
|
|
|
-{
|
|
|
- unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
|
|
|
- pte_t *dir = hugepd_page(*hpdp);
|
|
|
-
|
|
|
- return dir + idx;
|
|
|
-}
|
|
|
-
|
|
|
pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
|
|
|
{
|
|
|
pgd_t *pg;
|
|
@@ -93,7 +90,7 @@ pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift
|
|
|
if (is_hugepd(pm))
|
|
|
hpdp = (hugepd_t *)pm;
|
|
|
else if (!pmd_none(*pm)) {
|
|
|
- return pte_offset_map(pm, ea);
|
|
|
+ return pte_offset_kernel(pm, ea);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -114,8 +111,18 @@ pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
|
|
|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
|
unsigned long address, unsigned pdshift, unsigned pshift)
|
|
|
{
|
|
|
- pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
|
|
|
- GFP_KERNEL|__GFP_REPEAT);
|
|
|
+ struct kmem_cache *cachep;
|
|
|
+ pte_t *new;
|
|
|
+
|
|
|
+#ifdef CONFIG_PPC64
|
|
|
+ cachep = PGT_CACHE(pdshift - pshift);
|
|
|
+#else
|
|
|
+ int i;
|
|
|
+ int num_hugepd = 1 << (pshift - pdshift);
|
|
|
+ cachep = hugepte_cache;
|
|
|
+#endif
|
|
|
+
|
|
|
+ new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
|
|
|
|
|
|
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
|
|
|
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
|
|
@@ -124,10 +131,31 @@ static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
|
return -ENOMEM;
|
|
|
|
|
|
spin_lock(&mm->page_table_lock);
|
|
|
+#ifdef CONFIG_PPC64
|
|
|
if (!hugepd_none(*hpdp))
|
|
|
- kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
|
|
|
+ kmem_cache_free(cachep, new);
|
|
|
else
|
|
|
- hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
|
|
|
+ hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
|
|
|
+#else
|
|
|
+ /*
|
|
|
+ * We have multiple higher-level entries that point to the same
|
|
|
+ * actual pte location. Fill in each as we go and backtrack on error.
|
|
|
+ * We need all of these so the DTLB pgtable walk code can find the
|
|
|
+ * right higher-level entry without knowing if it's a hugepage or not.
|
|
|
+ */
|
|
|
+ for (i = 0; i < num_hugepd; i++, hpdp++) {
|
|
|
+ if (unlikely(!hugepd_none(*hpdp)))
|
|
|
+ break;
|
|
|
+ else
|
|
|
+ hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
|
|
|
+ }
|
|
|
+ /* If we bailed from the for loop early, an error occurred, clean up */
|
|
|
+ if (i < num_hugepd) {
|
|
|
+ for (i = i - 1 ; i >= 0; i--, hpdp--)
|
|
|
+ hpdp->pd = 0;
|
|
|
+ kmem_cache_free(cachep, new);
|
|
|
+ }
|
|
|
+#endif
|
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
return 0;
|
|
|
}
|
|
@@ -169,11 +197,132 @@ pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz
|
|
|
return hugepte_offset(hpdp, addr, pdshift);
|
|
|
}
|
|
|
|
|
|
+#ifdef CONFIG_PPC32
|
|
|
/* Build list of addresses of gigantic pages. This function is used in early
|
|
|
* boot before the buddy or bootmem allocator is setup.
|
|
|
*/
|
|
|
-void add_gpage(unsigned long addr, unsigned long page_size,
|
|
|
- unsigned long number_of_pages)
|
|
|
+void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
|
|
+{
|
|
|
+ unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
|
|
|
+ int i;
|
|
|
+
|
|
|
+ if (addr == 0)
|
|
|
+ return;
|
|
|
+
|
|
|
+ gpage_freearray[idx].nr_gpages = number_of_pages;
|
|
|
+
|
|
|
+ for (i = 0; i < number_of_pages; i++) {
|
|
|
+ gpage_freearray[idx].gpage_list[i] = addr;
|
|
|
+ addr += page_size;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Moves the gigantic page addresses from the temporary list to the
|
|
|
+ * huge_boot_pages list.
|
|
|
+ */
|
|
|
+int alloc_bootmem_huge_page(struct hstate *hstate)
|
|
|
+{
|
|
|
+ struct huge_bootmem_page *m;
|
|
|
+ int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
|
|
|
+ int nr_gpages = gpage_freearray[idx].nr_gpages;
|
|
|
+
|
|
|
+ if (nr_gpages == 0)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+#ifdef CONFIG_HIGHMEM
|
|
|
+ /*
|
|
|
+ * If gpages can be in highmem we can't use the trick of storing the
|
|
|
+ * data structure in the page; allocate space for this
|
|
|
+ */
|
|
|
+ m = alloc_bootmem(sizeof(struct huge_bootmem_page));
|
|
|
+ m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
|
|
|
+#else
|
|
|
+ m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
|
|
|
+#endif
|
|
|
+
|
|
|
+ list_add(&m->list, &huge_boot_pages);
|
|
|
+ gpage_freearray[idx].nr_gpages = nr_gpages;
|
|
|
+ gpage_freearray[idx].gpage_list[nr_gpages] = 0;
|
|
|
+ m->hstate = hstate;
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+/*
|
|
|
+ * Scan the command line hugepagesz= options for gigantic pages; store those in
|
|
|
+ * a list that we use to allocate the memory once all options are parsed.
|
|
|
+ */
|
|
|
+
|
|
|
+unsigned long gpage_npages[MMU_PAGE_COUNT];
|
|
|
+
|
|
|
+static int __init do_gpage_early_setup(char *param, char *val)
|
|
|
+{
|
|
|
+ static phys_addr_t size;
|
|
|
+ unsigned long npages;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The hugepagesz and hugepages cmdline options are interleaved. We
|
|
|
+ * use the size variable to keep track of whether or not this was done
|
|
|
+ * properly and skip over instances where it is incorrect. Other
|
|
|
+ * command-line parsing code will issue warnings, so we don't need to.
|
|
|
+ *
|
|
|
+ */
|
|
|
+ if ((strcmp(param, "default_hugepagesz") == 0) ||
|
|
|
+ (strcmp(param, "hugepagesz") == 0)) {
|
|
|
+ size = memparse(val, NULL);
|
|
|
+ } else if (strcmp(param, "hugepages") == 0) {
|
|
|
+ if (size != 0) {
|
|
|
+ if (sscanf(val, "%lu", &npages) <= 0)
|
|
|
+ npages = 0;
|
|
|
+ gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
|
|
|
+ size = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/*
|
|
|
+ * This function allocates physical space for pages that are larger than the
|
|
|
+ * buddy allocator can handle. We want to allocate these in highmem because
|
|
|
+ * the amount of lowmem is limited. This means that this function MUST be
|
|
|
+ * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
|
|
|
+ * allocate to grab highmem.
|
|
|
+ */
|
|
|
+void __init reserve_hugetlb_gpages(void)
|
|
|
+{
|
|
|
+ static __initdata char cmdline[COMMAND_LINE_SIZE];
|
|
|
+ phys_addr_t size, base;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
|
|
|
+ parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Walk gpage list in reverse, allocating larger page sizes first.
|
|
|
+ * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
|
|
|
+ * When we reach the point in the list where pages are no longer
|
|
|
+ * considered gpages, we're done.
|
|
|
+ */
|
|
|
+ for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
|
|
|
+ if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
|
|
|
+ continue;
|
|
|
+ else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
|
|
|
+ break;
|
|
|
+
|
|
|
+ size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
|
|
|
+ base = memblock_alloc_base(size * gpage_npages[i], size,
|
|
|
+ MEMBLOCK_ALLOC_ANYWHERE);
|
|
|
+ add_gpage(base, size, gpage_npages[i]);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#else /* PPC64 */
|
|
|
+
|
|
|
+/* Build list of addresses of gigantic pages. This function is used in early
|
|
|
+ * boot before the buddy or bootmem allocator is setup.
|
|
|
+ */
|
|
|
+void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
|
|
{
|
|
|
if (!addr)
|
|
|
return;
|
|
@@ -199,19 +348,79 @@ int alloc_bootmem_huge_page(struct hstate *hstate)
|
|
|
m->hstate = hstate;
|
|
|
return 1;
|
|
|
}
|
|
|
+#endif
|
|
|
|
|
|
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
|
|
|
{
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+#ifdef CONFIG_PPC32
|
|
|
+#define HUGEPD_FREELIST_SIZE \
|
|
|
+ ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
|
|
|
+
|
|
|
+struct hugepd_freelist {
|
|
|
+ struct rcu_head rcu;
|
|
|
+ unsigned int index;
|
|
|
+ void *ptes[0];
|
|
|
+};
|
|
|
+
|
|
|
+static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
|
|
|
+
|
|
|
+static void hugepd_free_rcu_callback(struct rcu_head *head)
|
|
|
+{
|
|
|
+ struct hugepd_freelist *batch =
|
|
|
+ container_of(head, struct hugepd_freelist, rcu);
|
|
|
+ unsigned int i;
|
|
|
+
|
|
|
+ for (i = 0; i < batch->index; i++)
|
|
|
+ kmem_cache_free(hugepte_cache, batch->ptes[i]);
|
|
|
+
|
|
|
+ free_page((unsigned long)batch);
|
|
|
+}
|
|
|
+
|
|
|
+static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
|
|
|
+{
|
|
|
+ struct hugepd_freelist **batchp;
|
|
|
+
|
|
|
+ batchp = &__get_cpu_var(hugepd_freelist_cur);
|
|
|
+
|
|
|
+ if (atomic_read(&tlb->mm->mm_users) < 2 ||
|
|
|
+ cpumask_equal(mm_cpumask(tlb->mm),
|
|
|
+ cpumask_of(smp_processor_id()))) {
|
|
|
+ kmem_cache_free(hugepte_cache, hugepte);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (*batchp == NULL) {
|
|
|
+ *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
|
|
|
+ (*batchp)->index = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ (*batchp)->ptes[(*batchp)->index++] = hugepte;
|
|
|
+ if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
|
|
|
+ call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
|
|
|
+ *batchp = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
|
|
|
unsigned long start, unsigned long end,
|
|
|
unsigned long floor, unsigned long ceiling)
|
|
|
{
|
|
|
pte_t *hugepte = hugepd_page(*hpdp);
|
|
|
- unsigned shift = hugepd_shift(*hpdp);
|
|
|
+ int i;
|
|
|
+
|
|
|
unsigned long pdmask = ~((1UL << pdshift) - 1);
|
|
|
+ unsigned int num_hugepd = 1;
|
|
|
+
|
|
|
+#ifdef CONFIG_PPC64
|
|
|
+ unsigned int shift = hugepd_shift(*hpdp);
|
|
|
+#else
|
|
|
+ /* Note: On 32-bit the hpdp may be the first of several */
|
|
|
+ num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
|
|
|
+#endif
|
|
|
|
|
|
start &= pdmask;
|
|
|
if (start < floor)
|
|
@@ -224,9 +433,15 @@ static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshif
|
|
|
if (end - 1 > ceiling - 1)
|
|
|
return;
|
|
|
|
|
|
- hpdp->pd = 0;
|
|
|
+ for (i = 0; i < num_hugepd; i++, hpdp++)
|
|
|
+ hpdp->pd = 0;
|
|
|
+
|
|
|
tlb->need_flush = 1;
|
|
|
+#ifdef CONFIG_PPC64
|
|
|
pgtable_free_tlb(tlb, hugepte, pdshift - shift);
|
|
|
+#else
|
|
|
+ hugepd_free(tlb, hugepte);
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
@@ -331,18 +546,27 @@ void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
|
|
* too.
|
|
|
*/
|
|
|
|
|
|
- pgd = pgd_offset(tlb->mm, addr);
|
|
|
do {
|
|
|
next = pgd_addr_end(addr, end);
|
|
|
+ pgd = pgd_offset(tlb->mm, addr);
|
|
|
if (!is_hugepd(pgd)) {
|
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
|
continue;
|
|
|
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
|
|
|
} else {
|
|
|
+#ifdef CONFIG_PPC32
|
|
|
+ /*
|
|
|
+ * Increment next by the size of the huge mapping since
|
|
|
+ * on 32-bit there may be more than one entry at the pgd
|
|
|
+ * level for a single hugepage, but all of them point to
|
|
|
+ * the same kmem cache that holds the hugepte.
|
|
|
+ */
|
|
|
+ next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
|
|
|
+#endif
|
|
|
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
|
|
|
addr, next, floor, ceiling);
|
|
|
}
|
|
|
- } while (pgd++, addr = next, addr != end);
|
|
|
+ } while (addr = next, addr != end);
|
|
|
}
|
|
|
|
|
|
struct page *
|
|
@@ -466,17 +690,35 @@ unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
|
|
|
unsigned long len, unsigned long pgoff,
|
|
|
unsigned long flags)
|
|
|
{
|
|
|
+#ifdef CONFIG_MM_SLICES
|
|
|
struct hstate *hstate = hstate_file(file);
|
|
|
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
|
|
|
|
|
|
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
|
|
|
+#else
|
|
|
+ return get_unmapped_area(file, addr, len, pgoff, flags);
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
|
|
|
{
|
|
|
+#ifdef CONFIG_MM_SLICES
|
|
|
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
|
|
|
|
|
|
return 1UL << mmu_psize_to_shift(psize);
|
|
|
+#else
|
|
|
+ if (!is_vm_hugetlb_page(vma))
|
|
|
+ return PAGE_SIZE;
|
|
|
+
|
|
|
+ return huge_page_size(hstate_vma(vma));
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+static inline bool is_power_of_4(unsigned long x)
|
|
|
+{
|
|
|
+ if (is_power_of_2(x))
|
|
|
+ return (__ilog2(x) % 2) ? false : true;
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
static int __init add_huge_page_size(unsigned long long size)
|
|
@@ -486,9 +728,14 @@ static int __init add_huge_page_size(unsigned long long size)
|
|
|
|
|
|
/* Check that it is a page size supported by the hardware and
|
|
|
* that it fits within pagetable and slice limits. */
|
|
|
+#ifdef CONFIG_PPC_FSL_BOOK3E
|
|
|
+ if ((size < PAGE_SIZE) || !is_power_of_4(size))
|
|
|
+ return -EINVAL;
|
|
|
+#else
|
|
|
if (!is_power_of_2(size)
|
|
|
|| (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
|
|
|
return -EINVAL;
|
|
|
+#endif
|
|
|
|
|
|
if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
|
|
|
return -EINVAL;
|
|
@@ -525,6 +772,46 @@ static int __init hugepage_setup_sz(char *str)
|
|
|
}
|
|
|
__setup("hugepagesz=", hugepage_setup_sz);
|
|
|
|
|
|
+#ifdef CONFIG_FSL_BOOKE
|
|
|
+struct kmem_cache *hugepte_cache;
|
|
|
+static int __init hugetlbpage_init(void)
|
|
|
+{
|
|
|
+ int psize;
|
|
|
+
|
|
|
+ for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
|
+ unsigned shift;
|
|
|
+
|
|
|
+ if (!mmu_psize_defs[psize].shift)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ shift = mmu_psize_to_shift(psize);
|
|
|
+
|
|
|
+ /* Don't treat normal page sizes as huge... */
|
|
|
+ if (shift != PAGE_SHIFT)
|
|
|
+ if (add_huge_page_size(1ULL << shift) < 0)
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Create a kmem cache for hugeptes. The bottom bits in the pte have
|
|
|
+ * size information encoded in them, so align them to allow this
|
|
|
+ */
|
|
|
+ hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
|
|
|
+ HUGEPD_SHIFT_MASK + 1, 0, NULL);
|
|
|
+ if (hugepte_cache == NULL)
|
|
|
+ panic("%s: Unable to create kmem cache for hugeptes\n",
|
|
|
+ __func__);
|
|
|
+
|
|
|
+ /* Default hpage size = 4M */
|
|
|
+ if (mmu_psize_defs[MMU_PAGE_4M].shift)
|
|
|
+ HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
|
|
|
+ else
|
|
|
+ panic("%s: Unable to set default huge page size\n", __func__);
|
|
|
+
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+#else
|
|
|
static int __init hugetlbpage_init(void)
|
|
|
{
|
|
|
int psize;
|
|
@@ -567,15 +854,23 @@ static int __init hugetlbpage_init(void)
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
-
|
|
|
+#endif
|
|
|
module_init(hugetlbpage_init);
|
|
|
|
|
|
void flush_dcache_icache_hugepage(struct page *page)
|
|
|
{
|
|
|
int i;
|
|
|
+ void *start;
|
|
|
|
|
|
BUG_ON(!PageCompound(page));
|
|
|
|
|
|
- for (i = 0; i < (1UL << compound_order(page)); i++)
|
|
|
- __flush_dcache_icache(page_address(page+i));
|
|
|
+ for (i = 0; i < (1UL << compound_order(page)); i++) {
|
|
|
+ if (!PageHighMem(page)) {
|
|
|
+ __flush_dcache_icache(page_address(page+i));
|
|
|
+ } else {
|
|
|
+ start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
|
|
|
+ __flush_dcache_icache(start);
|
|
|
+ kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|