|
@@ -0,0 +1,528 @@
|
|
|
+/*
|
|
|
+ * arch/tile/kernel/kprobes.c
|
|
|
+ * Kprobes on TILE-Gx
|
|
|
+ *
|
|
|
+ * Some portions copied from the MIPS version.
|
|
|
+ *
|
|
|
+ * Copyright (C) IBM Corporation, 2002, 2004
|
|
|
+ * Copyright 2006 Sony Corp.
|
|
|
+ * Copyright 2010 Cavium Networks
|
|
|
+ *
|
|
|
+ * Copyright 2012 Tilera Corporation. All Rights Reserved.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or
|
|
|
+ * modify it under the terms of the GNU General Public License
|
|
|
+ * as published by the Free Software Foundation, version 2.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful, but
|
|
|
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
|
+ * NON INFRINGEMENT. See the GNU General Public License for
|
|
|
+ * more details.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/kprobes.h>
|
|
|
+#include <linux/kdebug.h>
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/slab.h>
|
|
|
+#include <linux/uaccess.h>
|
|
|
+#include <asm/cacheflush.h>
|
|
|
+
|
|
|
+#include <arch/opcode.h>
|
|
|
+
|
|
|
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
|
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
+
|
|
|
+tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
|
|
|
+tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Check whether instruction is branch or jump, or if executing it
|
|
|
+ * has different results depending on where it is executed (e.g. lnk).
|
|
|
+ */
|
|
|
+static int __kprobes insn_has_control(kprobe_opcode_t insn)
|
|
|
+{
|
|
|
+ if (get_Mode(insn) != 0) { /* Y-format bundle */
|
|
|
+ if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
|
|
|
+ get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ switch (get_UnaryOpcodeExtension_Y1(insn)) {
|
|
|
+ case JALRP_UNARY_OPCODE_Y1:
|
|
|
+ case JALR_UNARY_OPCODE_Y1:
|
|
|
+ case JRP_UNARY_OPCODE_Y1:
|
|
|
+ case JR_UNARY_OPCODE_Y1:
|
|
|
+ case LNK_UNARY_OPCODE_Y1:
|
|
|
+ return 1;
|
|
|
+ default:
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (get_Opcode_X1(insn)) {
|
|
|
+ case BRANCH_OPCODE_X1: /* branch instructions */
|
|
|
+ case JUMP_OPCODE_X1: /* jump instructions: j and jal */
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ case RRR_0_OPCODE_X1: /* other jump instructions */
|
|
|
+ if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
|
|
|
+ return 0;
|
|
|
+ switch (get_UnaryOpcodeExtension_X1(insn)) {
|
|
|
+ case JALRP_UNARY_OPCODE_X1:
|
|
|
+ case JALR_UNARY_OPCODE_X1:
|
|
|
+ case JRP_UNARY_OPCODE_X1:
|
|
|
+ case JR_UNARY_OPCODE_X1:
|
|
|
+ case LNK_UNARY_OPCODE_X1:
|
|
|
+ return 1;
|
|
|
+ default:
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ unsigned long addr = (unsigned long)p->addr;
|
|
|
+
|
|
|
+ if (addr & (sizeof(kprobe_opcode_t) - 1))
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ if (insn_has_control(*p->addr)) {
|
|
|
+ pr_notice("Kprobes for control instructions are not "
|
|
|
+ "supported\n");
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* insn: must be on special executable page on tile. */
|
|
|
+ p->ainsn.insn = get_insn_slot();
|
|
|
+ if (!p->ainsn.insn)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * In the kprobe->ainsn.insn[] array we store the original
|
|
|
+ * instruction at index zero and a break trap instruction at
|
|
|
+ * index one.
|
|
|
+ */
|
|
|
+ memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
|
|
|
+ p->ainsn.insn[1] = breakpoint2_insn;
|
|
|
+ p->opcode = *p->addr;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ unsigned long addr_wr;
|
|
|
+
|
|
|
+ /* Operate on writable kernel text mapping. */
|
|
|
+ addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;
|
|
|
+
|
|
|
+ if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
|
|
|
+ sizeof(breakpoint_insn)))
|
|
|
+ pr_err("%s: failed to enable kprobe\n", __func__);
|
|
|
+
|
|
|
+ smp_wmb();
|
|
|
+ flush_insn_slot(p);
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_disarm_kprobe(struct kprobe *kp)
|
|
|
+{
|
|
|
+ unsigned long addr_wr;
|
|
|
+
|
|
|
+ /* Operate on writable kernel text mapping. */
|
|
|
+ addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;
|
|
|
+
|
|
|
+ if (probe_kernel_write((void *)addr_wr, &kp->opcode,
|
|
|
+ sizeof(kp->opcode)))
|
|
|
+ pr_err("%s: failed to enable kprobe\n", __func__);
|
|
|
+
|
|
|
+ smp_wmb();
|
|
|
+ flush_insn_slot(kp);
|
|
|
+}
|
|
|
+
|
|
|
+void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ if (p->ainsn.insn) {
|
|
|
+ free_insn_slot(p->ainsn.insn, 0);
|
|
|
+ p->ainsn.insn = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ kcb->prev_kprobe.kp = kprobe_running();
|
|
|
+ kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
|
+ kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
|
+ kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
|
+ kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
|
+ struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ __this_cpu_write(current_kprobe, p);
|
|
|
+ kcb->kprobe_saved_pc = regs->pc;
|
|
|
+}
|
|
|
+
|
|
|
+static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ /* Single step inline if the instruction is a break. */
|
|
|
+ if (p->opcode == breakpoint_insn ||
|
|
|
+ p->opcode == breakpoint2_insn)
|
|
|
+ regs->pc = (unsigned long)p->addr;
|
|
|
+ else
|
|
|
+ regs->pc = (unsigned long)&p->ainsn.insn[0];
|
|
|
+}
|
|
|
+
|
|
|
+static int __kprobes kprobe_handler(struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kprobe *p;
|
|
|
+ int ret = 0;
|
|
|
+ kprobe_opcode_t *addr;
|
|
|
+ struct kprobe_ctlblk *kcb;
|
|
|
+
|
|
|
+ addr = (kprobe_opcode_t *)regs->pc;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We don't want to be preempted for the entire
|
|
|
+ * duration of kprobe processing.
|
|
|
+ */
|
|
|
+ preempt_disable();
|
|
|
+ kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ /* Check we're not actually recursing. */
|
|
|
+ if (kprobe_running()) {
|
|
|
+ p = get_kprobe(addr);
|
|
|
+ if (p) {
|
|
|
+ if (kcb->kprobe_status == KPROBE_HIT_SS &&
|
|
|
+ p->ainsn.insn[0] == breakpoint_insn) {
|
|
|
+ goto no_kprobe;
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ * We have reentered the kprobe_handler(), since
|
|
|
+ * another probe was hit while within the handler.
|
|
|
+ * We here save the original kprobes variables and
|
|
|
+ * just single step on the instruction of the new probe
|
|
|
+ * without calling any user handlers.
|
|
|
+ */
|
|
|
+ save_previous_kprobe(kcb);
|
|
|
+ set_current_kprobe(p, regs, kcb);
|
|
|
+ kprobes_inc_nmissed_count(p);
|
|
|
+ prepare_singlestep(p, regs);
|
|
|
+ kcb->kprobe_status = KPROBE_REENTER;
|
|
|
+ return 1;
|
|
|
+ } else {
|
|
|
+ if (*addr != breakpoint_insn) {
|
|
|
+ /*
|
|
|
+ * The breakpoint instruction was removed by
|
|
|
+ * another cpu right after we hit, no further
|
|
|
+ * handling of this interrupt is appropriate.
|
|
|
+ */
|
|
|
+ ret = 1;
|
|
|
+ goto no_kprobe;
|
|
|
+ }
|
|
|
+ p = __this_cpu_read(current_kprobe);
|
|
|
+ if (p->break_handler && p->break_handler(p, regs))
|
|
|
+ goto ss_probe;
|
|
|
+ }
|
|
|
+ goto no_kprobe;
|
|
|
+ }
|
|
|
+
|
|
|
+ p = get_kprobe(addr);
|
|
|
+ if (!p) {
|
|
|
+ if (*addr != breakpoint_insn) {
|
|
|
+ /*
|
|
|
+ * The breakpoint instruction was removed right
|
|
|
+ * after we hit it. Another cpu has removed
|
|
|
+ * either a probepoint or a debugger breakpoint
|
|
|
+ * at this address. In either case, no further
|
|
|
+ * handling of this interrupt is appropriate.
|
|
|
+ */
|
|
|
+ ret = 1;
|
|
|
+ }
|
|
|
+ /* Not one of ours: let kernel handle it. */
|
|
|
+ goto no_kprobe;
|
|
|
+ }
|
|
|
+
|
|
|
+ set_current_kprobe(p, regs, kcb);
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
+
|
|
|
+ if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
|
+ /* Handler has already set things up, so skip ss setup. */
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ss_probe:
|
|
|
+ prepare_singlestep(p, regs);
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
+ return 1;
|
|
|
+
|
|
|
+no_kprobe:
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Called after single-stepping. p->addr is the address of the
|
|
|
+ * instruction that has been replaced by the breakpoint. To avoid the
|
|
|
+ * SMP problems that can occur when we temporarily put back the
|
|
|
+ * original opcode to single-step, we single-stepped a copy of the
|
|
|
+ * instruction. The address of this copy is p->ainsn.insn.
|
|
|
+ *
|
|
|
+ * This function prepares to return from the post-single-step
|
|
|
+ * breakpoint trap.
|
|
|
+ */
|
|
|
+static void __kprobes resume_execution(struct kprobe *p,
|
|
|
+ struct pt_regs *regs,
|
|
|
+ struct kprobe_ctlblk *kcb)
|
|
|
+{
|
|
|
+ unsigned long orig_pc = kcb->kprobe_saved_pc;
|
|
|
+ regs->pc = orig_pc + 8;
|
|
|
+}
|
|
|
+
|
|
|
+static inline int post_kprobe_handler(struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kprobe *cur = kprobe_running();
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ if (!cur)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
|
+ cur->post_handler(cur, regs, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ resume_execution(cur, regs, kcb);
|
|
|
+
|
|
|
+ /* Restore back the original saved kprobes variables and continue. */
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
|
+ restore_previous_kprobe(kcb);
|
|
|
+ goto out;
|
|
|
+ }
|
|
|
+ reset_current_kprobe();
|
|
|
+out:
|
|
|
+ preempt_enable_no_resched();
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
|
+{
|
|
|
+ struct kprobe *cur = kprobe_running();
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ if (kcb->kprobe_status & KPROBE_HIT_SS) {
|
|
|
+ /*
|
|
|
+ * We are here because the instruction being single
|
|
|
+ * stepped caused a page fault. We reset the current
|
|
|
+ * kprobe and the ip points back to the probe address
|
|
|
+ * and allow the page fault handler to continue as a
|
|
|
+ * normal page fault.
|
|
|
+ */
|
|
|
+ resume_execution(cur, regs, kcb);
|
|
|
+ reset_current_kprobe();
|
|
|
+ preempt_enable_no_resched();
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Wrapper routine for handling exceptions.
|
|
|
+ */
|
|
|
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
|
+ unsigned long val, void *data)
|
|
|
+{
|
|
|
+ struct die_args *args = (struct die_args *)data;
|
|
|
+ int ret = NOTIFY_DONE;
|
|
|
+
|
|
|
+ switch (val) {
|
|
|
+ case DIE_BREAK:
|
|
|
+ if (kprobe_handler(args->regs))
|
|
|
+ ret = NOTIFY_STOP;
|
|
|
+ break;
|
|
|
+ case DIE_SSTEPBP:
|
|
|
+ if (post_kprobe_handler(args->regs))
|
|
|
+ ret = NOTIFY_STOP;
|
|
|
+ break;
|
|
|
+ case DIE_PAGE_FAULT:
|
|
|
+ /* kprobe_running() needs smp_processor_id(). */
|
|
|
+ preempt_disable();
|
|
|
+
|
|
|
+ if (kprobe_running()
|
|
|
+ && kprobe_fault_handler(args->regs, args->trapnr))
|
|
|
+ ret = NOTIFY_STOP;
|
|
|
+ preempt_enable();
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ kcb->jprobe_saved_regs = *regs;
|
|
|
+ kcb->jprobe_saved_sp = regs->sp;
|
|
|
+
|
|
|
+ memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
|
|
|
+ MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
|
|
|
+
|
|
|
+ regs->pc = (unsigned long)(jp->entry);
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+/* Defined in the inline asm below. */
|
|
|
+void jprobe_return_end(void);
|
|
|
+
|
|
|
+void __kprobes jprobe_return(void)
|
|
|
+{
|
|
|
+ asm volatile(
|
|
|
+ "bpt\n\t"
|
|
|
+ ".globl jprobe_return_end\n"
|
|
|
+ "jprobe_return_end:\n");
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
+
|
|
|
+ if (regs->pc >= (unsigned long)jprobe_return &&
|
|
|
+ regs->pc <= (unsigned long)jprobe_return_end) {
|
|
|
+ *regs = kcb->jprobe_saved_regs;
|
|
|
+ memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
|
|
|
+ MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
|
|
|
+ preempt_enable_no_resched();
|
|
|
+
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Function return probe trampoline:
|
|
|
+ * - init_kprobes() establishes a probepoint here
|
|
|
+ * - When the probed function returns, this probe causes the
|
|
|
+ * handlers to fire
|
|
|
+ */
|
|
|
+static void __used kretprobe_trampoline_holder(void)
|
|
|
+{
|
|
|
+ asm volatile(
|
|
|
+ "nop\n\t"
|
|
|
+ ".global kretprobe_trampoline\n"
|
|
|
+ "kretprobe_trampoline:\n\t"
|
|
|
+ "nop\n\t"
|
|
|
+ : : : "memory");
|
|
|
+}
|
|
|
+
|
|
|
+void kretprobe_trampoline(void);
|
|
|
+
|
|
|
+void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+ ri->ret_addr = (kprobe_opcode_t *) regs->lr;
|
|
|
+
|
|
|
+ /* Replace the return addr with trampoline addr */
|
|
|
+ regs->lr = (unsigned long)kretprobe_trampoline;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Called when the probe at kretprobe trampoline is hit.
|
|
|
+ */
|
|
|
+static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
|
+ struct pt_regs *regs)
|
|
|
+{
|
|
|
+ struct kretprobe_instance *ri = NULL;
|
|
|
+ struct hlist_head *head, empty_rp;
|
|
|
+ struct hlist_node *tmp;
|
|
|
+ unsigned long flags, orig_ret_address = 0;
|
|
|
+ unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
|
|
|
+
|
|
|
+ INIT_HLIST_HEAD(&empty_rp);
|
|
|
+ kretprobe_hash_lock(current, &head, &flags);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * It is possible to have multiple instances associated with a given
|
|
|
+ * task either because multiple functions in the call path have
|
|
|
+ * a return probe installed on them, and/or more than one return
|
|
|
+ * return probe was registered for a target function.
|
|
|
+ *
|
|
|
+ * We can handle this because:
|
|
|
+ * - instances are always inserted at the head of the list
|
|
|
+ * - when multiple return probes are registered for the same
|
|
|
+ * function, the first instance's ret_addr will point to the
|
|
|
+ * real return address, and all the rest will point to
|
|
|
+ * kretprobe_trampoline
|
|
|
+ */
|
|
|
+ hlist_for_each_entry_safe(ri, tmp, head, hlist) {
|
|
|
+ if (ri->task != current)
|
|
|
+ /* another task is sharing our hash bucket */
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (ri->rp && ri->rp->handler)
|
|
|
+ ri->rp->handler(ri, regs);
|
|
|
+
|
|
|
+ orig_ret_address = (unsigned long)ri->ret_addr;
|
|
|
+ recycle_rp_inst(ri, &empty_rp);
|
|
|
+
|
|
|
+ if (orig_ret_address != trampoline_address) {
|
|
|
+ /*
|
|
|
+ * This is the real return address. Any other
|
|
|
+ * instances associated with this task are for
|
|
|
+ * other calls deeper on the call stack
|
|
|
+ */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
|
|
+ instruction_pointer(regs) = orig_ret_address;
|
|
|
+
|
|
|
+ reset_current_kprobe();
|
|
|
+ kretprobe_hash_unlock(current, &flags);
|
|
|
+ preempt_enable_no_resched();
|
|
|
+
|
|
|
+ hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
|
|
|
+ hlist_del(&ri->hlist);
|
|
|
+ kfree(ri);
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ * By returning a non-zero value, we are telling
|
|
|
+ * kprobe_handler() that we don't want the post_handler
|
|
|
+ * to run (and have re-enabled preemption)
|
|
|
+ */
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
|
+{
|
|
|
+ if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static struct kprobe trampoline_p = {
|
|
|
+ .addr = (kprobe_opcode_t *)kretprobe_trampoline,
|
|
|
+ .pre_handler = trampoline_probe_handler
|
|
|
+};
|
|
|
+
|
|
|
+int __init arch_init_kprobes(void)
|
|
|
+{
|
|
|
+ register_kprobe(&trampoline_p);
|
|
|
+ return 0;
|
|
|
+}
|