浏览代码

Merge branch 'linus' into x86/pci-ioapic-boot-irq-quirks

Conflicts:

	drivers/pci/quirks.c

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Ingo Molnar 17 年之前
父节点
当前提交
3e370b29d3
共有 100 个文件被更改,包括 4565 次插入3680 次删除
  1. 34 0
      Documentation/ABI/testing/sysfs-block
  2. 35 0
      Documentation/ABI/testing/sysfs-bus-css
  3. 87 40
      Documentation/ABI/testing/sysfs-firmware-acpi
  4. 71 0
      Documentation/ABI/testing/sysfs-firmware-memmap
  5. 1 1
      Documentation/HOWTO
  6. 28 9
      Documentation/IRQ-affinity.txt
  7. 3 0
      Documentation/RCU/NMI-RCU.txt
  8. 108 0
      Documentation/RCU/RTFP.txt
  9. 60 29
      Documentation/RCU/checklist.txt
  10. 33 15
      Documentation/RCU/torture.txt
  11. 39 19
      Documentation/RCU/whatisRCU.txt
  12. 327 0
      Documentation/block/data-integrity.txt
  13. 9 17
      Documentation/cputopology.txt
  14. 0 7
      Documentation/feature-removal-schedule.txt
  15. 6 4
      Documentation/filesystems/configfs/configfs.txt
  16. 8 6
      Documentation/filesystems/configfs/configfs_example.c
  17. 75 50
      Documentation/filesystems/ext4.txt
  18. 114 0
      Documentation/filesystems/gfs2-glocks.txt
  19. 18 11
      Documentation/filesystems/proc.txt
  20. 164 0
      Documentation/filesystems/ubifs.txt
  21. 205 198
      Documentation/ftrace.txt
  22. 0 47
      Documentation/i2c/busses/i2c-i810
  23. 0 23
      Documentation/i2c/busses/i2c-prosavage
  24. 0 26
      Documentation/i2c/busses/i2c-savage4
  25. 1 1
      Documentation/i2c/chips/max6875
  26. 9 1
      Documentation/i2c/chips/pca9539
  27. 5 7
      Documentation/i2c/chips/pcf8574
  28. 3 6
      Documentation/i2c/chips/pcf8575
  29. 127 0
      Documentation/i2c/fault-codes
  30. 2 2
      Documentation/i2c/smbus-protocol
  31. 40 11
      Documentation/i2c/writing-clients
  32. 1 0
      Documentation/ioctl-number.txt
  33. 4 3
      Documentation/ioctl/hdio.txt
  34. 23 5
      Documentation/kernel-parameters.txt
  35. 1 0
      Documentation/kprobes.txt
  36. 0 2
      Documentation/laptops/acer-wmi.txt
  37. 12 1033
      Documentation/powerpc/booting-without-of.txt
  38. 141 0
      Documentation/powerpc/bootwrapper.txt
  39. 29 0
      Documentation/powerpc/dts-bindings/fsl/board.txt
  40. 67 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt
  41. 21 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt
  42. 41 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt
  43. 18 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt
  44. 15 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt
  45. 45 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt
  46. 58 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt
  47. 24 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt
  48. 51 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt
  49. 60 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt
  50. 70 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt
  51. 22 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt
  52. 21 0
      Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt
  53. 18 0
      Documentation/powerpc/dts-bindings/fsl/diu.txt
  54. 127 0
      Documentation/powerpc/dts-bindings/fsl/dma.txt
  55. 31 0
      Documentation/powerpc/dts-bindings/fsl/gtm.txt
  56. 25 0
      Documentation/powerpc/dts-bindings/fsl/guts.txt
  57. 32 0
      Documentation/powerpc/dts-bindings/fsl/i2c.txt
  58. 35 0
      Documentation/powerpc/dts-bindings/fsl/lbc.txt
  59. 36 0
      Documentation/powerpc/dts-bindings/fsl/msi-pic.txt
  60. 29 0
      Documentation/powerpc/dts-bindings/fsl/sata.txt
  61. 68 0
      Documentation/powerpc/dts-bindings/fsl/sec.txt
  62. 24 0
      Documentation/powerpc/dts-bindings/fsl/spi.txt
  63. 38 0
      Documentation/powerpc/dts-bindings/fsl/ssi.txt
  64. 69 0
      Documentation/powerpc/dts-bindings/fsl/tsec.txt
  65. 59 0
      Documentation/powerpc/dts-bindings/fsl/usb.txt
  66. 2 5
      Documentation/scheduler/sched-domains.txt
  67. 2 2
      Documentation/scheduler/sched-rt-group.txt
  68. 19 5
      Documentation/scsi/aacraid.txt
  69. 14 3
      Documentation/sound/alsa/ALSA-Configuration.txt
  70. 2 2
      Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
  71. 164 0
      Documentation/tracers/mmiotrace.txt
  72. 63 17
      MAINTAINERS
  73. 21 4
      Makefile
  74. 3 0
      arch/Kconfig
  75. 1 0
      arch/alpha/Kconfig
  76. 3 3
      arch/alpha/kernel/core_marvel.c
  77. 2 3
      arch/alpha/kernel/irq.c
  78. 1 1
      arch/alpha/kernel/process.c
  79. 15 165
      arch/alpha/kernel/smp.c
  80. 3 3
      arch/alpha/oprofile/common.c
  81. 61 30
      arch/arm/Kconfig
  82. 4 4
      arch/arm/Makefile
  83. 6 0
      arch/arm/boot/compressed/Makefile
  84. 2 2
      arch/arm/boot/compressed/head.S
  85. 0 1
      arch/arm/common/Makefile
  86. 0 434
      arch/arm/common/rtctime.c
  87. 3 0
      arch/arm/common/sharpsl_pm.c
  88. 79 3
      arch/arm/configs/at91cap9adk_defconfig
  89. 0 1
      arch/arm/configs/at91rm9200dk_defconfig
  90. 0 1
      arch/arm/configs/at91rm9200ek_defconfig
  91. 0 1
      arch/arm/configs/at91sam9260ek_defconfig
  92. 0 1
      arch/arm/configs/at91sam9261ek_defconfig
  93. 0 1
      arch/arm/configs/at91sam9263ek_defconfig
  94. 1168 0
      arch/arm/configs/at91sam9g20ek_defconfig
  95. 0 1
      arch/arm/configs/at91sam9rlek_defconfig
  96. 0 1
      arch/arm/configs/ateb9200_defconfig
  97. 0 1410
      arch/arm/configs/cm_x270_defconfig
  98. 0 1
      arch/arm/configs/collie_defconfig
  99. 0 1
      arch/arm/configs/corgi_defconfig
  100. 0 1
      arch/arm/configs/ecbat91_defconfig

+ 34 - 0
Documentation/ABI/testing/sysfs-block

@@ -26,3 +26,37 @@ Description:
 		I/O statistics of partition <part>. The format is the
 		same as the above-written /sys/block/<disk>/stat
 		format.
+
+
+What:		/sys/block/<disk>/integrity/format
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+		Metadata format for integrity capable block device.
+		E.g. T10-DIF-TYPE1-CRC.
+
+
+What:		/sys/block/<disk>/integrity/read_verify
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+		Indicates whether the block layer should verify the
+		integrity of read requests serviced by devices that
+		support sending integrity metadata.
+
+
+What:		/sys/block/<disk>/integrity/tag_size
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+		Number of bytes of integrity tag space available per
+		512 bytes of data.
+
+
+What:		/sys/block/<disk>/integrity/write_generate
+Date:		June 2008
+Contact:	Martin K. Petersen <martin.petersen@oracle.com>
+Description:
+		Indicates whether the block layer should automatically
+		generate checksums for write requests bound for
+		devices that support receiving integrity metadata.

+ 35 - 0
Documentation/ABI/testing/sysfs-bus-css

@@ -0,0 +1,35 @@
+What:		/sys/bus/css/devices/.../type
+Date:		March 2008
+Contact:	Cornelia Huck <cornelia.huck@de.ibm.com>
+		linux-s390@vger.kernel.org
+Description:	Contains the subchannel type, as reported by the hardware.
+		This attribute is present for all subchannel types.
+
+What:		/sys/bus/css/devices/.../modalias
+Date:		March 2008
+Contact:	Cornelia Huck <cornelia.huck@de.ibm.com>
+		linux-s390@vger.kernel.org
+Description:	Contains the module alias as reported with uevents.
+		It is of the format css:t<type> and present for all
+		subchannel types.
+
+What:		/sys/bus/css/drivers/io_subchannel/.../chpids
+Date:		December 2002
+Contact:	Cornelia Huck <cornelia.huck@de.ibm.com>
+		linux-s390@vger.kernel.org
+Description:	Contains the ids of the channel paths used by this
+		subchannel, as reported by the channel subsystem
+		during subchannel recognition.
+		Note: This is an I/O-subchannel specific attribute.
+Users:		s390-tools, HAL
+
+What:		/sys/bus/css/drivers/io_subchannel/.../pimpampom
+Date:		December 2002
+Contact:	Cornelia Huck <cornelia.huck@de.ibm.com>
+		linux-s390@vger.kernel.org
+Description:	Contains the PIM/PAM/POM values, as reported by the
+		channel subsystem when last queried by the common I/O
+		layer (this implies that this attribute is not neccessarily
+		in sync with the values current in the channel subsystem).
+		Note: This is an I/O-subchannel specific attribute.
+Users:		s390-tools, HAL

+ 87 - 40
Documentation/ABI/testing/sysfs-firmware-acpi

@@ -29,46 +29,46 @@ Description:
 
 		$ cd /sys/firmware/acpi/interrupts
 		$ grep . *
-		error:0
-		ff_gbl_lock:0
-		ff_pmtimer:0
-		ff_pwr_btn:0
-		ff_rt_clk:0
-		ff_slp_btn:0
-		gpe00:0
-		gpe01:0
-		gpe02:0
-		gpe03:0
-		gpe04:0
-		gpe05:0
-		gpe06:0
-		gpe07:0
-		gpe08:0
-		gpe09:174
-		gpe0A:0
-		gpe0B:0
-		gpe0C:0
-		gpe0D:0
-		gpe0E:0
-		gpe0F:0
-		gpe10:0
-		gpe11:60
-		gpe12:0
-		gpe13:0
-		gpe14:0
-		gpe15:0
-		gpe16:0
-		gpe17:0
-		gpe18:0
-		gpe19:7
-		gpe1A:0
-		gpe1B:0
-		gpe1C:0
-		gpe1D:0
-		gpe1E:0
-		gpe1F:0
-		gpe_all:241
-		sci:241
+		error:	     0
+		ff_gbl_lock:	   0   enable
+		ff_pmtimer:	  0  invalid
+		ff_pwr_btn:	  0   enable
+		ff_rt_clk:	 2  disable
+		ff_slp_btn:	  0  invalid
+		gpe00:	     0	invalid
+		gpe01:	     0	 enable
+		gpe02:	   108	 enable
+		gpe03:	     0	invalid
+		gpe04:	     0	invalid
+		gpe05:	     0	invalid
+		gpe06:	     0	 enable
+		gpe07:	     0	 enable
+		gpe08:	     0	invalid
+		gpe09:	     0	invalid
+		gpe0A:	     0	invalid
+		gpe0B:	     0	invalid
+		gpe0C:	     0	invalid
+		gpe0D:	     0	invalid
+		gpe0E:	     0	invalid
+		gpe0F:	     0	invalid
+		gpe10:	     0	invalid
+		gpe11:	     0	invalid
+		gpe12:	     0	invalid
+		gpe13:	     0	invalid
+		gpe14:	     0	invalid
+		gpe15:	     0	invalid
+		gpe16:	     0	invalid
+		gpe17:	  1084	 enable
+		gpe18:	     0	 enable
+		gpe19:	     0	invalid
+		gpe1A:	     0	invalid
+		gpe1B:	     0	invalid
+		gpe1C:	     0	invalid
+		gpe1D:	     0	invalid
+		gpe1E:	     0	invalid
+		gpe1F:	     0	invalid
+		gpe_all:    1192
+		sci:	1194
 
 		sci - The total number of times the ACPI SCI
 		has claimed an interrupt.
@@ -89,6 +89,13 @@ Description:
 
 		error - an interrupt that can't be accounted for above.
 
+		invalid: it's either a wakeup GPE or a GPE/Fixed Event that
+			doesn't have an event handler.
+
+		disable: the GPE/Fixed Event is valid but disabled.
+
+		enable: the GPE/Fixed Event is valid and enabled.
+
 		Root has permission to clear any of these counters.  Eg.
 		# echo 0 > gpe11
 
@@ -97,3 +104,43 @@ Description:
 
 		None of these counters has an effect on the function
 		of the system, they are simply statistics.
+
+		Besides this, user can also write specific strings to these files
+		to enable/disable/clear ACPI interrupts in user space, which can be
+		used to debug some ACPI interrupt storm issues.
+
+		Note that only writting to VALID GPE/Fixed Event is allowed,
+		i.e. user can only change the status of runtime GPE and
+		Fixed Event with event handler installed.
+
+		Let's take power button fixed event for example, please kill acpid
+		and other user space applications so that the machine won't shutdown
+		when pressing the power button.
+		# cat ff_pwr_btn
+		0
+		# press the power button for 3 times;
+		# cat ff_pwr_btn
+		3
+		# echo disable > ff_pwr_btn
+		# cat ff_pwr_btn
+		disable
+		# press the power button for 3 times;
+		# cat ff_pwr_btn
+		disable
+		# echo enable > ff_pwr_btn
+		# cat ff_pwr_btn
+		4
+		/*
+		 * this is because the status bit is set even if the enable bit is cleared,
+		 * and it triggers an ACPI fixed event when the enable bit is set again
+		 */
+		# press the power button for 3 times;
+		# cat ff_pwr_btn
+		7
+		# echo disable > ff_pwr_btn
+		# press the power button for 3 times;
+		# echo clear > ff_pwr_btn	/* clear the status bit */
+		# echo disable > ff_pwr_btn
+		# cat ff_pwr_btn
+		7
+

+ 71 - 0
Documentation/ABI/testing/sysfs-firmware-memmap

@@ -0,0 +1,71 @@
+What:		/sys/firmware/memmap/
+Date:		June 2008
+Contact:	Bernhard Walle <bwalle@suse.de>
+Description:
+		On all platforms, the firmware provides a memory map which the
+		kernel reads. The resources from that memory map are registered
+		in the kernel resource tree and exposed to userspace via
+		/proc/iomem (together with other resources).
+
+		However, on most architectures that firmware-provided memory
+		map is modified afterwards by the kernel itself, either because
+		the kernel merges that memory map with other information or
+		just because the user overwrites that memory map via command
+		line.
+
+		kexec needs the raw firmware-provided memory map to setup the
+		parameter segment of the kernel that should be booted with
+		kexec. Also, the raw memory map is useful for debugging. For
+		that reason, /sys/firmware/memmap is an interface that provides
+		the raw memory map to userspace.
+
+		The structure is as follows: Under /sys/firmware/memmap there
+		are subdirectories with the number of the entry as their name:
+
+			/sys/firmware/memmap/0
+			/sys/firmware/memmap/1
+			/sys/firmware/memmap/2
+			/sys/firmware/memmap/3
+			...
+
+		The maximum depends on the number of memory map entries provided
+		by the firmware. The order is just the order that the firmware
+		provides.
+
+		Each directory contains three files:
+
+		start	: The start address (as hexadecimal number with the
+			  '0x' prefix).
+		end	: The end address, inclusive (regardless whether the
+			  firmware provides inclusive or exclusive ranges).
+		type	: Type of the entry as string. See below for a list of
+			  valid types.
+
+		So, for example:
+
+			/sys/firmware/memmap/0/start
+			/sys/firmware/memmap/0/end
+			/sys/firmware/memmap/0/type
+			/sys/firmware/memmap/1/start
+			...
+
+		Currently following types exist:
+
+		  - System RAM
+		  - ACPI Tables
+		  - ACPI Non-volatile Storage
+		  - reserved
+
+		Following shell snippet can be used to display that memory
+		map in a human-readable format:
+
+		-------------------- 8< ----------------------------------------
+		  #!/bin/bash
+		  cd /sys/firmware/memmap
+		  for dir in * ; do
+		      start=$(cat $dir/start)
+		      end=$(cat $dir/end)
+		      type=$(cat $dir/type)
+		      printf "%016x-%016x (%s)\n" $start $[ $end +1] "$type"
+		  done
+		-------------------- >8 ----------------------------------------

+ 1 - 1
Documentation/HOWTO

@@ -377,7 +377,7 @@ Bug Reporting
 bugzilla.kernel.org is where the Linux kernel developers track kernel
 bugs.  Users are encouraged to report all bugs that they find in this
 tool.  For details on how to use the kernel bugzilla, please see:
-	http://test.kernel.org/bugzilla/faq.html
+	http://bugzilla.kernel.org/page.cgi?id=faq.html
 
 The file REPORTING-BUGS in the main kernel source directory has a good
 template for how to report a possible kernel bug, and details what kind

+ 28 - 9
Documentation/IRQ-affinity.txt

@@ -1,17 +1,26 @@
+ChangeLog:
+	Started by Ingo Molnar <mingo@redhat.com>
+	Update by Max Krasnyansky <maxk@qualcomm.com>
 
-SMP IRQ affinity, started by Ingo Molnar <mingo@redhat.com>
-
+SMP IRQ affinity
 
 /proc/irq/IRQ#/smp_affinity specifies which target CPUs are permitted
 for a given IRQ source. It's a bitmask of allowed CPUs. It's not allowed
 to turn off all CPUs, and if an IRQ controller does not support IRQ
 affinity then the value will not change from the default 0xffffffff.
 
+/proc/irq/default_smp_affinity specifies default affinity mask that applies
+to all non-active IRQs. Once IRQ is allocated/activated its affinity bitmask
+will be set to the default mask. It can then be changed as described above.
+Default mask is 0xffffffff.
+
 Here is an example of restricting IRQ44 (eth1) to CPU0-3 then restricting
-the IRQ to CPU4-7 (this is an 8-CPU SMP box):
+it to CPU4-7 (this is an 8-CPU SMP box):
 
+[root@moon 44]# cd /proc/irq/44
 [root@moon 44]# cat smp_affinity
 ffffffff
+
 [root@moon 44]# echo 0f > smp_affinity
 [root@moon 44]# cat smp_affinity
 0000000f
@@ -21,17 +30,27 @@ PING hell (195.4.7.3): 56 data bytes
 --- hell ping statistics ---
 6029 packets transmitted, 6027 packets received, 0% packet loss
 round-trip min/avg/max = 0.1/0.1/0.4 ms
-[root@moon 44]# cat /proc/interrupts | grep 44:
- 44:          0       1785       1785       1783       1783          1
-1          0   IO-APIC-level  eth1
+[root@moon 44]# cat /proc/interrupts | grep 'CPU\|44:'
+           CPU0       CPU1       CPU2       CPU3      CPU4       CPU5        CPU6       CPU7
+ 44:       1068       1785       1785       1783         0          0           0         0    IO-APIC-level  eth1
+
+As can be seen from the line above IRQ44 was delivered only to the first four
+processors (0-3).
+Now lets restrict that IRQ to CPU(4-7).
+
 [root@moon 44]# echo f0 > smp_affinity
+[root@moon 44]# cat smp_affinity
+000000f0
 [root@moon 44]# ping -f h
 PING hell (195.4.7.3): 56 data bytes
 ..
 --- hell ping statistics ---
 2779 packets transmitted, 2777 packets received, 0% packet loss
 round-trip min/avg/max = 0.1/0.5/585.4 ms
-[root@moon 44]# cat /proc/interrupts | grep 44:
- 44:       1068       1785       1785       1784       1784       1069       1070       1069   IO-APIC-level  eth1
-[root@moon 44]#
+[root@moon 44]# cat /proc/interrupts |  'CPU\|44:'
+           CPU0       CPU1       CPU2       CPU3      CPU4       CPU5        CPU6       CPU7
+ 44:       1068       1785       1785       1783      1784       1069        1070       1069   IO-APIC-level  eth1
+
+This time around IRQ44 was delivered only to the last four processors.
+i.e counters for the CPU0-3 did not change.
 

+ 3 - 0
Documentation/RCU/NMI-RCU.txt

@@ -93,6 +93,9 @@ Since NMI handlers disable preemption, synchronize_sched() is guaranteed
 not to return until all ongoing NMI handlers exit.  It is therefore safe
 to free up the handler's data as soon as synchronize_sched() returns.
 
+Important note: for this to work, the architecture in question must
+invoke irq_enter() and irq_exit() on NMI entry and exit, respectively.
+
 
 Answer to Quick Quiz
 

+ 108 - 0
Documentation/RCU/RTFP.txt

@@ -52,6 +52,10 @@ of each iteration.  Unfortunately, chaotic relaxation requires highly
 structured data, such as the matrices used in scientific programs, and
 is thus inapplicable to most data structures in operating-system kernels.
 
+In 1992, Henry (now Alexia) Massalin completed a dissertation advising
+parallel programmers to defer processing when feasible to simplify
+synchronization.  RCU makes extremely heavy use of this advice.
+
 In 1993, Jacobson [Jacobson93] verbally described what is perhaps the
 simplest deferred-free technique: simply waiting a fixed amount of time
 before freeing blocks awaiting deferred free.  Jacobson did not describe
@@ -138,6 +142,13 @@ blocking in read-side critical sections appeared [PaulEMcKenney2006c],
 Robert Olsson described an RCU-protected trie-hash combination
 [RobertOlsson2006a].
 
+2007 saw the journal version of the award-winning RCU paper from 2006
+[ThomasEHart2007a], as well as a paper demonstrating use of Promela
+and Spin to mechanically verify an optimization to Oleg Nesterov's
+QRCU [PaulEMcKenney2007QRCUspin], a design document describing
+preemptible RCU [PaulEMcKenney2007PreemptibleRCU], and the three-part
+LWN "What is RCU?" series [PaulEMcKenney2007WhatIsRCUFundamentally,
+PaulEMcKenney2008WhatIsRCUUsage, and PaulEMcKenney2008WhatIsRCUAPI].
 
 Bibtex Entries
 
@@ -202,6 +213,20 @@ Bibtex Entries
 ,Year="1991"
 }
 
+@phdthesis{HMassalinPhD
+,author="H. Massalin"
+,title="Synthesis: An Efficient Implementation of Fundamental Operating
+System Services"
+,school="Columbia University"
+,address="New York, NY"
+,year="1992"
+,annotation="
+	Mondo optimizing compiler.
+	Wait-free stuff.
+	Good advice: defer work to avoid synchronization.
+"
+}
+
 @unpublished{Jacobson93
 ,author="Van Jacobson"
 ,title="Avoid Read-Side Locking Via Delayed Free"
@@ -635,3 +660,86 @@ Revised:
 "
 }
 
+@unpublished{PaulEMcKenney2007PreemptibleRCU
+,Author="Paul E. McKenney"
+,Title="The design of preemptible read-copy-update"
+,month="October"
+,day="8"
+,year="2007"
+,note="Available:
+\url{http://lwn.net/Articles/253651/}
+[Viewed October 25, 2007]"
+,annotation="
+	LWN article describing the design of preemptible RCU.
+"
+}
+
+########################################################################
+#
+#	"What is RCU?" LWN series.
+#
+
+@unpublished{PaulEMcKenney2007WhatIsRCUFundamentally
+,Author="Paul E. McKenney and Jonathan Walpole"
+,Title="What is {RCU}, Fundamentally?"
+,month="December"
+,day="17"
+,year="2007"
+,note="Available:
+\url{http://lwn.net/Articles/262464/}
+[Viewed December 27, 2007]"
+,annotation="
+	Lays out the three basic components of RCU: (1) publish-subscribe,
+	(2) wait for pre-existing readers to complete, and (2) maintain
+	multiple versions.
+"
+}
+
+@unpublished{PaulEMcKenney2008WhatIsRCUUsage
+,Author="Paul E. McKenney"
+,Title="What is {RCU}? Part 2: Usage"
+,month="January"
+,day="4"
+,year="2008"
+,note="Available:
+\url{http://lwn.net/Articles/263130/}
+[Viewed January 4, 2008]"
+,annotation="
+	Lays out six uses of RCU:
+	1. RCU is a Reader-Writer Lock Replacement
+	2. RCU is a Restricted Reference-Counting Mechanism
+	3. RCU is a Bulk Reference-Counting Mechanism
+	4. RCU is a Poor Man's Garbage Collector
+	5. RCU is a Way of Providing Existence Guarantees
+	6. RCU is a Way of Waiting for Things to Finish 
+"
+}
+
+@unpublished{PaulEMcKenney2008WhatIsRCUAPI
+,Author="Paul E. McKenney"
+,Title="{RCU} part 3: the {RCU} {API}"
+,month="January"
+,day="17"
+,year="2008"
+,note="Available:
+\url{http://lwn.net/Articles/264090/}
+[Viewed January 10, 2008]"
+,annotation="
+	Gives an overview of the Linux-kernel RCU API and a brief annotated RCU
+	bibliography.
+"
+}
+
+@article{DinakarGuniguntala2008IBMSysJ
+,author="D. Guniguntala and P. E. McKenney and J. Triplett and J. Walpole"
+,title="The read-copy-update mechanism for supporting real-time applications on shared-memory multiprocessor systems with {Linux}"
+,Year="2008"
+,Month="April"
+,journal="IBM Systems Journal"
+,volume="47"
+,number="2"
+,pages="@@-@@"
+,annotation="
+	RCU, realtime RCU, sleepable RCU, performance.
+"
+}

+ 60 - 29
Documentation/RCU/checklist.txt

@@ -13,10 +13,13 @@ over a rather long period of time, but improvements are always welcome!
 	detailed performance measurements show that RCU is nonetheless
 	the right tool for the job.
 
-	The other exception would be where performance is not an issue,
-	and RCU provides a simpler implementation.  An example of this
-	situation is the dynamic NMI code in the Linux 2.6 kernel,
-	at least on architectures where NMIs are rare.
+	Another exception is where performance is not an issue, and RCU
+	provides a simpler implementation.  An example of this situation
+	is the dynamic NMI code in the Linux 2.6 kernel, at least on
+	architectures where NMIs are rare.
+
+	Yet another exception is where the low real-time latency of RCU's
+	read-side primitives is critically important.
 
 1.	Does the update code have proper mutual exclusion?
 
@@ -39,9 +42,10 @@ over a rather long period of time, but improvements are always welcome!
 
 2.	Do the RCU read-side critical sections make proper use of
 	rcu_read_lock() and friends?  These primitives are needed
-	to suppress preemption (or bottom halves, in the case of
-	rcu_read_lock_bh()) in the read-side critical sections,
-	and are also an excellent aid to readability.
+	to prevent grace periods from ending prematurely, which
+	could result in data being unceremoniously freed out from
+	under your read-side code, which can greatly increase the
+	actuarial risk of your kernel.
 
 	As a rough rule of thumb, any dereference of an RCU-protected
 	pointer must be covered by rcu_read_lock() or rcu_read_lock_bh()
@@ -54,15 +58,30 @@ over a rather long period of time, but improvements are always welcome!
 	be running while updates are in progress.  There are a number
 	of ways to handle this concurrency, depending on the situation:
 
-	a.	Make updates appear atomic to readers.  For example,
+	a.	Use the RCU variants of the list and hlist update
+		primitives to add, remove, and replace elements on an
+		RCU-protected list.  Alternatively, use the RCU-protected
+		trees that have been added to the Linux kernel.
+
+		This is almost always the best approach.
+
+	b.	Proceed as in (a) above, but also maintain per-element
+		locks (that are acquired by both readers and writers)
+		that guard per-element state.  Of course, fields that
+		the readers refrain from accessing can be guarded by the
+		update-side lock.
+
+		This works quite well, also.
+
+	c.	Make updates appear atomic to readers.  For example,
 		pointer updates to properly aligned fields will appear
 		atomic, as will individual atomic primitives.  Operations
 		performed under a lock and sequences of multiple atomic
 		primitives will -not- appear to be atomic.
 
-		This is almost always the best approach.
+		This can work, but is starting to get a bit tricky.
 
-	b.	Carefully order the updates and the reads so that
+	d.	Carefully order the updates and the reads so that
 		readers see valid data at all phases of the update.
 		This is often more difficult than it sounds, especially
 		given modern CPUs' tendency to reorder memory references.
@@ -123,18 +142,22 @@ over a rather long period of time, but improvements are always welcome!
 		when publicizing a pointer to a structure that can
 		be traversed by an RCU read-side critical section.
 
-5.	If call_rcu(), or a related primitive such as call_rcu_bh(),
-	is used, the callback function must be written to be called
-	from softirq context.  In particular, it cannot block.
+5.	If call_rcu(), or a related primitive such as call_rcu_bh() or
+	call_rcu_sched(), is used, the callback function must be
+	written to be called from softirq context.  In particular,
+	it cannot block.
 
 6.	Since synchronize_rcu() can block, it cannot be called from
-	any sort of irq context.
+	any sort of irq context.  Ditto for synchronize_sched() and
+	synchronize_srcu().
 
 7.	If the updater uses call_rcu(), then the corresponding readers
 	must use rcu_read_lock() and rcu_read_unlock().  If the updater
 	uses call_rcu_bh(), then the corresponding readers must use
-	rcu_read_lock_bh() and rcu_read_unlock_bh().  Mixing things up
-	will result in confusion and broken kernels.
+	rcu_read_lock_bh() and rcu_read_unlock_bh().  If the updater
+	uses call_rcu_sched(), then the corresponding readers must
+	disable preemption.  Mixing things up will result in confusion
+	and broken kernels.
 
 	One exception to this rule: rcu_read_lock() and rcu_read_unlock()
 	may be substituted for rcu_read_lock_bh() and rcu_read_unlock_bh()
@@ -143,9 +166,9 @@ over a rather long period of time, but improvements are always welcome!
 	such cases is a must, of course!  And the jury is still out on
 	whether the increased speed is worth it.
 
-8.	Although synchronize_rcu() is a bit slower than is call_rcu(),
-	it usually results in simpler code.  So, unless update
-	performance is critically important or the updaters cannot block,
+8.	Although synchronize_rcu() is slower than is call_rcu(), it
+	usually results in simpler code.  So, unless update performance
+	is critically important or the updaters cannot block,
 	synchronize_rcu() should be used in preference to call_rcu().
 
 	An especially important property of the synchronize_rcu()
@@ -187,23 +210,23 @@ over a rather long period of time, but improvements are always welcome!
 		number of updates per grace period.
 
 9.	All RCU list-traversal primitives, which include
-	list_for_each_rcu(), list_for_each_entry_rcu(),
+	rcu_dereference(), list_for_each_rcu(), list_for_each_entry_rcu(),
 	list_for_each_continue_rcu(), and list_for_each_safe_rcu(),
-	must be within an RCU read-side critical section.  RCU
+	must be either within an RCU read-side critical section or
+	must be protected by appropriate update-side locks.  RCU
 	read-side critical sections are delimited by rcu_read_lock()
 	and rcu_read_unlock(), or by similar primitives such as
 	rcu_read_lock_bh() and rcu_read_unlock_bh().
 
-	Use of the _rcu() list-traversal primitives outside of an
-	RCU read-side critical section causes no harm other than
-	a slight performance degradation on Alpha CPUs.  It can
-	also be quite helpful in reducing code bloat when common
-	code is shared between readers and updaters.
+	The reason that it is permissible to use RCU list-traversal
+	primitives when the update-side lock is held is that doing so
+	can be quite helpful in reducing code bloat when common code is
+	shared between readers and updaters.
 
 10.	Conversely, if you are in an RCU read-side critical section,
-	you -must- use the "_rcu()" variants of the list macros.
-	Failing to do so will break Alpha and confuse people reading
-	your code.
+	and you don't hold the appropriate update-side lock, you -must-
+	use the "_rcu()" variants of the list macros.  Failing to do so
+	will break Alpha and confuse people reading your code.
 
 11.	Note that synchronize_rcu() -only- guarantees to wait until
 	all currently executing rcu_read_lock()-protected RCU read-side
@@ -230,6 +253,14 @@ over a rather long period of time, but improvements are always welcome!
 	must use whatever locking or other synchronization is required
 	to safely access and/or modify that data structure.
 
+	RCU callbacks are -usually- executed on the same CPU that executed
+	the corresponding call_rcu(), call_rcu_bh(), or call_rcu_sched(),
+	but are by -no- means guaranteed to be.  For example, if a given
+	CPU goes offline while having an RCU callback pending, then that
+	RCU callback will execute on some surviving CPU.  (If this was
+	not the case, a self-spawning RCU callback would prevent the
+	victim CPU from ever going offline.)
+
 14.	SRCU (srcu_read_lock(), srcu_read_unlock(), and synchronize_srcu())
 	may only be invoked from process context.  Unlike other forms of
 	RCU, it -is- permissible to block in an SRCU read-side critical

+ 33 - 15
Documentation/RCU/torture.txt

@@ -10,23 +10,30 @@ status messages via printk(), which can be examined via the dmesg
 command (perhaps grepping for "torture").  The test is started
 when the module is loaded, and stops when the module is unloaded.
 
-However, actually setting this config option to "y" results in the system
-running the test immediately upon boot, and ending only when the system
-is taken down.  Normally, one will instead want to build the system
-with CONFIG_RCU_TORTURE_TEST=m and to use modprobe and rmmod to control
-the test, perhaps using a script similar to the one shown at the end of
-this document.  Note that you will need CONFIG_MODULE_UNLOAD in order
-to be able to end the test.
+CONFIG_RCU_TORTURE_TEST_RUNNABLE
+
+It is also possible to specify CONFIG_RCU_TORTURE_TEST=y, which will
+result in the tests being loaded into the base kernel.  In this case,
+the CONFIG_RCU_TORTURE_TEST_RUNNABLE config option is used to specify
+whether the RCU torture tests are to be started immediately during
+boot or whether the /proc/sys/kernel/rcutorture_runnable file is used
+to enable them.  This /proc file can be used to repeatedly pause and
+restart the tests, regardless of the initial state specified by the
+CONFIG_RCU_TORTURE_TEST_RUNNABLE config option.
+
+You will normally -not- want to start the RCU torture tests during boot
+(and thus the default is CONFIG_RCU_TORTURE_TEST_RUNNABLE=n), but doing
+this can sometimes be useful in finding boot-time bugs.
 
 
 MODULE PARAMETERS
 
 This module has the following parameters:
 
-nreaders	This is the number of RCU reading threads supported.
-		The default is twice the number of CPUs.  Why twice?
-		To properly exercise RCU implementations with preemptible
-		read-side critical sections.
+irqreaders	Says to invoke RCU readers from irq level.  This is currently
+		done via timers.  Defaults to "1" for variants of RCU that
+		permit this.  (Or, more accurately, variants of RCU that do
+		-not- permit this know to ignore this variable.)
 
 nfakewriters	This is the number of RCU fake writer threads to run.  Fake
 		writer threads repeatedly use the synchronous "wait for
@@ -37,6 +44,16 @@ nfakewriters	This is the number of RCU fake writer threads to run.  Fake
 		to trigger special cases caused by multiple writers, such as
 		the synchronize_srcu() early return optimization.
 
+nreaders	This is the number of RCU reading threads supported.
+		The default is twice the number of CPUs.  Why twice?
+		To properly exercise RCU implementations with preemptible
+		read-side critical sections.
+
+shuffle_interval
+		The number of seconds to keep the test threads affinitied
+		to a particular subset of the CPUs, defaults to 3 seconds.
+		Used in conjunction with test_no_idle_hz.
+
 stat_interval	The number of seconds between output of torture
 		statistics (via printk()).  Regardless of the interval,
 		statistics are printed when the module is unloaded.
@@ -44,10 +61,11 @@ stat_interval	The number of seconds between output of torture
 		be printed -only- when the module is unloaded, and this
 		is the default.
 
-shuffle_interval
-		The number of seconds to keep the test threads affinitied
-		to a particular subset of the CPUs, defaults to 5 seconds.
-		Used in conjunction with test_no_idle_hz.
+stutter		The length of time to run the test before pausing for this
+		same period of time.  Defaults to "stutter=5", so as
+		to run and pause for (roughly) five-second intervals.
+		Specifying "stutter=0" causes the test to run continuously
+		without pausing, which is the old default behavior.
 
 test_no_idle_hz	Whether or not to test the ability of RCU to operate in
 		a kernel that disables the scheduling-clock interrupt to

+ 39 - 19
Documentation/RCU/whatisRCU.txt

@@ -1,3 +1,11 @@
+Please note that the "What is RCU?" LWN series is an excellent place
+to start learning about RCU:
+
+1.	What is RCU, Fundamentally?  http://lwn.net/Articles/262464/
+2.	What is RCU? Part 2: Usage   http://lwn.net/Articles/263130/
+3.	RCU part 3: the RCU API      http://lwn.net/Articles/264090/
+
+
 What is RCU?
 
 RCU is a synchronization mechanism that was added to the Linux kernel
@@ -772,26 +780,18 @@ Linux-kernel source code, but it helps to have a full list of the
 APIs, since there does not appear to be a way to categorize them
 in docbook.  Here is the list, by category.
 
-Markers for RCU read-side critical sections:
-
-	rcu_read_lock
-	rcu_read_unlock
-	rcu_read_lock_bh
-	rcu_read_unlock_bh
-	srcu_read_lock
-	srcu_read_unlock
-
 RCU pointer/list traversal:
 
 	rcu_dereference
+	list_for_each_entry_rcu
+	hlist_for_each_entry_rcu
+
 	list_for_each_rcu		(to be deprecated in favor of
 					 list_for_each_entry_rcu)
-	list_for_each_entry_rcu
 	list_for_each_continue_rcu	(to be deprecated in favor of new
 					 list_for_each_entry_continue_rcu)
-	hlist_for_each_entry_rcu
 
-RCU pointer update:
+RCU pointer/list update:
 
 	rcu_assign_pointer
 	list_add_rcu
@@ -799,16 +799,36 @@ RCU pointer update:
 	list_del_rcu
 	list_replace_rcu
 	hlist_del_rcu
+	hlist_add_after_rcu
+	hlist_add_before_rcu
 	hlist_add_head_rcu
+	hlist_replace_rcu
+	list_splice_init_rcu()
 
-RCU grace period:
+RCU:	Critical sections	Grace period		Barrier
+
+	rcu_read_lock		synchronize_net		rcu_barrier
+	rcu_read_unlock		synchronize_rcu
+				call_rcu
+
+
+bh:	Critical sections	Grace period		Barrier
+
+	rcu_read_lock_bh	call_rcu_bh		rcu_barrier_bh
+	rcu_read_unlock_bh
+
+
+sched:	Critical sections	Grace period		Barrier
+
+	[preempt_disable]	synchronize_sched	rcu_barrier_sched
+	[and friends]		call_rcu_sched
+
+
+SRCU:	Critical sections	Grace period		Barrier
+
+	srcu_read_lock		synchronize_srcu	N/A
+	srcu_read_unlock
 
-	synchronize_net
-	synchronize_sched
-	synchronize_rcu
-	synchronize_srcu
-	call_rcu
-	call_rcu_bh
 
 See the comment headers in the source code (or the docbook generated
 from them) for more information.

+ 327 - 0
Documentation/block/data-integrity.txt

@@ -0,0 +1,327 @@
+----------------------------------------------------------------------
+1. INTRODUCTION
+
+Modern filesystems feature checksumming of data and metadata to
+protect against data corruption.  However, the detection of the
+corruption is done at read time which could potentially be months
+after the data was written.  At that point the original data that the
+application tried to write is most likely lost.
+
+The solution is to ensure that the disk is actually storing what the
+application meant it to.  Recent additions to both the SCSI family
+protocols (SBC Data Integrity Field, SCC protection proposal) as well
+as SATA/T13 (External Path Protection) try to remedy this by adding
+support for appending integrity metadata to an I/O.  The integrity
+metadata (or protection information in SCSI terminology) includes a
+checksum for each sector as well as an incrementing counter that
+ensures the individual sectors are written in the right order.  And
+for some protection schemes also that the I/O is written to the right
+place on disk.
+
+Current storage controllers and devices implement various protective
+measures, for instance checksumming and scrubbing.  But these
+technologies are working in their own isolated domains or at best
+between adjacent nodes in the I/O path.  The interesting thing about
+DIF and the other integrity extensions is that the protection format
+is well defined and every node in the I/O path can verify the
+integrity of the I/O and reject it if corruption is detected.  This
+allows not only corruption prevention but also isolation of the point
+of failure.
+
+----------------------------------------------------------------------
+2. THE DATA INTEGRITY EXTENSIONS
+
+As written, the protocol extensions only protect the path between
+controller and storage device.  However, many controllers actually
+allow the operating system to interact with the integrity metadata
+(IMD).  We have been working with several FC/SAS HBA vendors to enable
+the protection information to be transferred to and from their
+controllers.
+
+The SCSI Data Integrity Field works by appending 8 bytes of protection
+information to each sector.  The data + integrity metadata is stored
+in 520 byte sectors on disk.  Data + IMD are interleaved when
+transferred between the controller and target.  The T13 proposal is
+similar.
+
+Because it is highly inconvenient for operating systems to deal with
+520 (and 4104) byte sectors, we approached several HBA vendors and
+encouraged them to allow separation of the data and integrity metadata
+scatter-gather lists.
+
+The controller will interleave the buffers on write and split them on
+read.  This means that the Linux can DMA the data buffers to and from
+host memory without changes to the page cache.
+
+Also, the 16-bit CRC checksum mandated by both the SCSI and SATA specs
+is somewhat heavy to compute in software.  Benchmarks found that
+calculating this checksum had a significant impact on system
+performance for a number of workloads.  Some controllers allow a
+lighter-weight checksum to be used when interfacing with the operating
+system.  Emulex, for instance, supports the TCP/IP checksum instead.
+The IP checksum received from the OS is converted to the 16-bit CRC
+when writing and vice versa.  This allows the integrity metadata to be
+generated by Linux or the application at very low cost (comparable to
+software RAID5).
+
+The IP checksum is weaker than the CRC in terms of detecting bit
+errors.  However, the strength is really in the separation of the data
+buffers and the integrity metadata.  These two distinct buffers much
+match up for an I/O to complete.
+
+The separation of the data and integrity metadata buffers as well as
+the choice in checksums is referred to as the Data Integrity
+Extensions.  As these extensions are outside the scope of the protocol
+bodies (T10, T13), Oracle and its partners are trying to standardize
+them within the Storage Networking Industry Association.
+
+----------------------------------------------------------------------
+3. KERNEL CHANGES
+
+The data integrity framework in Linux enables protection information
+to be pinned to I/Os and sent to/received from controllers that
+support it.
+
+The advantage to the integrity extensions in SCSI and SATA is that
+they enable us to protect the entire path from application to storage
+device.  However, at the same time this is also the biggest
+disadvantage. It means that the protection information must be in a
+format that can be understood by the disk.
+
+Generally Linux/POSIX applications are agnostic to the intricacies of
+the storage devices they are accessing.  The virtual filesystem switch
+and the block layer make things like hardware sector size and
+transport protocols completely transparent to the application.
+
+However, this level of detail is required when preparing the
+protection information to send to a disk.  Consequently, the very
+concept of an end-to-end protection scheme is a layering violation.
+It is completely unreasonable for an application to be aware whether
+it is accessing a SCSI or SATA disk.
+
+The data integrity support implemented in Linux attempts to hide this
+from the application.  As far as the application (and to some extent
+the kernel) is concerned, the integrity metadata is opaque information
+that's attached to the I/O.
+
+The current implementation allows the block layer to automatically
+generate the protection information for any I/O.  Eventually the
+intent is to move the integrity metadata calculation to userspace for
+user data.  Metadata and other I/O that originates within the kernel
+will still use the automatic generation interface.
+
+Some storage devices allow each hardware sector to be tagged with a
+16-bit value.  The owner of this tag space is the owner of the block
+device.  I.e. the filesystem in most cases.  The filesystem can use
+this extra space to tag sectors as they see fit.  Because the tag
+space is limited, the block interface allows tagging bigger chunks by
+way of interleaving.  This way, 8*16 bits of information can be
+attached to a typical 4KB filesystem block.
+
+This also means that applications such as fsck and mkfs will need
+access to manipulate the tags from user space.  A passthrough
+interface for this is being worked on.
+
+
+----------------------------------------------------------------------
+4. BLOCK LAYER IMPLEMENTATION DETAILS
+
+4.1 BIO
+
+The data integrity patches add a new field to struct bio when
+CONFIG_BLK_DEV_INTEGRITY is enabled.  bio->bi_integrity is a pointer
+to a struct bip which contains the bio integrity payload.  Essentially
+a bip is a trimmed down struct bio which holds a bio_vec containing
+the integrity metadata and the required housekeeping information (bvec
+pool, vector count, etc.)
+
+A kernel subsystem can enable data integrity protection on a bio by
+calling bio_integrity_alloc(bio).  This will allocate and attach the
+bip to the bio.
+
+Individual pages containing integrity metadata can subsequently be
+attached using bio_integrity_add_page().
+
+bio_free() will automatically free the bip.
+
+
+4.2 BLOCK DEVICE
+
+Because the format of the protection data is tied to the physical
+disk, each block device has been extended with a block integrity
+profile (struct blk_integrity).  This optional profile is registered
+with the block layer using blk_integrity_register().
+
+The profile contains callback functions for generating and verifying
+the protection data, as well as getting and setting application tags.
+The profile also contains a few constants to aid in completing,
+merging and splitting the integrity metadata.
+
+Layered block devices will need to pick a profile that's appropriate
+for all subdevices.  blk_integrity_compare() can help with that.  DM
+and MD linear, RAID0 and RAID1 are currently supported.  RAID4/5/6
+will require extra work due to the application tag.
+
+
+----------------------------------------------------------------------
+5.0 BLOCK LAYER INTEGRITY API
+
+5.1 NORMAL FILESYSTEM
+
+    The normal filesystem is unaware that the underlying block device
+    is capable of sending/receiving integrity metadata.  The IMD will
+    be automatically generated by the block layer at submit_bio() time
+    in case of a WRITE.  A READ request will cause the I/O integrity
+    to be verified upon completion.
+
+    IMD generation and verification can be toggled using the
+
+      /sys/block/<bdev>/integrity/write_generate
+
+    and
+
+      /sys/block/<bdev>/integrity/read_verify
+
+    flags.
+
+
+5.2 INTEGRITY-AWARE FILESYSTEM
+
+    A filesystem that is integrity-aware can prepare I/Os with IMD
+    attached.  It can also use the application tag space if this is
+    supported by the block device.
+
+
+    int bdev_integrity_enabled(block_device, int rw);
+
+      bdev_integrity_enabled() will return 1 if the block device
+      supports integrity metadata transfer for the data direction
+      specified in 'rw'.
+
+      bdev_integrity_enabled() honors the write_generate and
+      read_verify flags in sysfs and will respond accordingly.
+
+
+    int bio_integrity_prep(bio);
+
+      To generate IMD for WRITE and to set up buffers for READ, the
+      filesystem must call bio_integrity_prep(bio).
+
+      Prior to calling this function, the bio data direction and start
+      sector must be set, and the bio should have all data pages
+      added.  It is up to the caller to ensure that the bio does not
+      change while I/O is in progress.
+
+      bio_integrity_prep() should only be called if
+      bio_integrity_enabled() returned 1.
+
+
+    int bio_integrity_tag_size(bio);
+
+      If the filesystem wants to use the application tag space it will
+      first have to find out how much storage space is available.
+      Because tag space is generally limited (usually 2 bytes per
+      sector regardless of sector size), the integrity framework
+      supports interleaving the information between the sectors in an
+      I/O.
+
+      Filesystems can call bio_integrity_tag_size(bio) to find out how
+      many bytes of storage are available for that particular bio.
+
+      Another option is bdev_get_tag_size(block_device) which will
+      return the number of available bytes per hardware sector.
+
+
+    int bio_integrity_set_tag(bio, void *tag_buf, len);
+
+      After a successful return from bio_integrity_prep(),
+      bio_integrity_set_tag() can be used to attach an opaque tag
+      buffer to a bio.  Obviously this only makes sense if the I/O is
+      a WRITE.
+
+
+    int bio_integrity_get_tag(bio, void *tag_buf, len);
+
+      Similarly, at READ I/O completion time the filesystem can
+      retrieve the tag buffer using bio_integrity_get_tag().
+
+
+6.3 PASSING EXISTING INTEGRITY METADATA
+
+    Filesystems that either generate their own integrity metadata or
+    are capable of transferring IMD from user space can use the
+    following calls:
+
+
+    struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);
+
+      Allocates the bio integrity payload and hangs it off of the bio.
+      nr_pages indicate how many pages of protection data need to be
+      stored in the integrity bio_vec list (similar to bio_alloc()).
+
+      The integrity payload will be freed at bio_free() time.
+
+
+    int bio_integrity_add_page(bio, page, len, offset);
+
+      Attaches a page containing integrity metadata to an existing
+      bio.  The bio must have an existing bip,
+      i.e. bio_integrity_alloc() must have been called.  For a WRITE,
+      the integrity metadata in the pages must be in a format
+      understood by the target device with the notable exception that
+      the sector numbers will be remapped as the request traverses the
+      I/O stack.  This implies that the pages added using this call
+      will be modified during I/O!  The first reference tag in the
+      integrity metadata must have a value of bip->bip_sector.
+
+      Pages can be added using bio_integrity_add_page() as long as
+      there is room in the bip bio_vec array (nr_pages).
+
+      Upon completion of a READ operation, the attached pages will
+      contain the integrity metadata received from the storage device.
+      It is up to the receiver to process them and verify data
+      integrity upon completion.
+
+
+6.4 REGISTERING A BLOCK DEVICE AS CAPABLE OF EXCHANGING INTEGRITY
+    METADATA
+
+    To enable integrity exchange on a block device the gendisk must be
+    registered as capable:
+
+    int blk_integrity_register(gendisk, blk_integrity);
+
+      The blk_integrity struct is a template and should contain the
+      following:
+
+        static struct blk_integrity my_profile = {
+            .name                   = "STANDARDSBODY-TYPE-VARIANT-CSUM",
+            .generate_fn            = my_generate_fn,
+       	    .verify_fn              = my_verify_fn,
+       	    .get_tag_fn             = my_get_tag_fn,
+       	    .set_tag_fn             = my_set_tag_fn,
+	    .tuple_size             = sizeof(struct my_tuple_size),
+	    .tag_size               = <tag bytes per hw sector>,
+        };
+
+      'name' is a text string which will be visible in sysfs.  This is
+      part of the userland API so chose it carefully and never change
+      it.  The format is standards body-type-variant.
+      E.g. T10-DIF-TYPE1-IP or T13-EPP-0-CRC.
+
+      'generate_fn' generates appropriate integrity metadata (for WRITE).
+
+      'verify_fn' verifies that the data buffer matches the integrity
+      metadata.
+
+      'tuple_size' must be set to match the size of the integrity
+      metadata per sector.  I.e. 8 for DIF and EPP.
+
+      'tag_size' must be set to identify how many bytes of tag space
+      are available per hardware sector.  For DIF this is either 2 or
+      0 depending on the value of the Control Mode Page ATO bit.
+
+      See 6.2 for a description of get_tag_fn and set_tag_fn.
+
+----------------------------------------------------------------------
+2007-12-24 Martin K. Petersen <martin.petersen@oracle.com>

+ 9 - 17
Documentation/cputopology.txt

@@ -14,9 +14,8 @@ represent the thread siblings to cpu X in the same physical package;
 To implement it in an architecture-neutral way, a new source file,
 drivers/base/topology.c, is to export the 4 attributes.
 
-If one architecture wants to support this feature, it just needs to
-implement 4 defines, typically in file include/asm-XXX/topology.h.
-The 4 defines are:
+For an architecture to support this feature, it must define some of
+these macros in include/asm-XXX/topology.h:
 #define topology_physical_package_id(cpu)
 #define topology_core_id(cpu)
 #define topology_thread_siblings(cpu)
@@ -25,17 +24,10 @@ The 4 defines are:
 The type of **_id is int.
 The type of siblings is cpumask_t.
 
-To be consistent on all architectures, the 4 attributes should have
-default values if their values are unavailable. Below is the rule.
-1) physical_package_id: If cpu has no physical package id, -1 is the
-default value.
-2) core_id: If cpu doesn't support multi-core, its core id is 0.
-3) thread_siblings: Just include itself, if the cpu doesn't support
-HT/multi-thread.
-4) core_siblings: Just include itself, if the cpu doesn't support
-multi-core and HT/Multi-thread.
-
-So be careful when declaring the 4 defines in include/asm-XXX/topology.h.
-
-If an attribute isn't defined on an architecture, it won't be exported.
-
+To be consistent on all architectures, include/linux/topology.h
+provides default definitions for any of the above macros that are
+not defined by include/asm-XXX/topology.h:
+1) physical_package_id: -1
+2) core_id: 0
+3) thread_siblings: just the given CPU
+4) core_siblings: just the given CPU

+ 0 - 7
Documentation/feature-removal-schedule.txt

@@ -222,13 +222,6 @@ Who:	Thomas Gleixner <tglx@linutronix.de>
 
 ---------------------------
 
-What:	i2c-i810, i2c-prosavage and i2c-savage4
-When:	May 2008
-Why:	These drivers are superseded by i810fb, intelfb and savagefb.
-Who:	Jean Delvare <khali@linux-fr.org>
-
----------------------------
-
 What (Why):
 	- include/linux/netfilter_ipv4/ipt_TOS.h ipt_tos.h header files
 	  (superseded by xt_TOS/xt_tos target & match)

+ 6 - 4
Documentation/filesystems/configfs/configfs.txt

@@ -233,10 +233,12 @@ accomplished via the group operations specified on the group's
 config_item_type.
 
 	struct configfs_group_operations {
-		struct config_item *(*make_item)(struct config_group *group,
-						 const char *name);
-		struct config_group *(*make_group)(struct config_group *group,
-						   const char *name);
+		int (*make_item)(struct config_group *group,
+				 const char *name,
+				 struct config_item **new_item);
+		int (*make_group)(struct config_group *group,
+				  const char *name,
+				  struct config_group **new_group);
 		int (*commit_item)(struct config_item *item);
 		void (*disconnect_notify)(struct config_group *group,
 					  struct config_item *item);

+ 8 - 6
Documentation/filesystems/configfs/configfs_example.c

@@ -273,13 +273,13 @@ static inline struct simple_children *to_simple_children(struct config_item *ite
 	return item ? container_of(to_config_group(item), struct simple_children, group) : NULL;
 }
 
-static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
+static int simple_children_make_item(struct config_group *group, const char *name, struct config_item **new_item)
 {
 	struct simple_child *simple_child;
 
 	simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL);
 	if (!simple_child)
-		return NULL;
+		return -ENOMEM;
 
 
 	config_item_init_type_name(&simple_child->item, name,
@@ -287,7 +287,8 @@ static struct config_item *simple_children_make_item(struct config_group *group,
 
 	simple_child->storeme = 0;
 
-	return &simple_child->item;
+	*new_item = &simple_child->item;
+	return 0;
 }
 
 static struct configfs_attribute simple_children_attr_description = {
@@ -359,20 +360,21 @@ static struct configfs_subsystem simple_children_subsys = {
  * children of its own.
  */
 
-static struct config_group *group_children_make_group(struct config_group *group, const char *name)
+static int group_children_make_group(struct config_group *group, const char *name, struct config_group **new_group)
 {
 	struct simple_children *simple_children;
 
 	simple_children = kzalloc(sizeof(struct simple_children),
 				  GFP_KERNEL);
 	if (!simple_children)
-		return NULL;
+		return -ENOMEM;
 
 
 	config_group_init_type_name(&simple_children->group, name,
 				    &simple_children_type);
 
-	return &simple_children->group;
+	*new_group = &simple_children->group;
+	return 0;
 }
 
 static struct configfs_attribute group_children_attr_description = {

+ 75 - 50
Documentation/filesystems/ext4.txt

@@ -13,72 +13,93 @@ Mailing list: linux-ext4@vger.kernel.org
 1. Quick usage instructions:
 ===========================
 
-  - Grab updated e2fsprogs from
-    ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs-interim/
-    This is a patchset on top of e2fsprogs-1.39, which can be found at
+  - Compile and install the latest version of e2fsprogs (as of this
+    writing version 1.41) from:
+
+    http://sourceforge.net/project/showfiles.php?group_id=2406
+	
+	or
+
     ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/
 
-  - It's still mke2fs -j /dev/hda1
+	or grab the latest git repository from:
+
+    git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git
+
+  - Create a new filesystem using the ext4dev filesystem type:
+
+    	# mke2fs -t ext4dev /dev/hda1
+
+    Or configure an existing ext3 filesystem to support extents and set
+    the test_fs flag to indicate that it's ok for an in-development
+    filesystem to touch this filesystem:
 
-  - mount /dev/hda1 /wherever -t ext4dev
+	# tune2fs -O extents -E test_fs /dev/hda1
 
-  - To enable extents,
+    If the filesystem was created with 128 byte inodes, it can be
+    converted to use 256 byte for greater efficiency via:
 
-	mount /dev/hda1 /wherever -t ext4dev -o extents
+        # tune2fs -I 256 /dev/hda1
 
-  - The filesystem is compatible with the ext3 driver until you add a file
-    which has extents (ie: `mount -o extents', then create a file).
+    (Note: we currently do not have tools to convert an ext4dev
+    filesystem back to ext3; so please do not do try this on production
+    filesystems.)
 
-    NOTE: The "extents" mount flag is temporary.  It will soon go away and
-    extents will be enabled by the "-o extents" flag to mke2fs or tune2fs
+  - Mounting:
+
+	# mount -t ext4dev /dev/hda1 /wherever
 
   - When comparing performance with other filesystems, remember that
-    ext3/4 by default offers higher data integrity guarantees than most.  So
-    when comparing with a metadata-only journalling filesystem, use `mount -o
-    data=writeback'.  And you might as well use `mount -o nobh' too along
-    with it.  Making the journal larger than the mke2fs default often helps
-    performance with metadata-intensive workloads.
+    ext3/4 by default offers higher data integrity guarantees than most.
+    So when comparing with a metadata-only journalling filesystem, such
+    as ext3, use `mount -o data=writeback'.  And you might as well use
+    `mount -o nobh' too along with it.  Making the journal larger than
+    the mke2fs default often helps performance with metadata-intensive
+    workloads.
 
 2. Features
 ===========
 
 2.1 Currently available
 
-* ability to use filesystems > 16TB
+* ability to use filesystems > 16TB (e2fsprogs support not available yet)
 * extent format reduces metadata overhead (RAM, IO for access, transactions)
 * extent format more robust in face of on-disk corruption due to magics,
 * internal redunancy in tree
-
-2.1 Previously available, soon to be enabled by default by "mkefs.ext4":
-
-* dir_index and resize inode will be on by default
-* large inodes will be used by default for fast EAs, nsec timestamps, etc
+* improved file allocation (multi-block alloc)
+* fix 32000 subdirectory limit
+* nsec timestamps for mtime, atime, ctime, create time
+* inode version field on disk (NFSv4, Lustre)
+* reduced e2fsck time via uninit_bg feature
+* journal checksumming for robustness, performance
+* persistent file preallocation (e.g for streaming media, databases)
+* ability to pack bitmaps and inode tables into larger virtual groups via the
+  flex_bg feature
+* large file support
+* Inode allocation using large virtual block groups via flex_bg
+* delayed allocation
+* large block (up to pagesize) support
+* efficent new ordered mode in JBD2 and ext4(avoid using buffer head to force
+  the ordering)
 
 2.2 Candidate features for future inclusion
 
-There are several under discussion, whether they all make it in is
-partly a function of how much time everyone has to work on them:
+* Online defrag (patches available but not well tested)
+* reduced mke2fs time via lazy itable initialization in conjuction with
+  the uninit_bg feature (capability to do this is available in e2fsprogs
+  but a kernel thread to do lazy zeroing of unused inode table blocks
+  after filesystem is first mounted is required for safety)
 
-* improved file allocation (multi-block alloc, delayed alloc; basically done)
-* fix 32000 subdirectory limit (patch exists, needs some e2fsck work)
-* nsec timestamps for mtime, atime, ctime, create time (patch exists,
-  needs some e2fsck work)
-* inode version field on disk (NFSv4, Lustre; prototype exists)
-* reduced mke2fs/e2fsck time via uninitialized groups (prototype exists)
-* journal checksumming for robustness, performance (prototype exists)
-* persistent file preallocation (e.g for streaming media, databases)
+There are several others under discussion, whether they all make it in is
+partly a function of how much time everyone has to work on them. Features like
+metadata checksumming have been discussed and planned for a bit but no patches
+exist yet so I'm not sure they're in the near-term roadmap.
 
-Features like metadata checksumming have been discussed and planned for
-a bit but no patches exist yet so I'm not sure they're in the near-term
-roadmap.
+The big performance win will come with mballoc, delalloc and flex_bg
+grouping of bitmaps and inode tables.  Some test results available here:
 
-The big performance win will come with mballoc and delalloc.  CFS has
-been using mballoc for a few years already with Lustre, and IBM + Bull
-did a lot of benchmarking on it.  The reason it isn't in the first set of
-patches is partly a manageability issue, and partly because it doesn't
-directly affect the on-disk format (outside of much better allocation)
-so it isn't critical to get into the first round of changes.  I believe
-Alex is working on a new set of patches right now.
+ - http://www.bullopensource.org/ext4/20080530/ffsb-write-2.6.26-rc2.html
+ - http://www.bullopensource.org/ext4/20080530/ffsb-readwrite-2.6.26-rc2.html
 
 3. Options
 ==========
@@ -222,9 +243,11 @@ stripe=n		Number of filesystem blocks that mballoc will try
 			to use for allocation size and alignment. For RAID5/6
 			systems this should be the number of data
 			disks *  RAID chunk size in file system blocks.
-
+delalloc	(*)	Deferring block allocation until write-out time.
+nodelalloc		Disable delayed allocation. Blocks are allocation
+			when data is copied from user to page cache.
 Data Mode
----------
+=========
 There are 3 different data modes:
 
 * writeback mode
@@ -236,10 +259,10 @@ typically provide the best ext4 performance.
 
 * ordered mode
 In data=ordered mode, ext4 only officially journals metadata, but it logically
-groups metadata and data blocks into a single unit called a transaction.  When
-it's time to write the new metadata out to disk, the associated data blocks
-are written first.  In general, this mode performs slightly slower than
-writeback but significantly faster than journal mode.
+groups metadata information related to data changes with the data blocks into a
+single unit called a transaction.  When it's time to write the new metadata
+out to disk, the associated data blocks are written first.  In general,
+this mode performs slightly slower than writeback but significantly faster than journal mode.
 
 * journal mode
 data=journal mode provides full data and metadata journaling.  All new data is
@@ -247,7 +270,8 @@ written to the journal first, and then to its final location.
 In the event of a crash, the journal can be replayed, bringing both data and
 metadata into a consistent state.  This mode is the slowest except when data
 needs to be read from and written to disk at the same time where it
-outperforms all others modes.
+outperforms all others modes.  Curently ext4 does not have delayed
+allocation support if this data journalling mode is selected.
 
 References
 ==========
@@ -256,7 +280,8 @@ kernel source:	<file:fs/ext4/>
 		<file:fs/jbd2/>
 
 programs:	http://e2fsprogs.sourceforge.net/
-		http://ext2resize.sourceforge.net
 
 useful links:	http://fedoraproject.org/wiki/ext3-devel
 		http://www.bullopensource.org/ext4/
+		http://ext4.wiki.kernel.org/index.php/Main_Page
+		http://fedoraproject.org/wiki/Features/Ext4

+ 114 - 0
Documentation/filesystems/gfs2-glocks.txt

@@ -0,0 +1,114 @@
+                   Glock internal locking rules
+                  ------------------------------
+
+This documents the basic principles of the glock state machine
+internals. Each glock (struct gfs2_glock in fs/gfs2/incore.h)
+has two main (internal) locks:
+
+ 1. A spinlock (gl_spin) which protects the internal state such
+    as gl_state, gl_target and the list of holders (gl_holders)
+ 2. A non-blocking bit lock, GLF_LOCK, which is used to prevent other
+    threads from making calls to the DLM, etc. at the same time. If a
+    thread takes this lock, it must then call run_queue (usually via the
+    workqueue) when it releases it in order to ensure any pending tasks
+    are completed.
+
+The gl_holders list contains all the queued lock requests (not
+just the holders) associated with the glock. If there are any
+held locks, then they will be contiguous entries at the head
+of the list. Locks are granted in strictly the order that they
+are queued, except for those marked LM_FLAG_PRIORITY which are
+used only during recovery, and even then only for journal locks.
+
+There are three lock states that users of the glock layer can request,
+namely shared (SH), deferred (DF) and exclusive (EX). Those translate
+to the following DLM lock modes:
+
+Glock mode    | DLM lock mode
+------------------------------
+    UN        |    IV/NL  Unlocked (no DLM lock associated with glock) or NL
+    SH        |    PR     (Protected read)
+    DF        |    CW     (Concurrent write)
+    EX        |    EX     (Exclusive)
+
+Thus DF is basically a shared mode which is incompatible with the "normal"
+shared lock mode, SH. In GFS2 the DF mode is used exclusively for direct I/O
+operations. The glocks are basically a lock plus some routines which deal
+with cache management. The following rules apply for the cache:
+
+Glock mode   |  Cache data | Cache Metadata | Dirty Data | Dirty Metadata
+--------------------------------------------------------------------------
+    UN       |     No      |       No       |     No     |      No
+    SH       |     Yes     |       Yes      |     No     |      No
+    DF       |     No      |       Yes      |     No     |      No
+    EX       |     Yes     |       Yes      |     Yes    |      Yes
+
+These rules are implemented using the various glock operations which
+are defined for each type of glock. Not all types of glocks use
+all the modes. Only inode glocks use the DF mode for example.
+
+Table of glock operations and per type constants:
+
+Field            | Purpose
+----------------------------------------------------------------------------
+go_xmote_th      | Called before remote state change (e.g. to sync dirty data)
+go_xmote_bh      | Called after remote state change (e.g. to refill cache)
+go_inval         | Called if remote state change requires invalidating the cache
+go_demote_ok     | Returns boolean value of whether its ok to demote a glock
+                 | (e.g. checks timeout, and that there is no cached data)
+go_lock          | Called for the first local holder of a lock
+go_unlock        | Called on the final local unlock of a lock
+go_dump          | Called to print content of object for debugfs file, or on
+                 | error to dump glock to the log.
+go_type;         | The type of the glock, LM_TYPE_.....
+go_min_hold_time | The minimum hold time
+
+The minimum hold time for each lock is the time after a remote lock
+grant for which we ignore remote demote requests. This is in order to
+prevent a situation where locks are being bounced around the cluster
+from node to node with none of the nodes making any progress. This
+tends to show up most with shared mmaped files which are being written
+to by multiple nodes. By delaying the demotion in response to a
+remote callback, that gives the userspace program time to make
+some progress before the pages are unmapped.
+
+There is a plan to try and remove the go_lock and go_unlock callbacks
+if possible, in order to try and speed up the fast path though the locking.
+Also, eventually we hope to make the glock "EX" mode locally shared
+such that any local locking will be done with the i_mutex as required
+rather than via the glock.
+
+Locking rules for glock operations:
+
+Operation     |  GLF_LOCK bit lock held |  gl_spin spinlock held
+-----------------------------------------------------------------
+go_xmote_th   |       Yes               |       No
+go_xmote_bh   |       Yes               |       No
+go_inval      |       Yes               |       No
+go_demote_ok  |       Sometimes         |       Yes
+go_lock       |       Yes               |       No
+go_unlock     |       Yes               |       No
+go_dump       |       Sometimes         |       Yes
+
+N.B. Operations must not drop either the bit lock or the spinlock
+if its held on entry. go_dump and do_demote_ok must never block.
+Note that go_dump will only be called if the glock's state
+indicates that it is caching uptodate data.
+
+Glock locking order within GFS2:
+
+ 1. i_mutex (if required)
+ 2. Rename glock (for rename only)
+ 3. Inode glock(s)
+    (Parents before children, inodes at "same level" with same parent in
+     lock number order)
+ 4. Rgrp glock(s) (for (de)allocation operations)
+ 5. Transaction glock (via gfs2_trans_begin) for non-read operations
+ 6. Page lock  (always last, very important!)
+
+There are two glocks per inode. One deals with access to the inode
+itself (locking order as above), and the other, known as the iopen
+glock is used in conjunction with the i_nlink field in the inode to
+determine the lifetime of the inode in question. Locking of inodes
+is on a per-inode basis. Locking of rgrps is on a per rgrp basis.
+

+ 18 - 11
Documentation/filesystems/proc.txt

@@ -380,28 +380,35 @@ i386 and x86_64 platforms support the new IRQ vector displays.
 Of some interest is the introduction of the /proc/irq directory to 2.4.
 It could be used to set IRQ to CPU affinity, this means that you can "hook" an
 IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
-irq subdir is one subdir for each IRQ, and one file; prof_cpu_mask
+irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and
+prof_cpu_mask.
 
 For example 
   > ls /proc/irq/
   0  10  12  14  16  18  2  4  6  8  prof_cpu_mask
-  1  11  13  15  17  19  3  5  7  9
+  1  11  13  15  17  19  3  5  7  9  default_smp_affinity
   > ls /proc/irq/0/
   smp_affinity
 
-The contents of the prof_cpu_mask file and each smp_affinity file for each IRQ
-is the same by default:
+smp_affinity is a bitmask, in which you can specify which CPUs can handle the
+IRQ, you can set it by doing:
 
-  > cat /proc/irq/0/smp_affinity 
-  ffffffff
+  > echo 1 > /proc/irq/10/smp_affinity
+
+This means that only the first CPU will handle the IRQ, but you can also echo
+5 which means that only the first and fourth CPU can handle the IRQ.
 
-It's a bitmask, in which you can specify which CPUs can handle the IRQ, you can
-set it by doing:
+The contents of each smp_affinity file is the same by default:
+
+  > cat /proc/irq/0/smp_affinity
+  ffffffff
 
-  > echo 1 > /proc/irq/prof_cpu_mask
+The default_smp_affinity mask applies to all non-active IRQs, which are the
+IRQs which have not yet been allocated/activated, and hence which lack a
+/proc/irq/[0-9]* directory.
 
-This means that only the first CPU will handle the IRQ, but you can also echo 5
-which means that only the first and fourth CPU can handle the IRQ.
+prof_cpu_mask specifies which CPUs are to be profiled by the system wide
+profiler. Default value is ffffffff (all cpus).
 
 The way IRQs are routed is handled by the IO-APIC, and it's Round Robin
 between all the CPUs which are allowed to handle it. As usual the kernel has

+ 164 - 0
Documentation/filesystems/ubifs.txt

@@ -0,0 +1,164 @@
+Introduction
+=============
+
+UBIFS file-system stands for UBI File System. UBI stands for "Unsorted
+Block Images". UBIFS is a flash file system, which means it is designed
+to work with flash devices. It is important to understand, that UBIFS
+is completely different to any traditional file-system in Linux, like
+Ext2, XFS, JFS, etc. UBIFS represents a separate class of file-systems
+which work with MTD devices, not block devices. The other Linux
+file-system of this class is JFFS2.
+
+To make it more clear, here is a small comparison of MTD devices and
+block devices.
+
+1 MTD devices represent flash devices and they consist of eraseblocks of
+  rather large size, typically about 128KiB. Block devices consist of
+  small blocks, typically 512 bytes.
+2 MTD devices support 3 main operations - read from some offset within an
+  eraseblock, write to some offset within an eraseblock, and erase a whole
+  eraseblock. Block  devices support 2 main operations - read a whole
+  block and write a whole block.
+3 The whole eraseblock has to be erased before it becomes possible to
+  re-write its contents. Blocks may be just re-written.
+4 Eraseblocks become worn out after some number of erase cycles -
+  typically 100K-1G for SLC NAND and NOR flashes, and 1K-10K for MLC
+  NAND flashes. Blocks do not have the wear-out property.
+5 Eraseblocks may become bad (only on NAND flashes) and software should
+  deal with this. Blocks on hard drives typically do not become bad,
+  because hardware has mechanisms to substitute bad blocks, at least in
+  modern LBA disks.
+
+It should be quite obvious why UBIFS is very different to traditional
+file-systems.
+
+UBIFS works on top of UBI. UBI is a separate software layer which may be
+found in drivers/mtd/ubi. UBI is basically a volume management and
+wear-leveling layer. It provides so called UBI volumes which is a higher
+level abstraction than a MTD device. The programming model of UBI devices
+is very similar to MTD devices - they still consist of large eraseblocks,
+they have read/write/erase operations, but UBI devices are devoid of
+limitations like wear and bad blocks (items 4 and 5 in the above list).
+
+In a sense, UBIFS is a next generation of JFFS2 file-system, but it is
+very different and incompatible to JFFS2. The following are the main
+differences.
+
+* JFFS2 works on top of MTD devices, UBIFS depends on UBI and works on
+  top of UBI volumes.
+* JFFS2 does not have on-media index and has to build it while mounting,
+  which requires full media scan. UBIFS maintains the FS indexing
+  information on the flash media and does not require full media scan,
+  so it mounts many times faster than JFFS2.
+* JFFS2 is a write-through file-system, while UBIFS supports write-back,
+  which makes UBIFS much faster on writes.
+
+Similarly to JFFS2, UBIFS supports on-the-flight compression which makes
+it possible to fit quite a lot of data to the flash.
+
+Similarly to JFFS2, UBIFS is tolerant of unclean reboots and power-cuts.
+It does not need stuff like ckfs.ext2. UBIFS automatically replays its
+journal and recovers from crashes, ensuring that the on-flash data
+structures are consistent.
+
+UBIFS scales logarithmically (most of the data structures it uses are
+trees), so the mount time and memory consumption do not linearly depend
+on the flash size, like in case of JFFS2. This is because UBIFS
+maintains the FS index on the flash media. However, UBIFS depends on
+UBI, which scales linearly. So overall UBI/UBIFS stack scales linearly.
+Nevertheless, UBI/UBIFS scales considerably better than JFFS2.
+
+The authors of UBIFS believe, that it is possible to develop UBI2 which
+would scale logarithmically as well. UBI2 would support the same API as UBI,
+but it would be binary incompatible to UBI. So UBIFS would not need to be
+changed to use UBI2
+
+
+Mount options
+=============
+
+(*) == default.
+
+norm_unmount (*)	commit on unmount; the journal is committed
+			when the file-system is unmounted so that the
+			next mount does not have to replay the journal
+			and it becomes very fast;
+fast_unmount		do not commit on unmount; this option makes
+			unmount faster, but the next mount slower
+			because of the need to replay the journal.
+
+
+Quick usage instructions
+========================
+
+The UBI volume to mount is specified using "ubiX_Y" or "ubiX:NAME" syntax,
+where "X" is UBI device number, "Y" is UBI volume number, and "NAME" is
+UBI volume name.
+
+Mount volume 0 on UBI device 0 to /mnt/ubifs:
+$ mount -t ubifs ubi0_0 /mnt/ubifs
+
+Mount "rootfs" volume of UBI device 0 to /mnt/ubifs ("rootfs" is volume
+name):
+$ mount -t ubifs ubi0:rootfs /mnt/ubifs
+
+The following is an example of the kernel boot arguments to attach mtd0
+to UBI and mount volume "rootfs":
+ubi.mtd=0 root=ubi0:rootfs rootfstype=ubifs
+
+
+Module Parameters for Debugging
+===============================
+
+When UBIFS has been compiled with debugging enabled, there are 3 module
+parameters that are available to control aspects of testing and debugging.
+The parameters are unsigned integers where each bit controls an option.
+The parameters are:
+
+debug_msgs	Selects which debug messages to display, as follows:
+
+		Message Type				Flag value
+
+		General messages			1
+		Journal messages			2
+		Mount messages				4
+		Commit messages				8
+		LEB search messages			16
+		Budgeting messages			32
+		Garbage collection messages		64
+		Tree Node Cache (TNC) messages		128
+		LEB properties (lprops) messages	256
+		Input/output messages			512
+		Log messages				1024
+		Scan messages				2048
+		Recovery messages			4096
+
+debug_chks	Selects extra checks that UBIFS can do while running:
+
+		Check					Flag value
+
+		General checks				1
+		Check Tree Node Cache (TNC)		2
+		Check indexing tree size		4
+		Check orphan area			8
+		Check old indexing tree			16
+		Check LEB properties (lprops)		32
+		Check leaf nodes and inodes		64
+
+debug_tsts	Selects a mode of testing, as follows:
+
+		Test mode				Flag value
+
+		Force in-the-gaps method		2
+		Failure mode for recovery testing	4
+
+For example, set debug_msgs to 5 to display General messages and Mount
+messages.
+
+
+References
+==========
+
+UBIFS documentation and FAQ/HOWTO at the MTD web site:
+http://www.linux-mtd.infradead.org/doc/ubifs.html
+http://www.linux-mtd.infradead.org/faq/ubifs.html

+ 205 - 198
Documentation/ftrace.txt

@@ -2,8 +2,12 @@
 		========================
 
 Copyright 2008 Red Hat Inc.
-Author: Steven Rostedt <srostedt@redhat.com>
+   Author:   Steven Rostedt <srostedt@redhat.com>
+  License:   The GNU Free Documentation License, Version 1.2
+Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
+	     John Kacur, and David Teigland.
 
+Written for: 2.6.27-rc1
 
 Introduction
 ------------
@@ -15,10 +19,11 @@ issues that take place outside of user-space.
 
 Although ftrace is the function tracer, it also includes an
 infrastructure that allows for other types of tracing. Some of the
-tracers that are currently in ftrace is a tracer to trace
+tracers that are currently in ftrace include a tracer to trace
 context switches, the time it takes for a high priority task to
 run after it was woken up, the time interrupts are disabled, and
-more.
+more (ftrace allows for tracer plugins, which means that the list of
+tracers can always grow).
 
 
 The File System
@@ -32,6 +37,8 @@ To mount the debugfs system:
   # mkdir /debug
   # mount -t debugfs nodev /debug
 
+(Note: it is more common to mount at /sys/kernel/debug, but for simplicity
+ this document will use /debug)
 
 That's it! (assuming that you have ftrace configured into your kernel)
 
@@ -46,21 +53,20 @@ of ftrace. Here is a list of some of the key files:
 		that is configured.
 
   available_tracers : This holds the different types of tracers that
-		has been compiled into the kernel. The tracers
-		listed here can be configured by echoing in their
-		name into current_tracer.
+		have been compiled into the kernel. The tracers
+		listed here can be configured by echoing their name
+		into current_tracer.
 
   tracing_enabled : This sets or displays whether the current_tracer
 		is activated and tracing or not. Echo 0 into this
-		file to disable the tracer or 1 (or non-zero) to
-		enable it.
+		file to disable the tracer or 1 to enable it.
 
   trace : This file holds the output of the trace in a human readable
-		format.
+		format (described below).
 
   latency_trace : This file shows the same trace but the information
 		is organized more to display possible latencies
-		in the system.
+		in the system (described below).
 
   trace_pipe : The output is the same as the "trace" file but this
 		file is meant to be streamed with live tracing.
@@ -72,7 +78,7 @@ of ftrace. Here is a list of some of the key files:
 		file, it is consumed, and will not be read
 		again with a sequential read. The "trace" and
 		"latency_trace" files are static, and if the
-		tracer isn't adding more data, they will display
+		tracer is not adding more data, they will display
 		the same information every time they are read.
 
   iter_ctrl : This file lets the user control the amount of data
@@ -89,12 +95,14 @@ of ftrace. Here is a list of some of the key files:
 
   trace_entries : This sets or displays the number of trace
 		entries each CPU buffer can hold. The tracer buffers
-		are the same size for each CPU, so care must be
-		taken when modifying the trace_entries. The number
-		of actually entries will be the number given
-		times the number of possible CPUS. The buffers
-		are saved as individual pages, and the actual entries
-		will always be rounded up to entries per page.
+		are the same size for each CPU. The displayed number
+		is the size of the CPU buffer and not total size. The
+		trace buffers are allocated in pages (blocks of memory
+		that the kernel uses for allocation, usually 4 KB in size).
+		Since each entry is smaller than a page, if the last
+		allocated page has room for more entries than were
+		requested, the rest of the page is used to allocate
+		entries.
 
 		This can only be updated when the current_tracer
 		is set to "none".
@@ -107,20 +115,19 @@ of ftrace. Here is a list of some of the key files:
 		on specified CPUS. The format is a hex string
 		representing the CPUS.
 
-  set_ftrace_filter : When dynamic ftrace is configured in, the
-		code is dynamically modified to disable calling
-		of the function profiler (mcount). This lets
-		tracing be configured in with practically no overhead
-		in performance.  This also has a side effect of
-		enabling or disabling specific functions to be
-		traced.  Echoing in names of functions into this
-		file will limit the trace to only those files.
-
-  set_ftrace_notrace: This has the opposite effect that
-		set_ftrace_filter has. Any function that is added
-		here will not be traced. If a function exists
-		in both set_ftrace_filter and set_ftrace_notrace
-		the function will _not_ bet traced.
+  set_ftrace_filter : When dynamic ftrace is configured in (see the
+		section below "dynamic ftrace"), the code is dynamically
+		modified (code text rewrite) to disable calling of the
+		function profiler (mcount). This lets tracing be configured
+		in with practically no overhead in performance.  This also
+		has a side effect of enabling or disabling specific functions
+		to be traced. Echoing names of functions into this file
+		will limit the trace to only those functions.
+
+  set_ftrace_notrace: This has an effect opposite to that of
+		set_ftrace_filter. Any function that is added here will not
+		be traced. If a function exists in both set_ftrace_filter
+		and set_ftrace_notrace,	the function will _not_ be traced.
 
   available_filter_functions : When a function is encountered the first
 		time by the dynamic tracer, it is recorded and
@@ -128,32 +135,31 @@ of ftrace. Here is a list of some of the key files:
 		lists the functions that have been recorded
 		by the dynamic tracer and these functions can
 		be used to set the ftrace filter by the above
-		"set_ftrace_filter" file.
+		"set_ftrace_filter" file. (See the section "dynamic ftrace"
+		below for more details).
 
 
 The Tracers
 -----------
 
-Here are the list of current tracers that can be configured.
+Here is the list of current tracers that may be configured.
 
   ftrace - function tracer that uses mcount to trace all functions.
-		It is possible to filter out which functions that are
-		traced when dynamic ftrace is configured in.
 
   sched_switch - traces the context switches between tasks.
 
-  irqsoff - traces the areas that disable interrupts and saves off
+  irqsoff - traces the areas that disable interrupts and saves
   		the trace with the longest max latency.
 		See tracing_max_latency.  When a new max is recorded,
 		it replaces the old trace. It is best to view this
-		trace with the latency_trace file.
+		trace via the latency_trace file.
 
-  preemptoff - Similar to irqsoff but traces and records the time
-		preemption is disabled.
+  preemptoff - Similar to irqsoff but traces and records the amount of
+		time for which preemption is disabled.
 
   preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
-		 records the largest time irqs and/or preemption is
-		 disabled.
+		 records the largest time for which irqs and/or preemption
+		 is disabled.
 
   wakeup - Traces and records the max latency that it takes for
 		the highest priority task to get scheduled after
@@ -166,13 +172,13 @@ Here are the list of current tracers that can be configured.
 Examples of using the tracer
 ----------------------------
 
-Here are typical examples of using the tracers with only controlling
-them with the debugfs interface (without using any user-land utilities).
+Here are typical examples of using the tracers when controlling them only
+with the debugfs interface (without using any user-land utilities).
 
 Output format:
 --------------
 
-Here's an example of the output format of the file "trace"
+Here is an example of the output format of the file "trace"
 
                              --------
 # tracer: ftrace
@@ -184,14 +190,15 @@ Here's an example of the output format of the file "trace"
             bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
                              --------
 
-A header is printed with the trace that is represented. In this case
-the tracer is "ftrace". Then a header showing the format. Task name
-"bash", the task PID "4251", the CPU that it was running on
+A header is printed with the tracer name that is represented by the trace.
+In this case the tracer is "ftrace". Then a header showing the format. Task
+name "bash", the task PID "4251", the CPU that it was running on
 "01", the timestamp in <secs>.<usecs> format, the function name that was
 traced "path_put" and the parent function that called this function
-"path_walk".
+"path_walk". The timestamp is the time at which the function was
+entered.
 
-The sched_switch tracer also includes tracing of task wake ups and
+The sched_switch tracer also includes tracing of task wakeups and
 context switches.
 
      ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +  2916:115:S
@@ -201,7 +208,7 @@ context switches.
      kondemand/1-2916  [01]  1453.070013:   2916:115:S ==>     7:115:R
      ksoftirqd/1-7     [01]  1453.070013:      7:115:S ==>     0:140:R
 
-Wake ups are represented by a "+" and the context switches show
+Wake ups are represented by a "+" and the context switches are shown as
 "==>".  The format is:
 
  Context switches:
@@ -216,7 +223,7 @@ Wake ups are represented by a "+" and the context switches show
 
   <pid>:<prio>:<state>    +  <pid>:<prio>:<state>
 
-The prio is the internal kernel priority, which is inverse to the
+The prio is the internal kernel priority, which is the inverse of the
 priority that is usually displayed by user-space tools. Zero represents
 the highest priority (99). Prio 100 starts the "nice" priorities with
 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
@@ -227,7 +234,7 @@ Latency trace format
 --------------------
 
 For traces that display latency times, the latency_trace file gives
-a bit more information to see why a latency happened. Here's a typical
+somewhat more information to see why a latency happened. Here is a typical
 trace.
 
 # tracer: irqsoff
@@ -255,21 +262,20 @@ irqsoff latency trace v1.1.5 on 2.6.26-rc8
   <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)
 
 
-vim:ft=help
-
 
-This shows that the current tracer is "irqsoff" tracing the time
-interrupts are disabled. It gives the trace version and the kernel
-this was executed on (2.6.26-rc8). Then it displays the max latency
-in microsecs (97 us). The number of trace entries displayed
-by the total number recorded (both are three: #3/3). The type of
+This shows that the current tracer is "irqsoff" tracing the time for which
+interrupts were disabled. It gives the trace version and the version
+of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
+the max latency in microsecs (97 us). The number of trace entries displayed
+and the total number recorded (both are three: #3/3). The type of
 preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
-and reserved for later use. #P is the number of online CPUS (#P:2).
+and are reserved for later use. #P is the number of online CPUS (#P:2).
 
-The task is the process that was running when the latency happened.
+The task is the process that was running when the latency occurred.
 (swapper pid: 0).
 
-The start and stop that caused the latencies:
+The start and stop (the functions in which the interrupts were disabled and
+enabled respectively) that caused the latencies:
 
   apic_timer_interrupt is where the interrupts were disabled.
   do_softirq is where they were enabled again.
@@ -281,14 +287,14 @@ explains which is which.
 
   pid: The PID of that process.
 
-  CPU#: The CPU that the process was running on.
+  CPU#: The CPU which the process was running on.
 
   irqs-off: 'd' interrupts are disabled. '.' otherwise.
 
   need-resched: 'N' task need_resched is set, '.' otherwise.
 
   hardirq/softirq:
-	'H' - hard irq happened inside a softirq.
+	'H' - hard irq occurred inside a softirq.
 	'h' - hard irq is running
 	's' - soft irq is running
 	'.' - normal context.
@@ -297,13 +303,13 @@ explains which is which.
 
 The above is mostly meaningful for kernel developers.
 
-  time: This differs from the trace output where as the trace output
-	contained a absolute timestamp. This timestamp is relative
-	to the start of the first entry in the the trace.
+  time: This differs from the trace file output. The trace file output
+	includes an absolute timestamp. The timestamp used by the
+	latency_trace file is relative to the start of the trace.
 
   delay: This is just to help catch your eye a bit better. And
 	needs to be fixed to be only relative to the same CPU.
-	The marks is determined by the difference between this
+	The marks are determined by the difference between this
 	current trace and the next trace.
 	 '!' - greater than preempt_mark_thresh (default 100)
 	 '+' - greater than 1 microsecond
@@ -322,13 +328,13 @@ output. To see what is available, simply cat the file:
   print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
  noblock nostacktrace nosched-tree
 
-To disable one of the options, echo in the option appended with "no".
+To disable one of the options, echo in the option prepended with "no".
 
   echo noprint-parent > /debug/tracing/iter_ctrl
 
 To enable an option, leave off the "no".
 
-  echo sym-offest > /debug/tracing/iter_ctrl
+  echo sym-offset > /debug/tracing/iter_ctrl
 
 Here are the available options:
 
@@ -344,7 +350,7 @@ Here are the available options:
 
   sym-offset - Display not only the function name, but also the offset
 		in the function. For example, instead of seeing just
-		"ktime_get" you will see "ktime_get+0xb/0x20"
+		"ktime_get", you will see "ktime_get+0xb/0x20".
 
   sym-offset:
    bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
@@ -364,7 +370,7 @@ Here are the available options:
 	user applications that can translate the raw numbers better than
 	having it done in the kernel.
 
-  hex - similar to raw, but the numbers will be in a hexadecimal format.
+  hex - Similar to raw, but the numbers will be in a hexadecimal format.
 
   bin - This will print out the formats in raw binary.
 
@@ -380,8 +386,8 @@ Here are the available options:
 sched_switch
 ------------
 
-This tracer simply records schedule switches. Here's an example
-on how to implement it.
+This tracer simply records schedule switches. Here is an example
+of how to use it.
 
  # echo sched_switch > /debug/tracing/current_tracer
  # echo 1 > /debug/tracing/tracing_enabled
@@ -416,8 +422,8 @@ the name of the trace and points to the options. The "FUNCTION"
 is a misnomer since here it represents the wake ups and context
 switches.
 
-The sched_switch only lists the wake ups (represented with '+')
-and context switches ('==>') with the previous task or current
+The sched_switch file only lists the wake ups (represented with '+')
+and context switches ('==>') with the previous task or current task
 first followed by the next task or task waking up. The format for both
 of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
 is the inverse of the actual priority with zero (0) being the highest
@@ -432,7 +438,8 @@ The task states are:
 
  R - running : wants to run, may not actually be running
  S - sleep   : process is waiting to be woken up (handles signals)
- D - deep sleep : process must be woken up (ignores signals)
+ D - disk sleep (uninterruptible sleep) : process must be woken up
+					(ignores signals)
  T - stopped : process suspended
  t - traced  : process is being traced (with something like gdb)
  Z - zombie  : process waiting to be cleaned up
@@ -442,8 +449,8 @@ The task states are:
 ftrace_enabled
 --------------
 
-The following tracers give different output depending on whether
-or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
+The following tracers (listed below) give different output depending
+on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
 one can either use the sysctl function or set it via the proc
 file system interface.
 
@@ -470,13 +477,12 @@ interrupt from triggering or the mouse interrupt from letting the
 kernel know of a new mouse event. The result is a latency with the
 reaction time.
 
-The irqsoff tracer tracks the time interrupts are disabled and when
-they are re-enabled. When a new maximum latency is hit, it saves off
-the trace so that it may be retrieved at a later time. Every time a
-new maximum in reached, the old saved trace is discarded and the new
-trace is saved.
+The irqsoff tracer tracks the time for which interrupts are disabled.
+When a new maximum latency is hit, the tracer saves the trace leading up
+to that latency point so that every time a new maximum is reached, the old
+saved trace is discarded and the new trace is saved.
 
-To reset the maximum, echo 0 into tracing_max_latency. Here's an
+To reset the maximum, echo 0 into tracing_max_latency. Here is an
 example:
 
  # echo irqsoff > /debug/tracing/current_tracer
@@ -488,14 +494,14 @@ example:
  # cat /debug/tracing/latency_trace
 # tracer: irqsoff
 #
-irqsoff latency trace v1.1.5 on 2.6.26-rc8
+irqsoff latency trace v1.1.5 on 2.6.26
 --------------------------------------------------------------------
- latency: 6 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
+ latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
     -----------------
-    | task: bash-4269 (uid:0 nice:0 policy:0 rt_prio:0)
+    | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
     -----------------
- => started at: copy_page_range
- => ended at:   copy_page_range
+ => started at: sys_setpgid
+ => ended at:   sys_setpgid
 
 #                _------=> CPU#
 #               / _-----=> irqs-off
@@ -506,21 +512,19 @@ irqsoff latency trace v1.1.5 on 2.6.26-rc8
 #              |||||     delay
 #  cmd     pid ||||| time  |   caller
 #     \   /    |||||   \   |   /
-    bash-4269  1...1    0us+: _spin_lock (copy_page_range)
-    bash-4269  1...1    7us : _spin_unlock (copy_page_range)
-    bash-4269  1...2    7us : trace_preempt_on (copy_page_range)
+    bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
+    bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
+    bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)
 
 
-vim:ft=help
+Here we see that that we had a latency of 12 microsecs (which is
+very good). The _write_lock_irq in sys_setpgid disabled interrupts.
+The difference between the 12 and the displayed timestamp 14us occurred
+because the clock was incremented between the time of recording the max
+latency and the time of recording the function that had that latency.
 
-Here we see that that we had a latency of 6 microsecs (which is
-very good). The spin_lock in copy_page_range disabled interrupts.
-The difference between the 6 and the displayed timestamp 7us is
-because the clock must have incremented between the time of recording
-the max latency and recording the function that had that latency.
-
-Note the above had ftrace_enabled not set. If we set the ftrace_enabled
-we get a much larger output:
+Note the above example had ftrace_enabled not set. If we set the
+ftrace_enabled, we get a much larger output:
 
 # tracer: irqsoff
 #
@@ -566,27 +570,26 @@ irqsoff latency trace v1.1.5 on 2.6.26-rc8
       ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)
 
 
-vim:ft=help
-
 
 Here we traced a 50 microsecond latency. But we also see all the
-functions that were called during that time. Note that enabling
-function tracing we endure an added overhead. This overhead may
-extend the latency times. But never the less, this trace has provided
-some very helpful debugging.
+functions that were called during that time. Note that by enabling
+function tracing, we incur an added overhead. This overhead may
+extend the latency times. But nevertheless, this trace has provided
+some very helpful debugging information.
 
 
 preemptoff
 ----------
 
-When preemption is disabled we may be able to receive interrupts but
-the task can not be preempted and a higher priority task must wait
+When preemption is disabled, we may be able to receive interrupts but
+the task cannot be preempted and a higher priority task must wait
 for preemption to be enabled again before it can preempt a lower
 priority task.
 
-The preemptoff tracer traces the places that disables preemption.
-Like the irqsoff, it records the maximum latency that preemption
-was disabled. The control of preemptoff is much like the irqsoff.
+The preemptoff tracer traces the places that disable preemption.
+Like the irqsoff tracer, it records the maximum latency for which preemption
+was disabled. The control of preemptoff tracer is much like the irqsoff
+tracer.
 
  # echo preemptoff > /debug/tracing/current_tracer
  # echo 0 > /debug/tracing/tracing_max_latency
@@ -620,8 +623,6 @@ preemptoff latency trace v1.1.5 on 2.6.26-rc8
     sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)
 
 
-vim:ft=help
-
 This has some more changes. Preemption was disabled when an interrupt
 came in (notice the 'h'), and was enabled while doing a softirq.
 (notice the 's'). But we also see that interrupts have been disabled
@@ -689,16 +690,16 @@ The above is an example of the preemptoff trace with ftrace_enabled
 set. Here we see that interrupts were disabled the entire time.
 The irq_enter code lets us know that we entered an interrupt 'h'.
 Before that, the functions being traced still show that it is not
-in an interrupt, but we can see by the functions themselves that
+in an interrupt, but we can see from the functions themselves that
 this is not the case.
 
-Notice that the __do_softirq when called doesn't have a preempt_count.
-It may seem that we missed a preempt enabled. What really happened
-is that the preempt count is held on the threads stack and we
+Notice that __do_softirq when called does not have a preempt_count.
+It may seem that we missed a preempt enabling. What really happened
+is that the preempt count is held on the thread's stack and we
 switched to the softirq stack (4K stacks in effect). The code
-does not copy the preempt count, but because interrupts are disabled
-we don't need to worry about it. Having a tracer like this is good
-to let people know what really happens inside the kernel.
+does not copy the preempt count, but because interrupts are disabled,
+we do not need to worry about it. Having a tracer like this is good
+for letting people know what really happens inside the kernel.
 
 
 preemptirqsoff
@@ -708,7 +709,7 @@ Knowing the locations that have interrupts disabled or preemption
 disabled for the longest times is helpful. But sometimes we would
 like to know when either preemption and/or interrupts are disabled.
 
-The following code:
+Consider the following code:
 
     local_irq_disable();
     call_function_with_irqs_off();
@@ -732,7 +733,7 @@ To record this time, use the preemptirqsoff tracer.
 
 Again, using this trace is much like the irqsoff and preemptoff tracers.
 
- # echo preemptoff > /debug/tracing/current_tracer
+ # echo preemptirqsoff > /debug/tracing/current_tracer
  # echo 0 > /debug/tracing/tracing_max_latency
  # echo 1 > /debug/tracing/tracing_enabled
  # ls -ltr
@@ -764,12 +765,10 @@ preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
       ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)
 
 
-vim:ft=help
-
 
 The trace_hardirqs_off_thunk is called from assembly on x86 when
 interrupts are disabled in the assembly code. Without the function
-tracing, we don't know if interrupts were enabled within the preemption
+tracing, we do not know if interrupts were enabled within the preemption
 points. We do see that it started with preemption enabled.
 
 Here is a trace with ftrace_enabled set:
@@ -860,25 +859,25 @@ preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
 
 This is a very interesting trace. It started with the preemption of
 the ls task. We see that the task had the "need_resched" bit set
-with the 'N' in the trace.  Interrupts are disabled in the spin_lock
-and the trace started. We see that a schedule took place to run
-sshd.  When the interrupts were enabled we took an interrupt.
-On return of the interrupt the softirq ran. We took another interrupt
-while running the softirq as we see with the capital 'H'.
+via the 'N' in the trace.  Interrupts were disabled before the spin_lock
+at the beginning of the trace. We see that a schedule took place to run
+sshd.  When the interrupts were enabled, we took an interrupt.
+On return from the interrupt handler, the softirq ran. We took another
+interrupt while running the softirq as we see from the capital 'H'.
 
 
 wakeup
 ------
 
-In Real-Time environment it is very important to know the wakeup
-time it takes for the highest priority task that wakes up to the
-time it executes. This is also known as "schedule latency".
+In a Real-Time environment it is very important to know the wakeup
+time it takes for the highest priority task that is woken up to the
+time that it executes. This is also known as "schedule latency".
 I stress the point that this is about RT tasks. It is also important
 to know the scheduling latency of non-RT tasks, but the average
 schedule latency is better for non-RT tasks. Tools like
-LatencyTop is more appropriate for such measurements.
+LatencyTop are more appropriate for such measurements.
 
-Real-Time environments is interested in the worst case latency.
+Real-Time environments are interested in the worst case latency.
 That is the longest latency it takes for something to happen, and
 not the average. We can have a very fast scheduler that may only
 have a large latency once in a while, but that would not work well
@@ -889,8 +888,8 @@ tasks that are unpredictable will overwrite the worst case latency
 of RT tasks.
 
 Since this tracer only deals with RT tasks, we will run this slightly
-different than we did with the previous tracers. Instead of performing
-an 'ls' we will run 'sleep 1' under 'chrt' which changes the
+differently than we did with the previous tracers. Instead of performing
+an 'ls', we will run 'sleep 1' under 'chrt' which changes the
 priority of the task.
 
  # echo wakeup > /debug/tracing/current_tracer
@@ -921,12 +920,10 @@ wakeup latency trace v1.1.5 on 2.6.26-rc8
   <idle>-0     1d..4    4us : schedule (cpu_idle)
 
 
-vim:ft=help
-
 
-Running this on an idle system we see that it only took 4 microseconds
+Running this on an idle system, we see that it only took 4 microseconds
 to perform the task switch.  Note, since the trace marker in the
-schedule is before the actual "switch" we stop the tracing when
+schedule is before the actual "switch", we stop the tracing when
 the recorded task is about to schedule in. This may change if
 we add a new marker at the end of the scheduler.
 
@@ -991,13 +988,16 @@ ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
 ksoftirq-7     1d..4   50us : schedule (__cond_resched)
 
 The interrupt went off while running ksoftirqd. This task runs at
-SCHED_OTHER. Why didn't we see the 'N' set early? This may be
-a harmless bug with x86_32 and 4K stacks. The need_reched() function
-that tests if we need to reschedule looks on the actual stack.
-Where as the setting of the NEED_RESCHED bit happens on the
-task's stack. But because we are in a hard interrupt, the test
-is with the interrupts stack which has that to be false. We don't
-see the 'N' until we switch back to the task's stack.
+SCHED_OTHER. Why did not we see the 'N' set early? This may be
+a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
+configured, the interrupt and softirq run with their own stack.
+Some information is held on the top of the task's stack (need_resched
+and preempt_count are both stored there). The setting of the NEED_RESCHED
+bit is done directly to the task's stack, but the reading of the
+NEED_RESCHED is done by looking at the current stack, which in this case
+is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
+has been set. We do not see the 'N' until we switch back to the task's
+assigned stack.
 
 ftrace
 ------
@@ -1036,14 +1036,14 @@ this tracer is a nop.
 [...]
 
 
-Note: It is sometimes better to enable or disable tracing directly from
-a program, because the buffer may be overflowed by the echo commands
-before you get to the point you want to trace. It is also easier to
-stop the tracing at the point that you hit the part that you are
-interested in. Since the ftrace buffer is a ring buffer with the
-oldest data being overwritten, usually it is sufficient to start the
-tracer with an echo command but have you code stop it. Something
-like the following is usually appropriate for this.
+Note: ftrace uses ring buffers to store the above entries. The newest data
+may overwrite the oldest data. Sometimes using echo to stop the trace
+is not sufficient because the tracing could have overwritten the data
+that you wanted to record. For this reason, it is sometimes better to
+disable tracing directly from a program. This allows you to stop the
+tracing at the point that you hit the part that you are interested in.
+To disable the tracing directly from a C program, something like following
+code snippet can be used:
 
 int trace_fd;
 [...]
@@ -1052,25 +1052,31 @@ int main(int argc, char *argv[]) {
 	trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
 	[...]
 	if (condition_hit()) {
-	write(trace_fd, "0", 1);
+		write(trace_fd, "0", 1);
 	}
 	[...]
 }
 
+Note: Here we hard coded the path name. The debugfs mount is not
+guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
+For simple one time traces, the above is sufficent. For anything else,
+a search through /proc/mounts may be needed to find where the debugfs
+file-system is mounted.
 
 dynamic ftrace
 --------------
 
-If CONFIG_DYNAMIC_FTRACE is set, then the system will run with
+If CONFIG_DYNAMIC_FTRACE is set, the system will run with
 virtually no overhead when function tracing is disabled. The way
 this works is the mcount function call (placed at the start of
 every kernel function, produced by the -pg switch in gcc), starts
-of pointing to a simple return.
+of pointing to a simple return. (Enabling FTRACE will include the
+-pg switch in the compiling of the kernel.)
 
-When dynamic ftrace is initialized, it calls kstop_machine to make it
-act like a uniprocessor so that it can freely modify code without
-worrying about other processors executing that same code.  At
-initialization, the mcount calls are change to call a "record_ip"
+When dynamic ftrace is initialized, it calls kstop_machine to make
+the machine act like a uniprocessor so that it can freely modify code
+without worrying about other processors executing that same code.  At
+initialization, the mcount calls are changed to call a "record_ip"
 function.  After this, the first time a kernel function is called,
 it has the calling address saved in a hash table.
 
@@ -1078,15 +1084,15 @@ Later on the ftraced kernel thread is awoken and will again call
 kstop_machine if new functions have been recorded. The ftraced thread
 will change all calls to mcount to "nop".  Just calling mcount
 and having mcount return has shown a 10% overhead. By converting
-it to a nop, there is no recordable overhead to the system.
+it to a nop, there is no measurable overhead to the system.
 
 One special side-effect to the recording of the functions being
-traced, is that we can now selectively choose which functions we
-want to trace and which ones we want the mcount calls to remain as
+traced is that we can now selectively choose which functions we
+wish to trace and which ones we want the mcount calls to remain as
 nops.
 
-Two files that contain to the enabling and disabling of recorded
-functions are:
+Two files are used, one for enabling and one for disabling the tracing
+of specified functions. They are:
 
   set_ftrace_filter
 
@@ -1094,7 +1100,7 @@ and
 
   set_ftrace_notrace
 
-A list of available functions that you can add to this files is listed
+A list of available functions that you can add to these files is listed
 in:
 
    available_filter_functions
@@ -1108,7 +1114,7 @@ pick_next_task_fair
 mutex_lock
 [...]
 
-If I'm only interested in sys_nanosleep and hrtimer_interrupt:
+If I am only interested in sys_nanosleep and hrtimer_interrupt:
 
  # echo sys_nanosleep hrtimer_interrupt \
 		> /debug/tracing/set_ftrace_filter
@@ -1125,21 +1131,21 @@ If I'm only interested in sys_nanosleep and hrtimer_interrupt:
           usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
           <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
 
-To see what functions are being traced, you can cat the file:
+To see which functions are being traced, you can cat the file:
 
  # cat /debug/tracing/set_ftrace_filter
 hrtimer_interrupt
 sys_nanosleep
 
 
-Perhaps this isn't enough. The filters also allow simple wild cards.
-Only the following is currently available
+Perhaps this is not enough. The filters also allow simple wild cards.
+Only the following are currently available
 
-  <match>*  - will match functions that begins with <match>
+  <match>*  - will match functions that begin with <match>
   *<match>  - will match functions that end with <match>
   *<match>* - will match functions that have <match> in it
 
-Thats all the wild cards that are allowed.
+These are the only wild cards which are supported.
 
   <match>*<match> will not work.
 
@@ -1187,7 +1193,7 @@ This is because the '>' and '>>' act just like they do in bash.
 To rewrite the filters, use '>'
 To append to the filters, use '>>'
 
-To clear out a filter so that all functions will be recorded again.
+To clear out a filter so that all functions will be recorded again:
 
  # echo > /debug/tracing/set_ftrace_filter
  # cat /debug/tracing/set_ftrace_filter
@@ -1246,24 +1252,24 @@ ftraced
 
 As mentioned above, when dynamic ftrace is configured in, a kernel
 thread wakes up once a second and checks to see if there are mcount
-calls that need to be converted into nops. If there is not, then
-it simply goes back to sleep. But if there is, it will call
+calls that need to be converted into nops. If there are not any, then
+it simply goes back to sleep. But if there are some, it will call
 kstop_machine to convert the calls to nops.
 
-There may be a case that you do not want this added latency.
+There may be a case in which you do not want this added latency.
 Perhaps you are doing some audio recording and this activity might
 cause skips in the playback. There is an interface to disable
-and enable the ftraced kernel thread.
+and enable the "ftraced" kernel thread.
 
  # echo 0 > /debug/tracing/ftraced_enabled
 
-This will disable the calling of the kstop_machine to update the
-mcount calls to nops. Remember that there's a large overhead
+This will disable the calling of kstop_machine to update the
+mcount calls to nops. Remember that there is a large overhead
 to calling mcount. Without this kernel thread, that overhead will
 exist.
 
-Any write to the ftraced_enabled file will cause the kstop_machine
-to run if there are recorded calls to mcount. This means that a
+If there are recorded calls to mcount, any write to the ftraced_enabled
+file will cause the kstop_machine to run. This means that a
 user can manually perform the updates when they want to by simply
 echoing a '0' into the ftraced_enabled file.
 
@@ -1274,8 +1280,8 @@ that uses ftrace function recording.
 trace_pipe
 ----------
 
-The trace_pipe outputs the same as trace, but the effect on the
-tracing is different. Every read from trace_pipe is consumed.
+The trace_pipe outputs the same content as the trace file, but the effect
+on the tracing is different. Every read from trace_pipe is consumed.
 This means that subsequent reads will be different. The trace
 is live.
 
@@ -1305,7 +1311,7 @@ is live.
             bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up
 
 
-Note, reading the trace_pipe will block until more input is added.
+Note, reading the trace_pipe file will block until more input is added.
 By changing the tracer, trace_pipe will issue an EOF. We needed
 to set the ftrace tracer _before_ cating the trace_pipe file.
 
@@ -1314,8 +1320,8 @@ trace entries
 -------------
 
 Having too much or not enough data can be troublesome in diagnosing
-some issue in the kernel. The file trace_entries is used to modify
-the size of the internal trace buffers. The numbers listed
+an issue in the kernel. The file trace_entries is used to modify
+the size of the internal trace buffers. The number listed
 is the number of entries that can be recorded per CPU. To know
 the full size, multiply the number of possible CPUS with the
 number of entries.
@@ -1323,8 +1329,9 @@ number of entries.
  # cat /debug/tracing/trace_entries
 65620
 
-Note, to modify this you must have tracing fulling disabled. To do that,
-echo "none" into the current_tracer.
+Note, to modify this, you must have tracing completely disabled. To do that,
+echo "none" into the current_tracer. If the current_tracer is not set
+to "none", an EINVAL error will be returned.
 
  # echo none > /debug/tracing/current_tracer
  # echo 100000 > /debug/tracing/trace_entries
@@ -1333,18 +1340,18 @@ echo "none" into the current_tracer.
 
 
 Notice that we echoed in 100,000 but the size is 100,045. The entries
-are held by individual pages. It allocates the number of pages it takes
+are held in individual pages. It allocates the number of pages it takes
 to fulfill the request. If more entries may fit on the last page
-it will add them.
+then they will be added.
 
  # echo 1 > /debug/tracing/trace_entries
  # cat /debug/tracing/trace_entries
 85
 
-This shows us that 85 entries can fit on a single page.
+This shows us that 85 entries can fit in a single page.
 
-The number of pages that will be allocated is a percentage of available
-memory. Allocating too much will produces an error.
+The number of pages which will be allocated is limited to a percentage
+of available memory. Allocating too much will produce an error.
 
  # echo 1000000000000 > /debug/tracing/trace_entries
 -bash: echo: write error: Cannot allocate memory

+ 0 - 47
Documentation/i2c/busses/i2c-i810

@@ -1,47 +0,0 @@
-Kernel driver i2c-i810
-
-Supported adapters:
-  * Intel 82810, 82810-DC100, 82810E, and 82815 (GMCH)
-  * Intel 82845G (GMCH)
-
-Authors: 
-	Frodo Looijaard <frodol@dds.nl>, 
-	Philip Edelbrock <phil@netroedge.com>,
-        Kyösti Mälkki <kmalkki@cc.hut.fi>,
-	Ralph Metzler <rjkm@thp.uni-koeln.de>,
-	Mark D. Studebaker <mdsxyz123@yahoo.com>
-
-Main contact: Mark Studebaker <mdsxyz123@yahoo.com>
-
-Description 
------------ 
-
-WARNING: If you have an '810' or '815' motherboard, your standard I2C
-temperature sensors are most likely on the 801's I2C bus. You want the
-i2c-i801 driver for those, not this driver.
-
-Now for the i2c-i810...
-
-The GMCH chip contains two I2C interfaces.
-
-The first interface is used for DDC (Data Display Channel) which is a
-serial channel through the VGA monitor connector to a DDC-compliant
-monitor. This interface is defined by the Video Electronics Standards
-Association (VESA). The standards are available for purchase at
-http://www.vesa.org .
-
-The second interface is a general-purpose I2C bus. It may be connected to a
-TV-out chip such as the BT869 or possibly to a digital flat-panel display.
-
-Features
--------- 
-
-Both busses use the i2c-algo-bit driver for 'bit banging'
-and support for specific transactions is provided by i2c-algo-bit.
-
-Issues
-------
-
-If you enable bus testing in i2c-algo-bit (insmod i2c-algo-bit bit_test=1),
-the test may fail; if so, the i2c-i810 driver won't be inserted. However,
-we think this has been fixed.

+ 0 - 23
Documentation/i2c/busses/i2c-prosavage

@@ -1,23 +0,0 @@
-Kernel driver i2c-prosavage
-
-Supported adapters:
-	
-	S3/VIA KM266/VT8375 aka ProSavage8 
-	S3/VIA KM133/VT8365 aka Savage4 
-
-Author: Henk Vergonet <henk@god.dyndns.org>
-
-Description
------------
-
-The Savage4 chips contain two I2C interfaces (aka a I2C 'master' or
-'host'). 
-
-The first interface is used for DDC (Data Display Channel) which is a
-serial channel through the VGA monitor connector to a DDC-compliant
-monitor. This interface is defined by the Video Electronics Standards
-Association (VESA). The standards are available for purchase at
-http://www.vesa.org . The second interface is a general-purpose I2C bus.
-
-Usefull for gaining access to the TV Encoder chips.
-

+ 0 - 26
Documentation/i2c/busses/i2c-savage4

@@ -1,26 +0,0 @@
-Kernel driver i2c-savage4
-
-Supported adapters:
-  * Savage4
-  * Savage2000
-
-Authors: 
-	Alexander Wold <awold@bigfoot.com>,
-	Mark D. Studebaker <mdsxyz123@yahoo.com> 
-
-Description
------------
-
-The Savage4 chips contain two I2C interfaces (aka a I2C 'master'
-or 'host'). 
-
-The first interface is used for DDC (Data Display Channel) which is a
-serial channel through the VGA monitor connector to a DDC-compliant
-monitor. This interface is defined by the Video Electronics Standards
-Association (VESA). The standards are available for purchase at
-http://www.vesa.org . The DDC bus is not yet supported because its register
-is not directly memory-mapped.
-
-The second interface is a general-purpose I2C bus. This is the only
-interface supported by the driver at the moment.
-

+ 1 - 1
Documentation/i2c/chips/max6875

@@ -49,7 +49,7 @@ $ modprobe max6875 force=0,0x50
 
 The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple
 addresses.  For example, for address 0x50, it also reserves 0x51.
-The even-address instance is called 'max6875', the odd one is 'max6875 subclient'.
+The even-address instance is called 'max6875', the odd one is 'dummy'.
 
 
 Programming the chip using i2c-dev

+ 9 - 1
Documentation/i2c/chips/pca9539

@@ -7,7 +7,7 @@ drivers/gpio/pca9539.c instead.
 Supported chips:
   * Philips PCA9539
     Prefix: 'pca9539'
-    Addresses scanned: 0x74 - 0x77
+    Addresses scanned: none
     Datasheet:
         http://www.semiconductors.philips.com/acrobat/datasheets/PCA9539_2.pdf
 
@@ -23,6 +23,14 @@ The input sense can also be inverted.
 The 16 lines are split between two bytes.
 
 
+Detection
+---------
+
+The PCA9539 is difficult to detect and not commonly found in PC machines,
+so you have to pass the I2C bus and address of the installed PCA9539
+devices explicitly to the driver at load time via the force=... parameter.
+
+
 Sysfs entries
 -------------
 

+ 5 - 7
Documentation/i2c/chips/pcf8574

@@ -4,13 +4,13 @@ Kernel driver pcf8574
 Supported chips:
   * Philips PCF8574
     Prefix: 'pcf8574'
-    Addresses scanned: I2C 0x20 - 0x27
+    Addresses scanned: none
     Datasheet: Publicly available at the Philips Semiconductors website
                http://www.semiconductors.philips.com/pip/PCF8574P.html
 
  * Philips PCF8574A
     Prefix: 'pcf8574a'
-    Addresses scanned: I2C 0x38 - 0x3f
+    Addresses scanned: none
     Datasheet: Publicly available at the Philips Semiconductors website
                http://www.semiconductors.philips.com/pip/PCF8574P.html
 
@@ -38,12 +38,10 @@ For more informations see the datasheet.
 Accessing PCF8574(A) via /sys interface
 -------------------------------------
 
-! Be careful !
 The PCF8574(A) is plainly impossible to detect ! Stupid chip.
-So every chip with address in the interval [20..27] and [38..3f] are
-detected as PCF8574(A). If you have other chips in this address
-range, the workaround is to load this module after the one
-for your others chips.
+So, you have to pass the I2C bus and address of the installed PCF857A
+and PCF8574A devices explicitly to the driver at load time via the
+force=... parameter.
 
 On detection (i.e. insmod, modprobe et al.), directories are being
 created for each detected PCF8574(A):

+ 3 - 6
Documentation/i2c/chips/pcf8575

@@ -40,12 +40,9 @@ Detection
 ---------
 
 There is no method known to detect whether a chip on a given I2C address is
-a PCF8575 or whether it is any other I2C device. So there are two alternatives
-to let the driver find the installed PCF8575 devices:
-- Load this driver after any other I2C driver for I2C devices with addresses
-  in the range 0x20 .. 0x27.
-- Pass the I2C bus and address of the installed PCF8575 devices explicitly to
-  the driver at load time via the probe=... or force=... parameters.
+a PCF8575 or whether it is any other I2C device, so you have to pass the I2C
+bus and address of the installed PCF8575 devices explicitly to the driver at
+load time via the force=... parameter.
 
 /sys interface
 --------------

+ 127 - 0
Documentation/i2c/fault-codes

@@ -0,0 +1,127 @@
+This is a summary of the most important conventions for use of fault
+codes in the I2C/SMBus stack.
+
+
+A "Fault" is not always an "Error"
+----------------------------------
+Not all fault reports imply errors; "page faults" should be a familiar
+example.  Software often retries idempotent operations after transient
+faults.  There may be fancier recovery schemes that are appropriate in
+some cases, such as re-initializing (and maybe resetting).  After such
+recovery, triggered by a fault report, there is no error.
+
+In a similar way, sometimes a "fault" code just reports one defined
+result for an operation ... it doesn't indicate that anything is wrong
+at all, just that the outcome wasn't on the "golden path".
+
+In short, your I2C driver code may need to know these codes in order
+to respond correctly.  Other code may need to rely on YOUR code reporting
+the right fault code, so that it can (in turn) behave correctly.
+
+
+I2C and SMBus fault codes
+-------------------------
+These are returned as negative numbers from most calls, with zero or
+some positive number indicating a non-fault return.  The specific
+numbers associated with these symbols differ between architectures,
+though most Linux systems use <asm-generic/errno*.h> numbering.
+
+Note that the descriptions here are not exhaustive.  There are other
+codes that may be returned, and other cases where these codes should
+be returned.  However, drivers should not return other codes for these
+cases (unless the hardware doesn't provide unique fault reports).
+
+Also, codes returned by adapter probe methods follow rules which are
+specific to their host bus (such as PCI, or the platform bus).
+
+
+EAGAIN
+	Returned by I2C adapters when they lose arbitration in master
+	transmit mode:  some other master was transmitting different
+	data at the same time.
+
+	Also returned when trying to invoke an I2C operation in an
+	atomic context, when some task is already using that I2C bus
+	to execute some other operation.
+
+EBADMSG
+	Returned by SMBus logic when an invalid Packet Error Code byte
+	is received.  This code is a CRC covering all bytes in the
+	transaction, and is sent before the terminating STOP.  This
+	fault is only reported on read transactions; the SMBus slave
+	may have a way to report PEC mismatches on writes from the
+	host.  Note that even if PECs are in use, you should not rely
+	on these as the only way to detect incorrect data transfers.
+
+EBUSY
+	Returned by SMBus adapters when the bus was busy for longer
+	than allowed.  This usually indicates some device (maybe the
+	SMBus adapter) needs some fault recovery (such as resetting),
+	or that the reset was attempted but failed.
+
+EINVAL
+	This rather vague error means an invalid parameter has been
+	detected before any I/O operation was started.  Use a more
+	specific fault code when you can.
+
+	One example would be a driver trying an SMBus Block Write
+	with block size outside the range of 1-32 bytes.
+
+EIO
+	This rather vague error means something went wrong when
+	performing an I/O operation.  Use a more specific fault
+	code when you can.
+
+ENODEV
+	Returned by driver probe() methods.  This is a bit more
+	specific than ENXIO, implying the problem isn't with the
+	address, but with the device found there.  Driver probes
+	may verify the device returns *correct* responses, and
+	return this as appropriate.  (The driver core will warn
+	about probe faults other than ENXIO and ENODEV.)
+
+ENOMEM
+	Returned by any component that can't allocate memory when
+	it needs to do so.
+
+ENXIO
+	Returned by I2C adapters to indicate that the address phase
+	of a transfer didn't get an ACK.  While it might just mean
+	an I2C device was temporarily not responding, usually it
+	means there's nothing listening at that address.
+
+	Returned by driver probe() methods to indicate that they
+	found no device to bind to.  (ENODEV may also be used.)
+
+EOPNOTSUPP
+	Returned by an adapter when asked to perform an operation
+	that it doesn't, or can't, support.
+
+	For example, this would be returned when an adapter that
+	doesn't support SMBus block transfers is asked to execute
+	one.  In that case, the driver making that request should
+	have verified that functionality was supported before it
+	made that block transfer request.
+
+	Similarly, if an I2C adapter can't execute all legal I2C
+	messages, it should return this when asked to perform a
+	transaction it can't.  (These limitations can't be seen in
+	the adapter's functionality mask, since the assumption is
+	that if an adapter supports I2C it supports all of I2C.)
+
+EPROTO
+	Returned when slave does not conform to the relevant I2C
+	or SMBus (or chip-specific) protocol specifications.  One
+	case is when the length of an SMBus block data response
+	(from the SMBus slave) is outside the range 1-32 bytes.
+
+ETIMEDOUT
+	This is returned by drivers when an operation took too much
+	time, and was aborted before it completed.
+
+	SMBus adapters may return it when an operation took more
+	time than allowed by the SMBus specification; for example,
+	when a slave stretches clocks too far.  I2C has no such
+	timeouts, but it's normal for I2C adapters to impose some
+	arbitrary limits (much longer than SMBus!) too.
+

+ 2 - 2
Documentation/i2c/smbus-protocol

@@ -42,8 +42,8 @@ Count (8 bits): A data byte containing the length of a block operation.
 [..]: Data sent by I2C device, as opposed to data sent by the host adapter.
 
 
-SMBus Quick Command:  i2c_smbus_write_quick()
-=============================================
+SMBus Quick Command
+===================
 
 This sends a single bit to the device, at the place of the Rd/Wr bit.
 

+ 40 - 11
Documentation/i2c/writing-clients

@@ -44,6 +44,10 @@ static struct i2c_driver foo_driver = {
 	.id_table	= foo_ids,
 	.probe		= foo_probe,
 	.remove		= foo_remove,
+	/* if device autodetection is needed: */
+	.class		= I2C_CLASS_SOMETHING,
+	.detect		= foo_detect,
+	.address_data	= &addr_data,
 
 	/* else, driver uses "legacy" binding model: */
 	.attach_adapter	= foo_attach_adapter,
@@ -217,6 +221,31 @@ in the I2C bus driver. You may want to save the returned i2c_client
 reference for later use.
 
 
+Device Detection (Standard driver model)
+----------------------------------------
+
+Sometimes you do not know in advance which I2C devices are connected to
+a given I2C bus.  This is for example the case of hardware monitoring
+devices on a PC's SMBus.  In that case, you may want to let your driver
+detect supported devices automatically.  This is how the legacy model
+was working, and is now available as an extension to the standard
+driver model (so that we can finally get rid of the legacy model.)
+
+You simply have to define a detect callback which will attempt to
+identify supported devices (returning 0 for supported ones and -ENODEV
+for unsupported ones), a list of addresses to probe, and a device type
+(or class) so that only I2C buses which may have that type of device
+connected (and not otherwise enumerated) will be probed.  The i2c
+core will then call you back as needed and will instantiate a device
+for you for every successful detection.
+
+Note that this mechanism is purely optional and not suitable for all
+devices.  You need some reliable way to identify the supported devices
+(typically using device-specific, dedicated identification registers),
+otherwise misdetections are likely to occur and things can get wrong
+quickly.
+
+
 Device Deletion (Standard driver model)
 ---------------------------------------
 
@@ -569,7 +598,6 @@ SMBus communication
   in terms of it. Never use this function directly!
 
 
-  extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
   extern s32 i2c_smbus_read_byte(struct i2c_client * client);
   extern s32 i2c_smbus_write_byte(struct i2c_client * client, u8 value);
   extern s32 i2c_smbus_read_byte_data(struct i2c_client * client, u8 command);
@@ -578,30 +606,31 @@ SMBus communication
   extern s32 i2c_smbus_read_word_data(struct i2c_client * client, u8 command);
   extern s32 i2c_smbus_write_word_data(struct i2c_client * client,
                                        u8 command, u16 value);
+  extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
+                                       u8 command, u8 *values);
   extern s32 i2c_smbus_write_block_data(struct i2c_client * client,
                                         u8 command, u8 length,
                                         u8 *values);
   extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client * client,
                                            u8 command, u8 length, u8 *values);
-
-These ones were removed in Linux 2.6.10 because they had no users, but could
-be added back later if needed:
-
-  extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
-                                       u8 command, u8 *values);
   extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client * client,
                                             u8 command, u8 length,
                                             u8 *values);
+
+These ones were removed from i2c-core because they had no users, but could
+be added back later if needed:
+
+  extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
   extern s32 i2c_smbus_process_call(struct i2c_client * client,
                                     u8 command, u16 value);
   extern s32 i2c_smbus_block_process_call(struct i2c_client *client,
                                           u8 command, u8 length,
                                           u8 *values)
 
-All these transactions return -1 on failure. The 'write' transactions 
-return 0 on success; the 'read' transactions return the read value, except 
-for read_block, which returns the number of values read. The block buffers 
-need not be longer than 32 bytes.
+All these transactions return a negative errno value on failure. The 'write'
+transactions return 0 on success; the 'read' transactions return the read
+value, except for block transactions, which return the number of values
+read. The block buffers need not be longer than 32 bytes.
 
 You can read the file `smbus-protocol' for more information about the
 actual SMBus protocol.

+ 1 - 0
Documentation/ioctl-number.txt

@@ -117,6 +117,7 @@ Code	Seq#	Include File		Comments
 					<mailto:natalia@nikhefk.nikhef.nl>
 'c'	00-7F	linux/comstats.h	conflict!
 'c'	00-7F	linux/coda.h		conflict!
+'c'	80-9F	asm-s390/chsc.h
 'd'	00-FF	linux/char/drm/drm/h	conflict!
 'd'	00-DF	linux/video_decoder.h	conflict!
 'd'	F0-FF	linux/digi1.h

+ 4 - 3
Documentation/ioctl/hdio.txt

@@ -508,12 +508,13 @@ HDIO_DRIVE_RESET		execute a device reset
 
 	error returns:
 	  EACCES	Access denied:  requires CAP_SYS_ADMIN
+	  ENXIO		No such device:	phy dead or ctl_addr == 0
+	  EIO		I/O error:	reset timed out or hardware error
 
 	notes:
 
-	  Abort any current command, prevent anything else from being
-	  queued, execute a reset on the device, and issue BLKRRPART
-	  ioctl on the block device.
+	  Execute a reset on the device as soon as the current IO
+	  operation has completed.
 
 	  Executes an ATAPI soft reset if applicable, otherwise
 	  executes an ATA soft reset on the controller.

+ 23 - 5
Documentation/kernel-parameters.txt

@@ -147,10 +147,14 @@ and is between 256 and 4096 characters. It is defined in the file
 			default: 0
 
 	acpi_sleep=	[HW,ACPI] Sleep options
-			Format: { s3_bios, s3_mode, s3_beep }
+			Format: { s3_bios, s3_mode, s3_beep, old_ordering }
 			See Documentation/power/video.txt for s3_bios and s3_mode.
 			s3_beep is for debugging; it makes the PC's speaker beep
 			as soon as the kernel's real-mode entry point is called.
+			old_ordering causes the ACPI 1.0 ordering of the _PTS
+			control method, wrt putting devices into low power
+			states, to be enforced (the ACPI 2.0 ordering of _PTS is
+			used by default).
 
 	acpi_sci=	[HW,ACPI] ACPI System Control Interrupt trigger mode
 			Format: { level | edge | high | low }
@@ -571,6 +575,8 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	debug_objects	[KNL] Enable object debugging
 
+	debugpat	[X86] Enable PAT debugging
+
 	decnet.addr=	[HW,NET]
 			Format: <area>[,<node>]
 			See also Documentation/networking/decnet.txt.
@@ -756,9 +762,6 @@ and is between 256 and 4096 characters. It is defined in the file
 	hd=		[EIDE] (E)IDE hard drive subsystem geometry
 			Format: <cyl>,<head>,<sect>
 
-	hd?=		[HW] (E)IDE subsystem
-	hd?lun=		See Documentation/ide/ide.txt.
-
 	highmem=nn[KMG]	[KNL,BOOT] forces the highmem zone to have an exact
 			size of <nn>. This works even on boxes that have no
 			highmem otherwise. This also works to reduce highmem
@@ -819,7 +822,7 @@ and is between 256 and 4096 characters. It is defined in the file
 			See Documentation/ide/ide.txt.
 
 	idle=		[X86]
-			Format: idle=poll or idle=mwait
+			Format: idle=poll or idle=mwait, idle=halt, idle=nomwait
 			Poll forces a polling idle loop that can slightly improves the performance
 			of waking up a idle CPU, but will use a lot of power and make the system
 			run hot. Not recommended.
@@ -827,6 +830,9 @@ and is between 256 and 4096 characters. It is defined in the file
 			to not use it because it doesn't save as much power as a normal idle
 			loop use the MONITOR/MWAIT idle loop anyways. Performance should be the same
 			as idle=poll.
+			idle=halt. Halt is forced to be used for CPU idle.
+			In such case C2/C3 won't be used again.
+			idle=nomwait. Disable mwait for CPU C-states
 
 	ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem
 			Claim all unknown PCI IDE storage controllers.
@@ -1242,6 +1248,11 @@ and is between 256 and 4096 characters. It is defined in the file
 	mtdparts=	[MTD]
 			See drivers/mtd/cmdlinepart.c.
 
+	mtdset=		[ARM]
+			ARM/S3C2412 JIVE boot control
+
+			See arch/arm/mach-s3c2412/mach-jive.c
+
 	mtouchusb.raw_coordinates=
 			[HW] Make the MicroTouch USB driver use raw coordinates
 			('y', default) or cooked coordinates ('n')
@@ -1537,6 +1548,9 @@ and is between 256 and 4096 characters. It is defined in the file
 				Use with caution as certain devices share
 				address decoders between ROMs and other
 				resources.
+		norom		[X86-32,X86_64] Do not assign address space to
+				expansion ROMs that do not already have
+				BIOS assigned address ranges.
 		irqmask=0xMMMM	[X86-32] Set a bit mask of IRQs allowed to be
 				assigned automatically to PCI devices. You can
 				make the kernel exclude IRQs of your ISA cards
@@ -1612,6 +1626,10 @@ and is between 256 and 4096 characters. It is defined in the file
 			Format: { parport<nr> | timid | 0 }
 			See also Documentation/parport.txt.
 
+	pmtmr=		[X86] Manual setup of pmtmr I/O Port. 
+			Override pmtimer IOPort with a hex value.
+			e.g. pmtmr=0x508
+
 	pnpacpi=	[ACPI]
 			{ off }
 

+ 1 - 0
Documentation/kprobes.txt

@@ -172,6 +172,7 @@ architectures:
 - ia64 (Does not support probes on instruction slot1.)
 - sparc64 (Return probes not yet implemented.)
 - arm
+- ppc
 
 3. Configuring Kprobes
 

+ 0 - 2
Documentation/laptops/acer-wmi.txt

@@ -174,8 +174,6 @@ The LED is exposed through the LED subsystem, and can be found in:
 The mail LED is autodetected, so if you don't have one, the LED device won't
 be registered.
 
-If you have a mail LED that is not green, please report this to me.
-
 Backlight
 *********
 

文件差异内容过多而无法显示
+ 12 - 1033
Documentation/powerpc/booting-without-of.txt


+ 141 - 0
Documentation/powerpc/bootwrapper.txt

@@ -0,0 +1,141 @@
+The PowerPC boot wrapper
+------------------------
+Copyright (C) Secret Lab Technologies Ltd.
+
+PowerPC image targets compresses and wraps the kernel image (vmlinux) with
+a boot wrapper to make it usable by the system firmware.  There is no
+standard PowerPC firmware interface, so the boot wrapper is designed to
+be adaptable for each kind of image that needs to be built.
+
+The boot wrapper can be found in the arch/powerpc/boot/ directory.  The
+Makefile in that directory has targets for all the available image types.
+The different image types are used to support all of the various firmware
+interfaces found on PowerPC platforms.  OpenFirmware is the most commonly
+used firmware type on general purpose PowerPC systems from Apple, IBM and
+others.  U-Boot is typically found on embedded PowerPC hardware, but there
+are a handful of other firmware implementations which are also popular.  Each
+firmware interface requires a different image format.
+
+The boot wrapper is built from the makefile in arch/powerpc/boot/Makefile and
+it uses the wrapper script (arch/powerpc/boot/wrapper) to generate target
+image.  The details of the build system is discussed in the next section.
+Currently, the following image format targets exist:
+
+   cuImage.%:		Backwards compatible uImage for older version of
+			U-Boot (for versions that don't understand the device
+			tree).  This image embeds a device tree blob inside
+			the image.  The boot wrapper, kernel and device tree
+			are all embedded inside the U-Boot uImage file format
+			with boot wrapper code that extracts data from the old
+			bd_info structure and loads the data into the device
+			tree before jumping into the kernel.
+			  Because of the series of #ifdefs found in the
+			bd_info structure used in the old U-Boot interfaces,
+			cuImages are platform specific.  Each specific
+			U-Boot platform has a different platform init file
+			which populates the embedded device tree with data
+			from the platform specific bd_info file.  The platform
+			specific cuImage platform init code can be found in
+			arch/powerpc/boot/cuboot.*.c.  Selection of the correct
+			cuImage init code for a specific board can be found in
+			the wrapper structure.
+   dtbImage.%:		Similar to zImage, except device tree blob is embedded
+			inside the image instead of provided by firmware.  The
+			output image file can be either an elf file or a flat
+			binary depending on the platform.
+			  dtbImages are used on systems which do not have an
+			interface for passing a device tree directly.
+			dtbImages are similar to simpleImages except that
+			dtbImages have platform specific code for extracting
+			data from the board firmware, but simpleImages do not
+			talk to the firmware at all.
+			  PlayStation 3 support uses dtbImage.  So do Embedded
+			Planet boards using the PlanetCore firmware.  Board
+			specific initialization code is typically found in a
+			file named arch/powerpc/boot/<platform>.c; but this
+			can be overridden by the wrapper script.
+   simpleImage.%:	Firmware independent compressed image that does not
+			depend on any particular firmware interface and embeds
+			a device tree blob.  This image is a flat binary that
+			can be loaded to any location in RAM and jumped to.
+			Firmware cannot pass any configuration data to the
+			kernel with this image type and it depends entirely on
+			the embedded device tree for all information.
+			  The simpleImage is useful for booting systems with
+			an unknown firmware interface or for booting from
+			a debugger when no firmware is present (such as on
+			the Xilinx Virtex platform).  The only assumption that
+			simpleImage makes is that RAM is correctly initialized
+			and that the MMU is either off or has RAM mapped to
+			base address 0.
+			  simpleImage also supports inserting special platform
+			specific initialization code to the start of the bootup
+			sequence.  The virtex405 platform uses this feature to
+			ensure that the cache is invalidated before caching
+			is enabled.  Platform specific initialization code is
+			added as part of the wrapper script and is keyed on
+			the image target name.  For example, all
+			simpleImage.virtex405-* targets will add the
+			virtex405-head.S initialization code (This also means
+			that the dts file for virtex405 targets should be
+			named (virtex405-<board>.dts).  Search the wrapper
+			script for 'virtex405' and see the file
+			arch/powerpc/boot/virtex405-head.S for details.
+   treeImage.%;		Image format for used with OpenBIOS firmware found
+			on some ppc4xx hardware.  This image embeds a device
+			tree blob inside the image.
+   uImage:		Native image format used by U-Boot.  The uImage target
+			does not add any boot code.  It just wraps a compressed
+			vmlinux in the uImage data structure.  This image
+			requires a version of U-Boot that is able to pass
+			a device tree to the kernel at boot.  If using an older
+			version of U-Boot, then you need to use a cuImage
+			instead.
+   zImage.%:		Image format which does not embed a device tree.
+			Used by OpenFirmware and other firmware interfaces
+			which are able to supply a device tree.  This image
+			expects firmware to provide the device tree at boot.
+			Typically, if you have general purpose PowerPC
+			hardware then you want this image format.
+
+Image types which embed a device tree blob (simpleImage, dtbImage, treeImage,
+and cuImage) all generate the device tree blob from a file in the
+arch/powerpc/boot/dts/ directory.  The Makefile selects the correct device
+tree source based on the name of the target.  Therefore, if the kernel is
+built with 'make treeImage.walnut simpleImage.virtex405-ml403', then the
+build system will use arch/powerpc/boot/dts/walnut.dts to build
+treeImage.walnut and arch/powerpc/boot/dts/virtex405-ml403.dts to build
+the simpleImage.virtex405-ml403.
+
+Two special targets called 'zImage' and 'zImage.initrd' also exist.  These
+targets build all the default images as selected by the kernel configuration.
+Default images are selected by the boot wrapper Makefile
+(arch/powerpc/boot/Makefile) by adding targets to the $image-y variable.  Look
+at the Makefile to see which default image targets are available.
+
+How it is built
+---------------
+arch/powerpc is designed to support multiplatform kernels, which means
+that a single vmlinux image can be booted on many different target boards.
+It also means that the boot wrapper must be able to wrap for many kinds of
+images on a single build.  The design decision was made to not use any
+conditional compilation code (#ifdef, etc) in the boot wrapper source code.
+All of the boot wrapper pieces are buildable at any time regardless of the
+kernel configuration.  Building all the wrapper bits on every kernel build
+also ensures that obscure parts of the wrapper are at the very least compile
+tested in a large variety of environments.
+
+The wrapper is adapted for different image types at link time by linking in
+just the wrapper bits that are appropriate for the image type.  The 'wrapper
+script' (found in arch/powerpc/boot/wrapper) is called by the Makefile and
+is responsible for selecting the correct wrapper bits for the image type.
+The arguments are well documented in the script's comment block, so they
+are not repeated here.  However, it is worth mentioning that the script
+uses the -p (platform) argument as the main method of deciding which wrapper
+bits to compile in.  Look for the large 'case "$platform" in' block in the
+middle of the script.  This is also the place where platform specific fixups
+can be selected by changing the link order.
+
+In particular, care should be taken when working with cuImages.  cuImage
+wrapper bits are very board specific and care should be taken to make sure
+the target you are trying to build is supported by the wrapper bits.

+ 29 - 0
Documentation/powerpc/dts-bindings/fsl/board.txt

@@ -0,0 +1,29 @@
+* Board Control and Status (BCSR)
+
+Required properties:
+
+ - device_type : Should be "board-control"
+ - reg : Offset and length of the register set for the device
+
+Example:
+
+	bcsr@f8000000 {
+		device_type = "board-control";
+		reg = <f8000000 8000>;
+	};
+
+* Freescale on board FPGA
+
+This is the memory-mapped registers for on board FPGA.
+
+Required properities:
+- compatible : should be "fsl,fpga-pixis".
+- reg : should contain the address and the lenght of the FPPGA register
+  set.
+
+Example (MPC8610HPCD):
+
+	board-control@e8000000 {
+		compatible = "fsl,fpga-pixis";
+		reg = <0xe8000000 32>;
+	};

+ 67 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm.txt

@@ -0,0 +1,67 @@
+* Freescale Communications Processor Module
+
+NOTE: This is an interim binding, and will likely change slightly,
+as more devices are supported.  The QE bindings especially are
+incomplete.
+
+* Root CPM node
+
+Properties:
+- compatible : "fsl,cpm1", "fsl,cpm2", or "fsl,qe".
+- reg : A 48-byte region beginning with CPCR.
+
+Example:
+     cpm@119c0 {
+	#address-cells = <1>;
+	#size-cells = <1>;
+	#interrupt-cells = <2>;
+	compatible = "fsl,mpc8272-cpm", "fsl,cpm2";
+	reg = <119c0 30>;
+     }
+
+* Properties common to mulitple CPM/QE devices
+
+- fsl,cpm-command : This value is ORed with the opcode and command flag
+                    to specify the device on which a CPM command operates.
+
+- fsl,cpm-brg : Indicates which baud rate generator the device
+                is associated with.  If absent, an unused BRG
+                should be dynamically allocated.  If zero, the
+                device uses an external clock rather than a BRG.
+
+- reg : Unless otherwise specified, the first resource represents the
+        scc/fcc/ucc registers, and the second represents the device's
+        parameter RAM region (if it has one).
+
+* Multi-User RAM (MURAM)
+
+The multi-user/dual-ported RAM is expressed as a bus under the CPM node.
+
+Ranges must be set up subject to the following restrictions:
+
+- Children's reg nodes must be offsets from the start of all muram, even
+  if the user-data area does not begin at zero.
+- If multiple range entries are used, the difference between the parent
+  address and the child address must be the same in all, so that a single
+  mapping can cover them all while maintaining the ability to determine
+  CPM-side offsets with pointer subtraction.  It is recommended that
+  multiple range entries not be used.
+- A child address of zero must be translatable, even if no reg resources
+  contain it.
+
+A child "data" node must exist, compatible with "fsl,cpm-muram-data", to
+indicate the portion of muram that is usable by the OS for arbitrary
+purposes.  The data node may have an arbitrary number of reg resources,
+all of which contribute to the allocatable muram pool.
+
+Example, based on mpc8272:
+	muram@0 {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		ranges = <0 0 10000>;
+
+		data@0 {
+			compatible = "fsl,cpm-muram-data";
+			reg = <0 2000 9800 800>;
+		};
+	};

+ 21 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/brg.txt

@@ -0,0 +1,21 @@
+* Baud Rate Generators
+
+Currently defined compatibles:
+fsl,cpm-brg
+fsl,cpm1-brg
+fsl,cpm2-brg
+
+Properties:
+- reg : There may be an arbitrary number of reg resources; BRG
+  numbers are assigned to these in order.
+- clock-frequency : Specifies the base frequency driving
+  the BRG.
+
+Example:
+	brg@119f0 {
+		compatible = "fsl,mpc8272-brg",
+			     "fsl,cpm2-brg",
+			     "fsl,cpm-brg";
+		reg = <119f0 10 115f0 10>;
+		clock-frequency = <d#25000000>;
+	};

+ 41 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/i2c.txt

@@ -0,0 +1,41 @@
+* I2C
+
+The I2C controller is expressed as a bus under the CPM node.
+
+Properties:
+- compatible : "fsl,cpm1-i2c", "fsl,cpm2-i2c"
+- reg : On CPM2 devices, the second resource doesn't specify the I2C
+  Parameter RAM itself, but the I2C_BASE field of the CPM2 Parameter RAM
+  (typically 0x8afc 0x2).
+- #address-cells : Should be one. The cell is the i2c device address with
+  the r/w bit set to zero.
+- #size-cells : Should be zero.
+- clock-frequency : Can be used to set the i2c clock frequency. If
+  unspecified, a default frequency of 60kHz is being used.
+The following two properties are deprecated. They are only used by legacy
+i2c drivers to find the bus to probe:
+- linux,i2c-index : Can be used to hard code an i2c bus number. By default,
+  the bus number is dynamically assigned by the i2c core.
+- linux,i2c-class : Can be used to override the i2c class. The class is used
+  by legacy i2c device drivers to find a bus in a specific context like
+  system management, video or sound. By default, I2C_CLASS_HWMON (1) is
+  being used. The definition of the classes can be found in
+  include/i2c/i2c.h
+
+Example, based on mpc823:
+
+	i2c@860 {
+		compatible = "fsl,mpc823-i2c",
+			     "fsl,cpm1-i2c";
+		reg = <0x860 0x20 0x3c80 0x30>;
+		interrupts = <16>;
+		interrupt-parent = <&CPM_PIC>;
+		fsl,cpm-command = <0x10>;
+		#address-cells = <1>;
+		#size-cells = <0>;
+
+		rtc@68 {
+			compatible = "dallas,ds1307";
+			reg = <0x68>;
+		};
+	};

+ 18 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/pic.txt

@@ -0,0 +1,18 @@
+* Interrupt Controllers
+
+Currently defined compatibles:
+- fsl,cpm1-pic
+  - only one interrupt cell
+- fsl,pq1-pic
+- fsl,cpm2-pic
+  - second interrupt cell is level/sense:
+    - 2 is falling edge
+    - 8 is active low
+
+Example:
+	interrupt-controller@10c00 {
+		#interrupt-cells = <2>;
+		interrupt-controller;
+		reg = <10c00 80>;
+		compatible = "mpc8272-pic", "fsl,cpm2-pic";
+	};

+ 15 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/cpm/usb.txt

@@ -0,0 +1,15 @@
+* USB (Universal Serial Bus Controller)
+
+Properties:
+- compatible : "fsl,cpm1-usb", "fsl,cpm2-usb", "fsl,qe-usb"
+
+Example:
+	usb@11bc0 {
+		#address-cells = <1>;
+		#size-cells = <0>;
+		compatible = "fsl,cpm2-usb";
+		reg = <11b60 18 8b00 100>;
+		interrupts = <b 8>;
+		interrupt-parent = <&PIC>;
+		fsl,cpm-command = <2e600000>;
+	};

+ 45 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/network.txt

@@ -0,0 +1,45 @@
+* Network
+
+Currently defined compatibles:
+- fsl,cpm1-scc-enet
+- fsl,cpm2-scc-enet
+- fsl,cpm1-fec-enet
+- fsl,cpm2-fcc-enet (third resource is GFEMR)
+- fsl,qe-enet
+
+Example:
+
+	ethernet@11300 {
+		device_type = "network";
+		compatible = "fsl,mpc8272-fcc-enet",
+			     "fsl,cpm2-fcc-enet";
+		reg = <11300 20 8400 100 11390 1>;
+		local-mac-address = [ 00 00 00 00 00 00 ];
+		interrupts = <20 8>;
+		interrupt-parent = <&PIC>;
+		phy-handle = <&PHY0>;
+		fsl,cpm-command = <12000300>;
+	};
+
+* MDIO
+
+Currently defined compatibles:
+fsl,pq1-fec-mdio (reg is same as first resource of FEC device)
+fsl,cpm2-mdio-bitbang (reg is port C registers)
+
+Properties for fsl,cpm2-mdio-bitbang:
+fsl,mdio-pin : pin of port C controlling mdio data
+fsl,mdc-pin : pin of port C controlling mdio clock
+
+Example:
+	mdio@10d40 {
+		device_type = "mdio";
+		compatible = "fsl,mpc8272ads-mdio-bitbang",
+			     "fsl,mpc8272-mdio-bitbang",
+			     "fsl,cpm2-mdio-bitbang";
+		reg = <10d40 14>;
+		#address-cells = <1>;
+		#size-cells = <0>;
+		fsl,mdio-pin = <12>;
+		fsl,mdc-pin = <13>;
+	};

+ 58 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe.txt

@@ -0,0 +1,58 @@
+* Freescale QUICC Engine module (QE)
+This represents qe module that is installed on PowerQUICC II Pro.
+
+NOTE:  This is an interim binding; it should be updated to fit
+in with the CPM binding later in this document.
+
+Basically, it is a bus of devices, that could act more or less
+as a complete entity (UCC, USB etc ). All of them should be siblings on
+the "root" qe node, using the common properties from there.
+The description below applies to the qe of MPC8360 and
+more nodes and properties would be extended in the future.
+
+i) Root QE device
+
+Required properties:
+- compatible : should be "fsl,qe";
+- model : precise model of the QE, Can be "QE", "CPM", or "CPM2"
+- reg : offset and length of the device registers.
+- bus-frequency : the clock frequency for QUICC Engine.
+
+Recommended properties
+- brg-frequency : the internal clock source frequency for baud-rate
+  generators in Hz.
+
+Example:
+     qe@e0100000 {
+	#address-cells = <1>;
+	#size-cells = <1>;
+	#interrupt-cells = <2>;
+	compatible = "fsl,qe";
+	ranges = <0 e0100000 00100000>;
+	reg = <e0100000 480>;
+	brg-frequency = <0>;
+	bus-frequency = <179A7B00>;
+     }
+
+* Multi-User RAM (MURAM)
+
+Required properties:
+- compatible : should be "fsl,qe-muram", "fsl,cpm-muram".
+- mode : the could be "host" or "slave".
+- ranges : Should be defined as specified in 1) to describe the
+   translation of MURAM addresses.
+- data-only : sub-node which defines the address area under MURAM
+   bus that can be allocated as data/parameter
+
+Example:
+
+     muram@10000 {
+	compatible = "fsl,qe-muram", "fsl,cpm-muram";
+	ranges = <0 00010000 0000c000>;
+
+	data-only@0{
+		compatible = "fsl,qe-muram-data",
+			     "fsl,cpm-muram-data";
+		reg = <0 c000>;
+	};
+     };

+ 24 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/firmware.txt

@@ -0,0 +1,24 @@
+* Uploaded QE firmware
+
+      If a new firwmare has been uploaded to the QE (usually by the
+      boot loader), then a 'firmware' child node should be added to the QE
+      node.  This node provides information on the uploaded firmware that
+      device drivers may need.
+
+      Required properties:
+      - id: The string name of the firmware.  This is taken from the 'id'
+            member of the qe_firmware structure of the uploaded firmware.
+            Device drivers can search this string to determine if the
+            firmware they want is already present.
+      - extended-modes: The Extended Modes bitfield, taken from the
+		   firmware binary.  It is a 64-bit number represented
+		   as an array of two 32-bit numbers.
+      - virtual-traps: The virtual traps, taken from the firmware binary.
+		  It is an array of 8 32-bit numbers.
+
+Example:
+	firmware {
+		id = "Soft-UART";
+		extended-modes = <0 0>;
+		virtual-traps = <0 0 0 0 0 0 0 0>;
+	};

+ 51 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/par_io.txt

@@ -0,0 +1,51 @@
+* Parallel I/O Ports
+
+This node configures Parallel I/O ports for CPUs with QE support.
+The node should reside in the "soc" node of the tree.  For each
+device that using parallel I/O ports, a child node should be created.
+See the definition of the Pin configuration nodes below for more
+information.
+
+Required properties:
+- device_type : should be "par_io".
+- reg : offset to the register set and its length.
+- num-ports : number of Parallel I/O ports
+
+Example:
+par_io@1400 {
+	reg = <1400 100>;
+	#address-cells = <1>;
+	#size-cells = <0>;
+	device_type = "par_io";
+	num-ports = <7>;
+	ucc_pin@01 {
+		......
+	};
+
+Note that "par_io" nodes are obsolete, and should not be used for
+the new device trees. Instead, each Par I/O bank should be represented
+via its own gpio-controller node:
+
+Required properties:
+- #gpio-cells : should be "2".
+- compatible : should be "fsl,<chip>-qe-pario-bank",
+  "fsl,mpc8323-qe-pario-bank".
+- reg : offset to the register set and its length.
+- gpio-controller : node to identify gpio controllers.
+
+Example:
+	qe_pio_a: gpio-controller@1400 {
+		#gpio-cells = <2>;
+		compatible = "fsl,mpc8360-qe-pario-bank",
+		"fsl,mpc8323-qe-pario-bank";
+		reg = <0x1400 0x18>;
+		gpio-controller;
+	  };
+
+	qe_pio_e: gpio-controller@1460 {
+		#gpio-cells = <2>;
+		compatible = "fsl,mpc8360-qe-pario-bank",
+			     "fsl,mpc8323-qe-pario-bank";
+		reg = <0x1460 0x18>;
+		gpio-controller;
+	  };

+ 60 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/pincfg.txt

@@ -0,0 +1,60 @@
+* Pin configuration nodes
+
+Required properties:
+- linux,phandle : phandle of this node; likely referenced by a QE
+  device.
+- pio-map : array of pin configurations.  Each pin is defined by 6
+  integers.  The six numbers are respectively: port, pin, dir,
+  open_drain, assignment, has_irq.
+  - port : port number of the pin; 0-6 represent port A-G in UM.
+  - pin : pin number in the port.
+  - dir : direction of the pin, should encode as follows:
+
+     0 = The pin is disabled
+     1 = The pin is an output
+     2 = The pin is an input
+     3 = The pin is I/O
+
+  - open_drain : indicates the pin is normal or wired-OR:
+
+     0 = The pin is actively driven as an output
+     1 = The pin is an open-drain driver. As an output, the pin is
+         driven active-low, otherwise it is three-stated.
+
+  - assignment : function number of the pin according to the Pin Assignment
+    tables in User Manual.  Each pin can have up to 4 possible functions in
+    QE and two options for CPM.
+  - has_irq : indicates if the pin is used as source of external
+    interrupts.
+
+Example:
+     ucc_pin@01 {
+	linux,phandle = <140001>;
+	pio-map = <
+	/* port  pin  dir  open_drain  assignment  has_irq */
+		0  3  1  0  1  0 	/* TxD0 */
+		0  4  1  0  1  0 	/* TxD1 */
+		0  5  1  0  1  0 	/* TxD2 */
+		0  6  1  0  1  0 	/* TxD3 */
+		1  6  1  0  3  0 	/* TxD4 */
+		1  7  1  0  1  0 	/* TxD5 */
+		1  9  1  0  2  0 	/* TxD6 */
+		1  a  1  0  2  0 	/* TxD7 */
+		0  9  2  0  1  0 	/* RxD0 */
+		0  a  2  0  1  0 	/* RxD1 */
+		0  b  2  0  1  0 	/* RxD2 */
+		0  c  2  0  1  0 	/* RxD3 */
+		0  d  2  0  1  0 	/* RxD4 */
+		1  1  2  0  2  0 	/* RxD5 */
+		1  0  2  0  2  0 	/* RxD6 */
+		1  4  2  0  2  0 	/* RxD7 */
+		0  7  1  0  1  0 	/* TX_EN */
+		0  8  1  0  1  0 	/* TX_ER */
+		0  f  2  0  1  0 	/* RX_DV */
+		0  10 2  0  1  0 	/* RX_ER */
+		0  0  2  0  1  0 	/* RX_CLK */
+		2  9  1  0  3  0 	/* GTX_CLK - CLK10 */
+		2  8  2  0  1  0>;	/* GTX125 - CLK9 */
+     };
+
+

+ 70 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/ucc.txt

@@ -0,0 +1,70 @@
+* UCC (Unified Communications Controllers)
+
+Required properties:
+- device_type : should be "network", "hldc", "uart", "transparent"
+  "bisync", "atm", or "serial".
+- compatible : could be "ucc_geth" or "fsl_atm" and so on.
+- cell-index : the ucc number(1-8), corresponding to UCCx in UM.
+- reg : Offset and length of the register set for the device
+- interrupts : <a b> where a is the interrupt number and b is a
+  field that represents an encoding of the sense and level
+  information for the interrupt.  This should be encoded based on
+  the information in section 2) depending on the type of interrupt
+  controller you have.
+- interrupt-parent : the phandle for the interrupt controller that
+  services interrupts for this device.
+- pio-handle : The phandle for the Parallel I/O port configuration.
+- port-number : for UART drivers, the port number to use, between 0 and 3.
+  This usually corresponds to the /dev/ttyQE device, e.g. <0> = /dev/ttyQE0.
+  The port number is added to the minor number of the device.  Unlike the
+  CPM UART driver, the port-number is required for the QE UART driver.
+- soft-uart : for UART drivers, if specified this means the QE UART device
+  driver should use "Soft-UART" mode, which is needed on some SOCs that have
+  broken UART hardware.  Soft-UART is provided via a microcode upload.
+- rx-clock-name: the UCC receive clock source
+  "none": clock source is disabled
+  "brg1" through "brg16": clock source is BRG1-BRG16, respectively
+  "clk1" through "clk24": clock source is CLK1-CLK24, respectively
+- tx-clock-name: the UCC transmit clock source
+  "none": clock source is disabled
+  "brg1" through "brg16": clock source is BRG1-BRG16, respectively
+  "clk1" through "clk24": clock source is CLK1-CLK24, respectively
+The following two properties are deprecated.  rx-clock has been replaced
+with rx-clock-name, and tx-clock has been replaced with tx-clock-name.
+Drivers that currently use the deprecated properties should continue to
+do so, in order to support older device trees, but they should be updated
+to check for the new properties first.
+- rx-clock : represents the UCC receive clock source.
+  0x00 : clock source is disabled;
+  0x1~0x10 : clock source is BRG1~BRG16 respectively;
+  0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
+- tx-clock: represents the UCC transmit clock source;
+  0x00 : clock source is disabled;
+  0x1~0x10 : clock source is BRG1~BRG16 respectively;
+  0x11~0x28: clock source is QE_CLK1~QE_CLK24 respectively.
+
+Required properties for network device_type:
+- mac-address : list of bytes representing the ethernet address.
+- phy-handle : The phandle for the PHY connected to this controller.
+
+Recommended properties:
+- phy-connection-type : a string naming the controller/PHY interface type,
+  i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id" (Internal
+  Delay), "rgmii-txid" (delay on TX only), "rgmii-rxid" (delay on RX only),
+  "tbi", or "rtbi".
+
+Example:
+	ucc@2000 {
+		device_type = "network";
+		compatible = "ucc_geth";
+		cell-index = <1>;
+		reg = <2000 200>;
+		interrupts = <a0 0>;
+		interrupt-parent = <700>;
+		mac-address = [ 00 04 9f 00 23 23 ];
+		rx-clock = "none";
+		tx-clock = "clk9";
+		phy-handle = <212000>;
+		phy-connection-type = "gmii";
+		pio-handle = <140001>;
+	};

+ 22 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/qe/usb.txt

@@ -0,0 +1,22 @@
+* USB (Universal Serial Bus Controller)
+
+Required properties:
+- compatible : could be "qe_udc" or "fhci-hcd".
+- mode : the could be "host" or "slave".
+- reg : Offset and length of the register set for the device
+- interrupts : <a b> where a is the interrupt number and b is a
+  field that represents an encoding of the sense and level
+  information for the interrupt.  This should be encoded based on
+  the information in section 2) depending on the type of interrupt
+  controller you have.
+- interrupt-parent : the phandle for the interrupt controller that
+  services interrupts for this device.
+
+Example(slave):
+	usb@6c0 {
+		compatible = "qe_udc";
+		reg = <6c0 40>;
+		interrupts = <8b 0>;
+		interrupt-parent = <700>;
+		mode = "slave";
+	};

+ 21 - 0
Documentation/powerpc/dts-bindings/fsl/cpm_qe/serial.txt

@@ -0,0 +1,21 @@
+* Serial
+
+Currently defined compatibles:
+- fsl,cpm1-smc-uart
+- fsl,cpm2-smc-uart
+- fsl,cpm1-scc-uart
+- fsl,cpm2-scc-uart
+- fsl,qe-uart
+
+Example:
+
+	serial@11a00 {
+		device_type = "serial";
+		compatible = "fsl,mpc8272-scc-uart",
+			     "fsl,cpm2-scc-uart";
+		reg = <11a00 20 8000 100>;
+		interrupts = <28 8>;
+		interrupt-parent = <&PIC>;
+		fsl,cpm-brg = <1>;
+		fsl,cpm-command = <00800000>;
+	};

+ 18 - 0
Documentation/powerpc/dts-bindings/fsl/diu.txt

@@ -0,0 +1,18 @@
+* Freescale Display Interface Unit
+
+The Freescale DIU is a LCD controller, with proper hardware, it can also
+drive DVI monitors.
+
+Required properties:
+- compatible : should be "fsl-diu".
+- reg : should contain at least address and length of the DIU register
+  set.
+- Interrupts : one DIU interrupt should be describe here.
+
+Example (MPC8610HPCD):
+	display@2c000 {
+		compatible = "fsl,diu";
+		reg = <0x2c000 100>;
+		interrupts = <72 2>;
+		interrupt-parent = <&mpic>;
+	};

+ 127 - 0
Documentation/powerpc/dts-bindings/fsl/dma.txt

@@ -0,0 +1,127 @@
+* Freescale 83xx DMA Controller
+
+Freescale PowerPC 83xx have on chip general purpose DMA controllers.
+
+Required properties:
+
+- compatible        : compatible list, contains 2 entries, first is
+		 "fsl,CHIP-dma", where CHIP is the processor
+		 (mpc8349, mpc8360, etc.) and the second is
+		 "fsl,elo-dma"
+- reg               : <registers mapping for DMA general status reg>
+- ranges		: Should be defined as specified in 1) to describe the
+		  DMA controller channels.
+- cell-index        : controller index.  0 for controller @ 0x8100
+- interrupts        : <interrupt mapping for DMA IRQ>
+- interrupt-parent  : optional, if needed for interrupt mapping
+
+
+- DMA channel nodes:
+        - compatible        : compatible list, contains 2 entries, first is
+			 "fsl,CHIP-dma-channel", where CHIP is the processor
+			 (mpc8349, mpc8350, etc.) and the second is
+			 "fsl,elo-dma-channel"
+        - reg               : <registers mapping for channel>
+        - cell-index        : dma channel index starts at 0.
+
+Optional properties:
+        - interrupts        : <interrupt mapping for DMA channel IRQ>
+			  (on 83xx this is expected to be identical to
+			   the interrupts property of the parent node)
+        - interrupt-parent  : optional, if needed for interrupt mapping
+
+Example:
+	dma@82a8 {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		compatible = "fsl,mpc8349-dma", "fsl,elo-dma";
+		reg = <82a8 4>;
+		ranges = <0 8100 1a4>;
+		interrupt-parent = <&ipic>;
+		interrupts = <47 8>;
+		cell-index = <0>;
+		dma-channel@0 {
+			compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
+			cell-index = <0>;
+			reg = <0 80>;
+		};
+		dma-channel@80 {
+			compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
+			cell-index = <1>;
+			reg = <80 80>;
+		};
+		dma-channel@100 {
+			compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
+			cell-index = <2>;
+			reg = <100 80>;
+		};
+		dma-channel@180 {
+			compatible = "fsl,mpc8349-dma-channel", "fsl,elo-dma-channel";
+			cell-index = <3>;
+			reg = <180 80>;
+		};
+	};
+
+* Freescale 85xx/86xx DMA Controller
+
+Freescale PowerPC 85xx/86xx have on chip general purpose DMA controllers.
+
+Required properties:
+
+- compatible        : compatible list, contains 2 entries, first is
+		 "fsl,CHIP-dma", where CHIP is the processor
+		 (mpc8540, mpc8540, etc.) and the second is
+		 "fsl,eloplus-dma"
+- reg               : <registers mapping for DMA general status reg>
+- cell-index        : controller index.  0 for controller @ 0x21000,
+                                         1 for controller @ 0xc000
+- ranges		: Should be defined as specified in 1) to describe the
+		  DMA controller channels.
+
+- DMA channel nodes:
+        - compatible        : compatible list, contains 2 entries, first is
+			 "fsl,CHIP-dma-channel", where CHIP is the processor
+			 (mpc8540, mpc8560, etc.) and the second is
+			 "fsl,eloplus-dma-channel"
+        - cell-index        : dma channel index starts at 0.
+        - reg               : <registers mapping for channel>
+        - interrupts        : <interrupt mapping for DMA channel IRQ>
+        - interrupt-parent  : optional, if needed for interrupt mapping
+
+Example:
+	dma@21300 {
+		#address-cells = <1>;
+		#size-cells = <1>;
+		compatible = "fsl,mpc8540-dma", "fsl,eloplus-dma";
+		reg = <21300 4>;
+		ranges = <0 21100 200>;
+		cell-index = <0>;
+		dma-channel@0 {
+			compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
+			reg = <0 80>;
+			cell-index = <0>;
+			interrupt-parent = <&mpic>;
+			interrupts = <14 2>;
+		};
+		dma-channel@80 {
+			compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
+			reg = <80 80>;
+			cell-index = <1>;
+			interrupt-parent = <&mpic>;
+			interrupts = <15 2>;
+		};
+		dma-channel@100 {
+			compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
+			reg = <100 80>;
+			cell-index = <2>;
+			interrupt-parent = <&mpic>;
+			interrupts = <16 2>;
+		};
+		dma-channel@180 {
+			compatible = "fsl,mpc8540-dma-channel", "fsl,eloplus-dma-channel";
+			reg = <180 80>;
+			cell-index = <3>;
+			interrupt-parent = <&mpic>;
+			interrupts = <17 2>;
+		};
+	};

+ 31 - 0
Documentation/powerpc/dts-bindings/fsl/gtm.txt

@@ -0,0 +1,31 @@
+* Freescale General-purpose Timers Module
+
+Required properties:
+  - compatible : should be
+    "fsl,<chip>-gtm", "fsl,gtm" for SOC GTMs
+    "fsl,<chip>-qe-gtm", "fsl,qe-gtm", "fsl,gtm" for QE GTMs
+    "fsl,<chip>-cpm2-gtm", "fsl,cpm2-gtm", "fsl,gtm" for CPM2 GTMs
+  - reg : should contain gtm registers location and length (0x40).
+  - interrupts : should contain four interrupts.
+  - interrupt-parent : interrupt source phandle.
+  - clock-frequency : specifies the frequency driving the timer.
+
+Example:
+
+timer@500 {
+	compatible = "fsl,mpc8360-gtm", "fsl,gtm";
+	reg = <0x500 0x40>;
+	interrupts = <90 8 78 8 84 8 72 8>;
+	interrupt-parent = <&ipic>;
+	/* filled by u-boot */
+	clock-frequency = <0>;
+};
+
+timer@440 {
+	compatible = "fsl,mpc8360-qe-gtm", "fsl,qe-gtm", "fsl,gtm";
+	reg = <0x440 0x40>;
+	interrupts = <12 13 14 15>;
+	interrupt-parent = <&qeic>;
+	/* filled by u-boot */
+	clock-frequency = <0>;
+};

+ 25 - 0
Documentation/powerpc/dts-bindings/fsl/guts.txt

@@ -0,0 +1,25 @@
+* Global Utilities Block
+
+The global utilities block controls power management, I/O device
+enabling, power-on-reset configuration monitoring, general-purpose
+I/O signal configuration, alternate function selection for multiplexed
+signals, and clock control.
+
+Required properties:
+
+ - compatible : Should define the compatible device type for
+   global-utilities.
+ - reg : Offset and length of the register set for the device.
+
+Recommended properties:
+
+ - fsl,has-rstcr : Indicates that the global utilities register set
+   contains a functioning "reset control register" (i.e. the board
+   is wired to reset upon setting the HRESET_REQ bit in this register).
+
+Example:
+	global-utilities@e0000 {	/* global utilities block */
+		compatible = "fsl,mpc8548-guts";
+		reg = <e0000 1000>;
+		fsl,has-rstcr;
+	};

+ 32 - 0
Documentation/powerpc/dts-bindings/fsl/i2c.txt

@@ -0,0 +1,32 @@
+* I2C
+
+Required properties :
+
+ - device_type : Should be "i2c"
+ - reg : Offset and length of the register set for the device
+
+Recommended properties :
+
+ - compatible : Should be "fsl-i2c" for parts compatible with
+   Freescale I2C specifications.
+ - interrupts : <a b> where a is the interrupt number and b is a
+   field that represents an encoding of the sense and level
+   information for the interrupt.  This should be encoded based on
+   the information in section 2) depending on the type of interrupt
+   controller you have.
+ - interrupt-parent : the phandle for the interrupt controller that
+   services interrupts for this device.
+ - dfsrr : boolean; if defined, indicates that this I2C device has
+   a digital filter sampling rate register
+ - fsl5200-clocking : boolean; if defined, indicated that this device
+   uses the FSL 5200 clocking mechanism.
+
+Example :
+	i2c@3000 {
+		interrupt-parent = <40000>;
+		interrupts = <1b 3>;
+		reg = <3000 18>;
+		device_type = "i2c";
+		compatible  = "fsl-i2c";
+		dfsrr;
+	};

+ 35 - 0
Documentation/powerpc/dts-bindings/fsl/lbc.txt

@@ -0,0 +1,35 @@
+* Chipselect/Local Bus
+
+Properties:
+- name : Should be localbus
+- #address-cells : Should be either two or three.  The first cell is the
+                   chipselect number, and the remaining cells are the
+                   offset into the chipselect.
+- #size-cells : Either one or two, depending on how large each chipselect
+                can be.
+- ranges : Each range corresponds to a single chipselect, and cover
+           the entire access window as configured.
+
+Example:
+	localbus@f0010100 {
+		compatible = "fsl,mpc8272-localbus",
+			   "fsl,pq2-localbus";
+		#address-cells = <2>;
+		#size-cells = <1>;
+		reg = <f0010100 40>;
+
+		ranges = <0 0 fe000000 02000000
+			  1 0 f4500000 00008000>;
+
+		flash@0,0 {
+			compatible = "jedec-flash";
+			reg = <0 0 2000000>;
+			bank-width = <4>;
+			device-width = <1>;
+		};
+
+		board-control@1,0 {
+			reg = <1 0 20>;
+			compatible = "fsl,mpc8272ads-bcsr";
+		};
+	};

+ 36 - 0
Documentation/powerpc/dts-bindings/fsl/msi-pic.txt

@@ -0,0 +1,36 @@
+* Freescale MSI interrupt controller
+
+Reguired properities:
+- compatible : compatible list, contains 2 entries,
+  first is "fsl,CHIP-msi", where CHIP is the processor(mpc8610, mpc8572,
+  etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on
+  the parent type.
+- reg : should contain the address and the length of the shared message
+  interrupt register set.
+- msi-available-ranges: use <start count> style section to define which
+  msi interrupt can be used in the 256 msi interrupts. This property is
+  optional, without this, all the 256 MSI interrupts can be used.
+- interrupts : each one of the interrupts here is one entry per 32 MSIs,
+  and routed to the host interrupt controller. the interrupts should
+  be set as edge sensitive.
+- interrupt-parent: the phandle for the interrupt controller
+  that services interrupts for this device. for 83xx cpu, the interrupts
+  are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed
+  to MPIC.
+
+Example:
+	msi@41600 {
+		compatible = "fsl,mpc8610-msi", "fsl,mpic-msi";
+		reg = <0x41600 0x80>;
+		msi-available-ranges = <0 0x100>;
+		interrupts = <
+			0xe0 0
+			0xe1 0
+			0xe2 0
+			0xe3 0
+			0xe4 0
+			0xe5 0
+			0xe6 0
+			0xe7 0>;
+		interrupt-parent = <&mpic>;
+	};

+ 29 - 0
Documentation/powerpc/dts-bindings/fsl/sata.txt

@@ -0,0 +1,29 @@
+* Freescale 8xxx/3.0 Gb/s SATA nodes
+
+SATA nodes are defined to describe on-chip Serial ATA controllers.
+Each SATA port should have its own node.
+
+Required properties:
+- compatible        : compatible list, contains 2 entries, first is
+		 "fsl,CHIP-sata", where CHIP is the processor
+		 (mpc8315, mpc8379, etc.) and the second is
+		 "fsl,pq-sata"
+- interrupts        : <interrupt mapping for SATA IRQ>
+- cell-index        : controller index.
+                          1 for controller @ 0x18000
+                          2 for controller @ 0x19000
+                          3 for controller @ 0x1a000
+                          4 for controller @ 0x1b000
+
+Optional properties:
+- interrupt-parent  : optional, if needed for interrupt mapping
+- reg               : <registers mapping>
+
+Example:
+	sata@18000 {
+		compatible = "fsl,mpc8379-sata", "fsl,pq-sata";
+		reg = <0x18000 0x1000>;
+		cell-index = <1>;
+		interrupts = <2c 8>;
+		interrupt-parent = < &ipic >;
+	};

+ 68 - 0
Documentation/powerpc/dts-bindings/fsl/sec.txt

@@ -0,0 +1,68 @@
+Freescale SoC SEC Security Engines
+
+Required properties:
+
+- compatible : Should contain entries for this and backward compatible
+  SEC versions, high to low, e.g., "fsl,sec2.1", "fsl,sec2.0"
+- reg : Offset and length of the register set for the device
+- interrupts : the SEC's interrupt number
+- fsl,num-channels : An integer representing the number of channels
+  available.
+- fsl,channel-fifo-len : An integer representing the number of
+  descriptor pointers each channel fetch fifo can hold.
+- fsl,exec-units-mask : The bitmask representing what execution units
+  (EUs) are available. It's a single 32-bit cell. EU information
+  should be encoded following the SEC's Descriptor Header Dword
+  EU_SEL0 field documentation, i.e. as follows:
+
+	bit 0  = reserved - should be 0
+	bit 1  = set if SEC has the ARC4 EU (AFEU)
+	bit 2  = set if SEC has the DES/3DES EU (DEU)
+	bit 3  = set if SEC has the message digest EU (MDEU/MDEU-A)
+	bit 4  = set if SEC has the random number generator EU (RNG)
+	bit 5  = set if SEC has the public key EU (PKEU)
+	bit 6  = set if SEC has the AES EU (AESU)
+	bit 7  = set if SEC has the Kasumi EU (KEU)
+	bit 8  = set if SEC has the CRC EU (CRCU)
+	bit 11 = set if SEC has the message digest EU extended alg set (MDEU-B)
+
+remaining bits are reserved for future SEC EUs.
+
+- fsl,descriptor-types-mask : The bitmask representing what descriptors
+  are available. It's a single 32-bit cell. Descriptor type information
+  should be encoded following the SEC's Descriptor Header Dword DESC_TYPE
+  field documentation, i.e. as follows:
+
+	bit 0  = set if SEC supports the aesu_ctr_nonsnoop desc. type
+	bit 1  = set if SEC supports the ipsec_esp descriptor type
+	bit 2  = set if SEC supports the common_nonsnoop desc. type
+	bit 3  = set if SEC supports the 802.11i AES ccmp desc. type
+	bit 4  = set if SEC supports the hmac_snoop_no_afeu desc. type
+	bit 5  = set if SEC supports the srtp descriptor type
+	bit 6  = set if SEC supports the non_hmac_snoop_no_afeu desc.type
+	bit 7  = set if SEC supports the pkeu_assemble descriptor type
+	bit 8  = set if SEC supports the aesu_key_expand_output desc.type
+	bit 9  = set if SEC supports the pkeu_ptmul descriptor type
+	bit 10 = set if SEC supports the common_nonsnoop_afeu desc. type
+	bit 11 = set if SEC supports the pkeu_ptadd_dbl descriptor type
+
+  ..and so on and so forth.
+
+Optional properties:
+
+- interrupt-parent : the phandle for the interrupt controller that
+  services interrupts for this device.
+
+Example:
+
+	/* MPC8548E */
+	crypto@30000 {
+		compatible = "fsl,sec2.1", "fsl,sec2.0";
+		reg = <0x30000 0x10000>;
+		interrupts = <29 2>;
+		interrupt-parent = <&mpic>;
+		fsl,num-channels = <4>;
+		fsl,channel-fifo-len = <24>;
+		fsl,exec-units-mask = <0xfe>;
+		fsl,descriptor-types-mask = <0x12b0ebf>;
+	};

+ 24 - 0
Documentation/powerpc/dts-bindings/fsl/spi.txt

@@ -0,0 +1,24 @@
+* SPI (Serial Peripheral Interface)
+
+Required properties:
+- cell-index : SPI controller index.
+- compatible : should be "fsl,spi".
+- mode : the SPI operation mode, it can be "cpu" or "cpu-qe".
+- reg : Offset and length of the register set for the device
+- interrupts : <a b> where a is the interrupt number and b is a
+  field that represents an encoding of the sense and level
+  information for the interrupt.  This should be encoded based on
+  the information in section 2) depending on the type of interrupt
+  controller you have.
+- interrupt-parent : the phandle for the interrupt controller that
+  services interrupts for this device.
+
+Example:
+	spi@4c0 {
+		cell-index = <0>;
+		compatible = "fsl,spi";
+		reg = <4c0 40>;
+		interrupts = <82 0>;
+		interrupt-parent = <700>;
+		mode = "cpu";
+	};

+ 38 - 0
Documentation/powerpc/dts-bindings/fsl/ssi.txt

@@ -0,0 +1,38 @@
+Freescale Synchronous Serial Interface
+
+The SSI is a serial device that communicates with audio codecs.  It can
+be programmed in AC97, I2S, left-justified, or right-justified modes.
+
+Required properties:
+- compatible	  : compatible list, containing "fsl,ssi"
+- cell-index	  : the SSI, <0> = SSI1, <1> = SSI2, and so on
+- reg		  : offset and length of the register set for the device
+- interrupts	  : <a b> where a is the interrupt number and b is a
+                     field that represents an encoding of the sense and
+		    level information for the interrupt.  This should be
+		    encoded based on the information in section 2)
+		    depending on the type of interrupt controller you
+		    have.
+- interrupt-parent : the phandle for the interrupt controller that
+                     services interrupts for this device.
+- fsl,mode	  : the operating mode for the SSI interface
+		    "i2s-slave" - I2S mode, SSI is clock slave
+		    "i2s-master" - I2S mode, SSI is clock master
+		    "lj-slave" - left-justified mode, SSI is clock slave
+		    "lj-master" - l.j. mode, SSI is clock master
+		    "rj-slave" - right-justified mode, SSI is clock slave
+		    "rj-master" - r.j., SSI is clock master
+		    "ac97-slave" - AC97 mode, SSI is clock slave
+		    "ac97-master" - AC97 mode, SSI is clock master
+
+Optional properties:
+- codec-handle	  : phandle to a 'codec' node that defines an audio
+		    codec connected to this SSI.  This node is typically
+		    a child of an I2C or other control node.
+
+Child 'codec' node required properties:
+- compatible	  : compatible list, contains the name of the codec
+
+Child 'codec' node optional properties:
+- clock-frequency  : The frequency of the input clock, which typically
+                     comes from an on-board dedicated oscillator.

+ 69 - 0
Documentation/powerpc/dts-bindings/fsl/tsec.txt

@@ -0,0 +1,69 @@
+* MDIO IO device
+
+The MDIO is a bus to which the PHY devices are connected.  For each
+device that exists on this bus, a child node should be created.  See
+the definition of the PHY node below for an example of how to define
+a PHY.
+
+Required properties:
+  - reg : Offset and length of the register set for the device
+  - compatible : Should define the compatible device type for the
+    mdio.  Currently, this is most likely to be "fsl,gianfar-mdio"
+
+Example:
+
+	mdio@24520 {
+		reg = <24520 20>;
+		compatible = "fsl,gianfar-mdio";
+
+		ethernet-phy@0 {
+			......
+		};
+	};
+
+
+* Gianfar-compatible ethernet nodes
+
+Required properties:
+
+  - device_type : Should be "network"
+  - model : Model of the device.  Can be "TSEC", "eTSEC", or "FEC"
+  - compatible : Should be "gianfar"
+  - reg : Offset and length of the register set for the device
+  - mac-address : List of bytes representing the ethernet address of
+    this controller
+  - interrupts : <a b> where a is the interrupt number and b is a
+    field that represents an encoding of the sense and level
+    information for the interrupt.  This should be encoded based on
+    the information in section 2) depending on the type of interrupt
+    controller you have.
+  - interrupt-parent : the phandle for the interrupt controller that
+    services interrupts for this device.
+  - phy-handle : The phandle for the PHY connected to this ethernet
+    controller.
+  - fixed-link : <a b c d e> where a is emulated phy id - choose any,
+    but unique to the all specified fixed-links, b is duplex - 0 half,
+    1 full, c is link speed - d#10/d#100/d#1000, d is pause - 0 no
+    pause, 1 pause, e is asym_pause - 0 no asym_pause, 1 asym_pause.
+
+Recommended properties:
+
+  - phy-connection-type : a string naming the controller/PHY interface type,
+    i.e., "mii" (default), "rmii", "gmii", "rgmii", "rgmii-id", "sgmii",
+    "tbi", or "rtbi".  This property is only really needed if the connection
+    is of type "rgmii-id", as all other connection types are detected by
+    hardware.
+
+
+Example:
+	ethernet@24000 {
+		#size-cells = <0>;
+		device_type = "network";
+		model = "TSEC";
+		compatible = "gianfar";
+		reg = <24000 1000>;
+		mac-address = [ 00 E0 0C 00 73 00 ];
+		interrupts = <d 3 e 3 12 3>;
+		interrupt-parent = <40000>;
+		phy-handle = <2452000>
+	};

+ 59 - 0
Documentation/powerpc/dts-bindings/fsl/usb.txt

@@ -0,0 +1,59 @@
+Freescale SOC USB controllers
+
+The device node for a USB controller that is part of a Freescale
+SOC is as described in the document "Open Firmware Recommended
+Practice : Universal Serial Bus" with the following modifications
+and additions :
+
+Required properties :
+ - compatible : Should be "fsl-usb2-mph" for multi port host USB
+   controllers, or "fsl-usb2-dr" for dual role USB controllers
+ - phy_type : For multi port host USB controllers, should be one of
+   "ulpi", or "serial". For dual role USB controllers, should be
+   one of "ulpi", "utmi", "utmi_wide", or "serial".
+ - reg : Offset and length of the register set for the device
+ - port0 : boolean; if defined, indicates port0 is connected for
+   fsl-usb2-mph compatible controllers.  Either this property or
+   "port1" (or both) must be defined for "fsl-usb2-mph" compatible
+   controllers.
+ - port1 : boolean; if defined, indicates port1 is connected for
+   fsl-usb2-mph compatible controllers.  Either this property or
+   "port0" (or both) must be defined for "fsl-usb2-mph" compatible
+   controllers.
+ - dr_mode : indicates the working mode for "fsl-usb2-dr" compatible
+   controllers.  Can be "host", "peripheral", or "otg".  Default to
+   "host" if not defined for backward compatibility.
+
+Recommended properties :
+ - interrupts : <a b> where a is the interrupt number and b is a
+   field that represents an encoding of the sense and level
+   information for the interrupt.  This should be encoded based on
+   the information in section 2) depending on the type of interrupt
+   controller you have.
+ - interrupt-parent : the phandle for the interrupt controller that
+   services interrupts for this device.
+
+Example multi port host USB controller device node :
+	usb@22000 {
+		compatible = "fsl-usb2-mph";
+		reg = <22000 1000>;
+		#address-cells = <1>;
+		#size-cells = <0>;
+		interrupt-parent = <700>;
+		interrupts = <27 1>;
+		phy_type = "ulpi";
+		port0;
+		port1;
+	};
+
+Example dual role USB controller device node :
+	usb@23000 {
+		compatible = "fsl-usb2-dr";
+		reg = <23000 1000>;
+		#address-cells = <1>;
+		#size-cells = <0>;
+		interrupt-parent = <700>;
+		interrupts = <26 1>;
+		dr_mode = "otg";
+		phy = "ulpi";
+	};

+ 2 - 5
Documentation/scheduler/sched-domains.txt

@@ -61,10 +61,7 @@ builder by #define'ing ARCH_HASH_SCHED_DOMAIN, and exporting your
 arch_init_sched_domains function. This function will attach domains to all
 CPUs using cpu_attach_domain.
 
-Implementors should change the line
-#undef SCHED_DOMAIN_DEBUG
-to
-#define SCHED_DOMAIN_DEBUG
-in kernel/sched.c as this enables an error checking parse of the sched domains
+The sched-domains debugging infrastructure can be enabled by enabling
+CONFIG_SCHED_DEBUG. This enables an error checking parse of the sched domains
 which should catch most possible errors (described above). It also prints out
 the domain structure in a visual format.

+ 2 - 2
Documentation/scheduler/sched-rt-group.txt

@@ -51,9 +51,9 @@ needs only about 3% CPU time to do so, it can do with a 0.03 * 0.005s =
 0.00015s. So this group can be scheduled with a period of 0.005s and a run time
 of 0.00015s.
 
-The remaining CPU time will be used for user input and other tass. Because
+The remaining CPU time will be used for user input and other tasks. Because
 realtime tasks have explicitly allocated the CPU time they need to perform
-their tasks, buffer underruns in the graphocs or audio can be eliminated.
+their tasks, buffer underruns in the graphics or audio can be eliminated.
 
 NOTE: the above example is not fully implemented as of yet (2.6.25). We still
 lack an EDF scheduler to make non-uniform periods usable.

+ 19 - 5
Documentation/scsi/aacraid.txt

@@ -56,19 +56,33 @@ Supported Cards/Chipsets
 	9005:0285:9005:02d1	Adaptec	5405 (Voodoo40)
 	9005:0285:15d9:02d2	SMC	AOC-USAS-S8i-LP
 	9005:0285:15d9:02d3	SMC	AOC-USAS-S8iR-LP
-	9005:0285:9005:02d4	Adaptec	2045 (Voodoo04 Lite)
-	9005:0285:9005:02d5	Adaptec	2405 (Voodoo40 Lite)
-	9005:0285:9005:02d6	Adaptec	2445 (Voodoo44 Lite)
-	9005:0285:9005:02d7	Adaptec	2805 (Voodoo80 Lite)
+	9005:0285:9005:02d4	Adaptec	ASR-2045 (Voodoo04 Lite)
+	9005:0285:9005:02d5	Adaptec	ASR-2405 (Voodoo40 Lite)
+	9005:0285:9005:02d6	Adaptec	ASR-2445 (Voodoo44 Lite)
+	9005:0285:9005:02d7	Adaptec	ASR-2805 (Voodoo80 Lite)
+	9005:0285:9005:02d8	Adaptec	5405G (Voodoo40 PM)
+	9005:0285:9005:02d9	Adaptec	5445G (Voodoo44 PM)
+	9005:0285:9005:02da	Adaptec	5805G (Voodoo80 PM)
+	9005:0285:9005:02db	Adaptec	5085G (Voodoo08 PM)
+	9005:0285:9005:02dc	Adaptec	51245G (Voodoo124 PM)
+	9005:0285:9005:02dd	Adaptec	51645G (Voodoo164 PM)
+	9005:0285:9005:02de	Adaptec	52445G (Voodoo244 PM)
+	9005:0285:9005:02df	Adaptec	ASR-2045G (Voodoo04 Lite PM)
+	9005:0285:9005:02e0	Adaptec	ASR-2405G (Voodoo40 Lite PM)
+	9005:0285:9005:02e1	Adaptec	ASR-2445G (Voodoo44 Lite PM)
+	9005:0285:9005:02e2	Adaptec	ASR-2805G (Voodoo80 Lite PM)
 	1011:0046:9005:0364	Adaptec	5400S (Mustang)
+	1011:0046:9005:0365	Adaptec	5400S (Mustang)
 	9005:0287:9005:0800	Adaptec	Themisto (Jupiter)
 	9005:0200:9005:0200	Adaptec	Themisto (Jupiter)
 	9005:0286:9005:0800	Adaptec	Callisto (Jupiter)
 	1011:0046:9005:1364	Dell	PERC 2/QC (Quad Channel, Mustang)
+	1011:0046:9005:1365	Dell	PERC 2/QC (Quad Channel, Mustang)
 	1028:0001:1028:0001	Dell	PERC 2/Si (Iguana)
 	1028:0003:1028:0003	Dell	PERC 3/Si (SlimFast)
 	1028:0002:1028:0002	Dell	PERC 3/Di (Opal)
-	1028:0004:1028:0004	Dell	PERC 3/DiF (Iguana)
+	1028:0004:1028:0004	Dell	PERC 3/SiF (Iguana)
+	1028:0004:1028:00d0	Dell	PERC 3/DiF (Iguana)
 	1028:0002:1028:00d1	Dell	PERC 3/DiV (Viper)
 	1028:0002:1028:00d9	Dell	PERC 3/DiL (Lexus)
 	1028:000a:1028:0106	Dell	PERC 3/DiJ (Jaguar)

+ 14 - 3
Documentation/sound/alsa/ALSA-Configuration.txt

@@ -753,8 +753,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 
     [Multiple options for each card instance]
     model	- force the model name
-    position_fix - Fix DMA pointer (0 = auto, 1 = none, 2 = POSBUF, 3 = FIFO size)
+    position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF)
     probe_mask  - Bitmask to probe codecs (default = -1, meaning all slots)
+    bdl_pos_adj	- Specifies the DMA IRQ timing delay in samples.
+		Passing -1 will make the driver to choose the appropriate
+		value based on the controller chip.
     
     [Single (global) options]
     single_cmd  - Use single immediate commands to communicate with
@@ -845,7 +848,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 	ALC269
 	  basic		Basic preset
 
-	ALC662
+	ALC662/663
 	  3stack-dig	3-stack (2-channel) with SPDIF
 	  3stack-6ch	 3-stack (6-channel)
 	  3stack-6ch-dig 3-stack (6-channel) with SPDIF
@@ -853,6 +856,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
 	  lenovo-101e	 Lenovo laptop
 	  eeepc-p701	ASUS Eeepc P701
 	  eeepc-ep20	ASUS Eeepc EP20
+	  m51va		ASUS M51VA
+	  g71v		ASUS G71V
+	  h13		ASUS H13
+	  g50v		ASUS G50V
 	  auto		auto-config reading BIOS (default)
 
 	ALC882/885
@@ -1091,7 +1098,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
     This occurs when the access to non-existing or non-working codec slot
     (likely a modem one) causes a stall of the communication via HD-audio
     bus.  You can see which codec slots are probed by enabling
-    CONFIG_SND_DEBUG_DETECT, or simply from the file name of the codec
+    CONFIG_SND_DEBUG_VERBOSE, or simply from the file name of the codec
     proc files.  Then limit the slots to probe by probe_mask option.
     For example, probe_mask=1 means to probe only the first slot, and
     probe_mask=4 means only the third slot.
@@ -2267,6 +2274,10 @@ case above again, the first two slots are already reserved.  If any
 other driver (e.g. snd-usb-audio) is loaded before snd-interwave or
 snd-ens1371, it will be assigned to the third or later slot.
 
+When a module name is given with '!', the slot will be given for any
+modules but that name.  For example, "slots=!snd-pcsp" will reserve
+the first slot for any modules but snd-pcsp. 
+
 
 ALSA PCM devices to OSS devices mapping
 =======================================

+ 2 - 2
Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl

@@ -6127,8 +6127,8 @@ struct _snd_pcm_runtime {
 
       <para>
         <function>snd_printdd()</function> is compiled in only when
-      <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
-      that <constant>DEBUG_DETECT</constant> is not set as default
+      <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
+      that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
       even if you configure the alsa-driver with
       <option>--with-debug=full</option> option. You need to give
       explicitly <option>--with-debug=detect</option> option instead. 

+ 164 - 0
Documentation/tracers/mmiotrace.txt

@@ -0,0 +1,164 @@
+		In-kernel memory-mapped I/O tracing
+
+
+Home page and links to optional user space tools:
+
+	http://nouveau.freedesktop.org/wiki/MmioTrace
+
+MMIO tracing was originally developed by Intel around 2003 for their Fault
+Injection Test Harness. In Dec 2006 - Jan 2007, using the code from Intel,
+Jeff Muizelaar created a tool for tracing MMIO accesses with the Nouveau
+project in mind. Since then many people have contributed.
+
+Mmiotrace was built for reverse engineering any memory-mapped IO device with
+the Nouveau project as the first real user. Only x86 and x86_64 architectures
+are supported.
+
+Out-of-tree mmiotrace was originally modified for mainline inclusion and
+ftrace framework by Pekka Paalanen <pq@iki.fi>.
+
+
+Preparation
+-----------
+
+Mmiotrace feature is compiled in by the CONFIG_MMIOTRACE option. Tracing is
+disabled by default, so it is safe to have this set to yes. SMP systems are
+supported, but tracing is unreliable and may miss events if more than one CPU
+is on-line, therefore mmiotrace takes all but one CPU off-line during run-time
+activation. You can re-enable CPUs by hand, but you have been warned, there
+is no way to automatically detect if you are losing events due to CPUs racing.
+
+
+Usage Quick Reference
+---------------------
+
+$ mount -t debugfs debugfs /debug
+$ echo mmiotrace > /debug/tracing/current_tracer
+$ cat /debug/tracing/trace_pipe > mydump.txt &
+Start X or whatever.
+$ echo "X is up" > /debug/tracing/marker
+$ echo none > /debug/tracing/current_tracer
+Check for lost events.
+
+
+Usage
+-----
+
+Make sure debugfs is mounted to /debug. If not, (requires root privileges)
+$ mount -t debugfs debugfs /debug
+
+Check that the driver you are about to trace is not loaded.
+
+Activate mmiotrace (requires root privileges):
+$ echo mmiotrace > /debug/tracing/current_tracer
+
+Start storing the trace:
+$ cat /debug/tracing/trace_pipe > mydump.txt &
+The 'cat' process should stay running (sleeping) in the background.
+
+Load the driver you want to trace and use it. Mmiotrace will only catch MMIO
+accesses to areas that are ioremapped while mmiotrace is active.
+
+[Unimplemented feature:]
+During tracing you can place comments (markers) into the trace by
+$ echo "X is up" > /debug/tracing/marker
+This makes it easier to see which part of the (huge) trace corresponds to
+which action. It is recommended to place descriptive markers about what you
+do.
+
+Shut down mmiotrace (requires root privileges):
+$ echo none > /debug/tracing/current_tracer
+The 'cat' process exits. If it does not, kill it by issuing 'fg' command and
+pressing ctrl+c.
+
+Check that mmiotrace did not lose events due to a buffer filling up. Either
+$ grep -i lost mydump.txt
+which tells you exactly how many events were lost, or use
+$ dmesg
+to view your kernel log and look for "mmiotrace has lost events" warning. If
+events were lost, the trace is incomplete. You should enlarge the buffers and
+try again. Buffers are enlarged by first seeing how large the current buffers
+are:
+$ cat /debug/tracing/trace_entries
+gives you a number. Approximately double this number and write it back, for
+instance:
+$ echo 128000 > /debug/tracing/trace_entries
+Then start again from the top.
+
+If you are doing a trace for a driver project, e.g. Nouveau, you should also
+do the following before sending your results:
+$ lspci -vvv > lspci.txt
+$ dmesg > dmesg.txt
+$ tar zcf pciid-nick-mmiotrace.tar.gz mydump.txt lspci.txt dmesg.txt
+and then send the .tar.gz file. The trace compresses considerably. Replace
+"pciid" and "nick" with the PCI ID or model name of your piece of hardware
+under investigation and your nick name.
+
+
+How Mmiotrace Works
+-------------------
+
+Access to hardware IO-memory is gained by mapping addresses from PCI bus by
+calling one of the ioremap_*() functions. Mmiotrace is hooked into the
+__ioremap() function and gets called whenever a mapping is created. Mapping is
+an event that is recorded into the trace log. Note, that ISA range mappings
+are not caught, since the mapping always exists and is returned directly.
+
+MMIO accesses are recorded via page faults. Just before __ioremap() returns,
+the mapped pages are marked as not present. Any access to the pages causes a
+fault. The page fault handler calls mmiotrace to handle the fault. Mmiotrace
+marks the page present, sets TF flag to achieve single stepping and exits the
+fault handler. The instruction that faulted is executed and debug trap is
+entered. Here mmiotrace again marks the page as not present. The instruction
+is decoded to get the type of operation (read/write), data width and the value
+read or written. These are stored to the trace log.
+
+Setting the page present in the page fault handler has a race condition on SMP
+machines. During the single stepping other CPUs may run freely on that page
+and events can be missed without a notice. Re-enabling other CPUs during
+tracing is discouraged.
+
+
+Trace Log Format
+----------------
+
+The raw log is text and easily filtered with e.g. grep and awk. One record is
+one line in the log. A record starts with a keyword, followed by keyword
+dependant arguments. Arguments are separated by a space, or continue until the
+end of line. The format for version 20070824 is as follows:
+
+Explanation	Keyword	Space separated arguments
+---------------------------------------------------------------------------
+
+read event	R	width, timestamp, map id, physical, value, PC, PID
+write event	W	width, timestamp, map id, physical, value, PC, PID
+ioremap event	MAP	timestamp, map id, physical, virtual, length, PC, PID
+iounmap event	UNMAP	timestamp, map id, PC, PID
+marker		MARK	timestamp, text
+version		VERSION	the string "20070824"
+info for reader	LSPCI	one line from lspci -v
+PCI address map	PCIDEV	space separated /proc/bus/pci/devices data
+unk. opcode	UNKNOWN	timestamp, map id, physical, data, PC, PID
+
+Timestamp is in seconds with decimals. Physical is a PCI bus address, virtual
+is a kernel virtual address. Width is the data width in bytes and value is the
+data value. Map id is an arbitrary id number identifying the mapping that was
+used in an operation. PC is the program counter and PID is process id. PC is
+zero if it is not recorded. PID is always zero as tracing MMIO accesses
+originating in user space memory is not yet supported.
+
+For instance, the following awk filter will pass all 32-bit writes that target
+physical addresses in the range [0xfb73ce40, 0xfb800000[
+
+$ awk '/W 4 / { adr=strtonum($5); if (adr >= 0xfb73ce40 &&
+adr < 0xfb800000) print; }'
+
+
+Tools for Developers
+--------------------
+
+The user space tools include utilities for:
+- replacing numeric addresses and values with hardware register names
+- replaying MMIO logs, i.e., re-executing the recorded writes
+
+

+ 63 - 17
MAINTAINERS

@@ -216,8 +216,8 @@ W:	http://code.google.com/p/aceracpi
 S:	Maintained
 
 ACPI
-P:	Len Brown
-M:	len.brown@intel.com
+P:	Andi Kleen
+M:	ak@linux.intel.com
 M:	lenb@kernel.org
 L:	linux-acpi@vger.kernel.org
 W:	http://www.lesswatts.org/projects/acpi/
@@ -239,8 +239,8 @@ W:	http://www.lesswatts.org/projects/acpi/
 S:	Supported
 
 ACPI FAN DRIVER
-P:	Len Brown
-M:	len.brown@intel.com
+P:	Zhang Rui
+M:	rui.zhang@intel.com
 L:	linux-acpi@vger.kernel.org
 W:	http://www.lesswatts.org/projects/acpi/
 S:	Supported
@@ -248,18 +248,18 @@ S:	Supported
 ACPI PCI HOTPLUG DRIVER
 P:	Kristen Carlson Accardi
 M:	kristen.c.accardi@intel.com
-L:	pcihpd-discuss@lists.sourceforge.net
+L:	linux-pci@vger.kernel.org
 S:	Supported
 
 ACPI THERMAL DRIVER
-P:	Len Brown
-M:	len.brown@intel.com
+P:	Zhang Rui
+M:	rui.zhang@intel.com
 L:	linux-acpi@vger.kernel.org
 W:	http://www.lesswatts.org/projects/acpi/
 S:	Supported
 
 ACPI VIDEO DRIVER
-P:	Rui Zhang
+P:	Zhang Rui
 M:	rui.zhang@intel.com
 L:	linux-acpi@vger.kernel.org
 W:	http://www.lesswatts.org/projects/acpi/
@@ -348,7 +348,9 @@ W:	http://www.linux-usb.org/SpeedTouch/
 S:	Maintained
 
 ALCHEMY AU1XX0 MMC DRIVER
-S:	Orphan
+P:	Manuel Lauss
+M:	manuel.lauss@gmail.com
+S:	Maintained
 
 ALI1563 I2C DRIVER
 P:	Rudolf Marek
@@ -1143,23 +1145,28 @@ COMPACTPCI HOTPLUG CORE
 P:	Scott Murray
 M:	scottm@somanetworks.com
 M:	scott@spiteful.org
-L:	pcihpd-discuss@lists.sourceforge.net
+L:	linux-pci@vger.kernel.org
 S:	Supported
 
 COMPACTPCI HOTPLUG ZIATECH ZT5550 DRIVER
 P:	Scott Murray
 M:	scottm@somanetworks.com
 M:	scott@spiteful.org
-L:	pcihpd-discuss@lists.sourceforge.net
+L:	linux-pci@vger.kernel.org
 S:	Supported
 
 COMPACTPCI HOTPLUG GENERIC DRIVER
 P:	Scott Murray
 M:	scottm@somanetworks.com
 M:	scott@spiteful.org
-L:	pcihpd-discuss@lists.sourceforge.net
+L:	linux-pci@vger.kernel.org
 S:	Supported
 
+COMPAL LAPTOP SUPPORT
+P:	Cezary Jackiewicz
+M:	cezary.jackiewicz@gmail.com
+S:	Maintained
+
 COMPUTONE INTELLIPORT MULTIPORT CARD
 P:	Michael H. Warfield
 M:	mhw@wittsend.com
@@ -1686,6 +1693,13 @@ L:	linuxppc-embedded@ozlabs.org
 L:	linux-kernel@vger.kernel.org
 S:	Maintained
 
+FREESCALE I2C CPM DRIVER
+P:	Jochen Friedrich
+M:	jochen@scram.de
+L:	linuxppc-dev@ozlabs.org
+L:	i2c@lm-sensors.org
+S:	Maintained
+
 FREESCALE SOC FS_ENET DRIVER
 P:	Pantelis Antoniou
 M:	pantelis.antoniou@gmail.com
@@ -1770,11 +1784,22 @@ M:	hch@infradead.org
 W:	ftp://ftp.openlinux.org/pub/people/hch/vxfs
 S:	Maintained
 
+FTRACE
+P:	Steven Rostedt
+M:	srostedt@redhat.com
+S:	Maintained
+
 FUJITSU FR-V (FRV) PORT
 P:	David Howells
 M:	dhowells@redhat.com
 S:	Maintained
 
+FUJITSU LAPTOP EXTRAS
+P:	Jonathan Woithe
+M:	jwoithe@physics.adelaide.edu.au
+L:	linux-acpi@vger.kernel.org
+S:	Maintained
+
 FUSE: FILESYSTEM IN USERSPACE
 P:	Miklos Szeredi
 M:	miklos@szeredi.hu
@@ -2313,6 +2338,16 @@ L:	linux-mtd@lists.infradead.org
 W:	http://www.linux-mtd.infradead.org/doc/jffs2.html
 S:	Maintained
 
+UBI FILE SYSTEM (UBIFS)
+P:	Artem Bityutskiy
+M:	dedekind@infradead.org
+P:	Adrian Hunter
+M:	ext-adrian.hunter@nokia.com
+L:	linux-mtd@lists.infradead.org
+T:	git git://git.infradead.org/~dedekind/ubifs-2.6.git
+W:	http://www.linux-mtd.infradead.org/doc/ubifs.html
+S:	Maintained
+
 JFS FILESYSTEM
 P:	Dave Kleikamp
 M:	shaggy@austin.ibm.com
@@ -2509,13 +2544,11 @@ W:	http://www.penguinppc.org/
 L:	linuxppc-dev@ozlabs.org
 S:	Maintained
 
-LINUX FOR POWERPC EMBEDDED MPC52XX
+LINUX FOR POWERPC EMBEDDED MPC5XXX
 P:	Sylvain Munaut
 M:	tnt@246tNt.com
 P:	Grant Likely
 M:	grant.likely@secretlab.ca
-W:	http://www.246tNt.com/mpc52xx/
-W:	http://www.penguinppc.org/
 L:	linuxppc-dev@ozlabs.org
 S:	Maintained
 
@@ -3186,7 +3219,7 @@ S:	Supported
 PCIE HOTPLUG DRIVER
 P:	Kristen Carlson Accardi
 M:	kristen.c.accardi@intel.com
-L:	pcihpd-discuss@lists.sourceforge.net
+L:	linux-pci@vger.kernel.org
 S:	Supported
 
 PCMCIA SUBSYSTEM
@@ -3528,6 +3561,13 @@ L:	linux-s390@vger.kernel.org
 W:	http://www.ibm.com/developerworks/linux/linux390/
 S:	Supported
 
+S3C24XX SD/MMC Driver
+P:	Ben Dooks
+M:	ben-linux@fluff.org
+L:	linux-arm-kernel@lists.arm.linux.org.uk (subscribers-only)
+L:	linux-kernel@vger.kernel.org
+S:	Supported
+
 SAA7146 VIDEO4LINUX-2 DRIVER
 P:	Michael Hunold
 M:	michael@mihu.de
@@ -3600,6 +3640,12 @@ P:	Jim Cromie
 M:	jim.cromie@gmail.com
 S:	Maintained
 
+SDRICOH_CS MMC/SD HOST CONTROLLER INTERFACE DRIVER
+P:	Sascha Sommer
+M:	saschasommer@freenet.de
+L:	sdricohcs-devel@lists.sourceforge.net (subscribers-only)
+S:	Maintained
+
 SECURITY CONTACT
 P:	Security Officers
 M:	security@kernel.org
@@ -3819,7 +3865,7 @@ S:	Maintained
 SHPC HOTPLUG DRIVER
 P:	Kristen Carlson Accardi
 M:	kristen.c.accardi@intel.com
-L:	pcihpd-discuss@lists.sourceforge.net
+L:	linux-pci@vger.kernel.org
 S:	Supported
 
 SECURE DIGITAL HOST CONTROLLER INTERFACE DRIVER

+ 21 - 4
Makefile

@@ -1,7 +1,7 @@
 VERSION = 2
 PATCHLEVEL = 6
 SUBLEVEL = 26
-EXTRAVERSION = -rc9
+EXTRAVERSION =
 NAME = Rotary Wombat
 
 # *DOCUMENTATION*
@@ -450,7 +450,7 @@ scripts: scripts_basic include/config/auto.conf
 
 # Objects we will link into vmlinux / subdirs we need to visit
 init-y		:= init/
-drivers-y	:= drivers/ sound/
+drivers-y	:= drivers/ sound/ firmware/
 net-y		:= net/
 libs-y		:= lib/
 core-y		:= usr/
@@ -507,6 +507,8 @@ else
 KBUILD_CFLAGS	+= -O2
 endif
 
+include $(srctree)/arch/$(SRCARCH)/Makefile
+
 ifneq (CONFIG_FRAME_WARN,0)
 KBUILD_CFLAGS += $(call cc-option,-Wframe-larger-than=${CONFIG_FRAME_WARN})
 endif
@@ -515,8 +517,6 @@ endif
 # Arch Makefiles may override this setting
 KBUILD_CFLAGS += $(call cc-option, -fno-stack-protector)
 
-include $(srctree)/arch/$(SRCARCH)/Makefile
-
 ifdef CONFIG_FRAME_POINTER
 KBUILD_CFLAGS	+= -fno-omit-frame-pointer -fno-optimize-sibling-calls
 else
@@ -528,6 +528,10 @@ KBUILD_CFLAGS	+= -g
 KBUILD_AFLAGS	+= -gdwarf-2
 endif
 
+ifdef CONFIG_FTRACE
+KBUILD_CFLAGS	+= -pg
+endif
+
 # We trigger additional mismatches with less inlining
 ifdef CONFIG_DEBUG_SECTION_MISMATCH
 KBUILD_CFLAGS += $(call cc-option, -fno-inline-functions-called-once)
@@ -994,6 +998,16 @@ PHONY += depend dep
 depend dep:
 	@echo '*** Warning: make $@ is unnecessary now.'
 
+# ---------------------------------------------------------------------------
+# Firmware install
+INSTALL_FW_PATH=$(INSTALL_MOD_PATH)/lib/firmware
+export INSTALL_FW_PATH
+
+PHONY += firmware_install
+firmware_install: FORCE
+	@mkdir -p $(objtree)/firmware
+	$(Q)$(MAKE) -f $(srctree)/scripts/Makefile.fwinst obj=firmware __fw_install
+
 # ---------------------------------------------------------------------------
 # Kernel headers
 INSTALL_HDR_PATH=$(objtree)/usr
@@ -1080,6 +1094,7 @@ _modinst_:
 # boot script depmod is the master version.
 PHONY += _modinst_post
 _modinst_post: _modinst_
+	$(Q)$(MAKE) -f $(srctree)/scripts/Makefile.fwinst obj=firmware __fw_modinst
 	$(call cmd,depmod)
 
 else # CONFIG_MODULES
@@ -1197,6 +1212,8 @@ help:
 	@echo  '* vmlinux	  - Build the bare kernel'
 	@echo  '* modules	  - Build all modules'
 	@echo  '  modules_install - Install all modules to INSTALL_MOD_PATH (default: /)'
+	@echo  '  firmware_install- Install all firmware to INSTALL_FW_PATH'
+	@echo  '                    (default: $$(INSTALL_MOD_PATH)/lib/firmware)'
 	@echo  '  dir/            - Build all files in dir and below'
 	@echo  '  dir/file.[ois]  - Build specified target only'
 	@echo  '  dir/file.ko     - Build module including final link'

+ 3 - 0
arch/Kconfig

@@ -39,3 +39,6 @@ config HAVE_KRETPROBES
 
 config HAVE_DMA_ATTRS
 	def_bool n
+
+config USE_GENERIC_SMP_HELPERS
+	def_bool n

+ 1 - 0
arch/alpha/Kconfig

@@ -528,6 +528,7 @@ config ARCH_MAY_HAVE_PC_FDC
 config SMP
 	bool "Symmetric multi-processing support"
 	depends on ALPHA_SABLE || ALPHA_LYNX || ALPHA_RAWHIDE || ALPHA_DP264 || ALPHA_WILDFIRE || ALPHA_TITAN || ALPHA_GENERIC || ALPHA_SHARK || ALPHA_MARVEL
+	select USE_GENERIC_SMP_HELPERS
 	---help---
 	  This enables support for systems with more than one CPU. If you have
 	  a system with only one CPU, like most personal computers, say N. If

+ 3 - 3
arch/alpha/kernel/core_marvel.c

@@ -660,9 +660,9 @@ __marvel_rtc_io(u8 b, unsigned long addr, int write)
 
 #ifdef CONFIG_SMP
 		if (smp_processor_id() != boot_cpuid)
-			smp_call_function_on_cpu(__marvel_access_rtc,
-						 &rtc_access, 1, 1,
-						 cpumask_of_cpu(boot_cpuid));
+			smp_call_function_single(boot_cpuid,
+						 __marvel_access_rtc,
+						 &rtc_access, 1);
 		else
 			__marvel_access_rtc(&rtc_access);
 #else

+ 2 - 3
arch/alpha/kernel/irq.c

@@ -42,8 +42,7 @@ void ack_bad_irq(unsigned int irq)
 #ifdef CONFIG_SMP 
 static char irq_user_affinity[NR_IRQS];
 
-int
-select_smp_affinity(unsigned int irq)
+int irq_select_affinity(unsigned int irq)
 {
 	static int last_cpu;
 	int cpu = last_cpu + 1;
@@ -51,7 +50,7 @@ select_smp_affinity(unsigned int irq)
 	if (!irq_desc[irq].chip->set_affinity || irq_user_affinity[irq])
 		return 1;
 
-	while (!cpu_possible(cpu))
+	while (!cpu_possible(cpu) || !cpu_isset(cpu, irq_default_affinity))
 		cpu = (cpu < (NR_CPUS-1) ? cpu + 1 : 0);
 	last_cpu = cpu;
 

+ 1 - 1
arch/alpha/kernel/process.c

@@ -160,7 +160,7 @@ common_shutdown(int mode, char *restart_cmd)
 	struct halt_info args;
 	args.mode = mode;
 	args.restart_cmd = restart_cmd;
-	on_each_cpu(common_shutdown_1, &args, 1, 0);
+	on_each_cpu(common_shutdown_1, &args, 0);
 }
 
 void

+ 15 - 165
arch/alpha/kernel/smp.c

@@ -62,6 +62,7 @@ static struct {
 enum ipi_message_type {
 	IPI_RESCHEDULE,
 	IPI_CALL_FUNC,
+	IPI_CALL_FUNC_SINGLE,
 	IPI_CPU_STOP,
 };
 
@@ -558,51 +559,6 @@ send_ipi_message(cpumask_t to_whom, enum ipi_message_type operation)
 		wripir(i);
 }
 
-/* Structure and data for smp_call_function.  This is designed to 
-   minimize static memory requirements.  Plus it looks cleaner.  */
-
-struct smp_call_struct {
-	void (*func) (void *info);
-	void *info;
-	long wait;
-	atomic_t unstarted_count;
-	atomic_t unfinished_count;
-};
-
-static struct smp_call_struct *smp_call_function_data;
-
-/* Atomicly drop data into a shared pointer.  The pointer is free if
-   it is initially locked.  If retry, spin until free.  */
-
-static int
-pointer_lock (void *lock, void *data, int retry)
-{
-	void *old, *tmp;
-
-	mb();
- again:
-	/* Compare and swap with zero.  */
-	asm volatile (
-	"1:	ldq_l	%0,%1\n"
-	"	mov	%3,%2\n"
-	"	bne	%0,2f\n"
-	"	stq_c	%2,%1\n"
-	"	beq	%2,1b\n"
-	"2:"
-	: "=&r"(old), "=m"(*(void **)lock), "=&r"(tmp)
-	: "r"(data)
-	: "memory");
-
-	if (old == 0)
-		return 0;
-	if (! retry)
-		return -EBUSY;
-
-	while (*(void **)lock)
-		barrier();
-	goto again;
-}
-
 void
 handle_ipi(struct pt_regs *regs)
 {
@@ -632,31 +588,12 @@ handle_ipi(struct pt_regs *regs)
 			break;
 
 		case IPI_CALL_FUNC:
-		    {
-			struct smp_call_struct *data;
-			void (*func)(void *info);
-			void *info;
-			int wait;
-
-			data = smp_call_function_data;
-			func = data->func;
-			info = data->info;
-			wait = data->wait;
-
-			/* Notify the sending CPU that the data has been
-			   received, and execution is about to begin.  */
-			mb();
-			atomic_dec (&data->unstarted_count);
-
-			/* At this point the structure may be gone unless
-			   wait is true.  */
-			(*func)(info);
-
-			/* Notify the sending CPU that the task is done.  */
-			mb();
-			if (wait) atomic_dec (&data->unfinished_count);
+			generic_smp_call_function_interrupt();
+			break;
+
+		case IPI_CALL_FUNC_SINGLE:
+			generic_smp_call_function_single_interrupt();
 			break;
-		    }
 
 		case IPI_CPU_STOP:
 			halt();
@@ -700,102 +637,15 @@ smp_send_stop(void)
 	send_ipi_message(to_whom, IPI_CPU_STOP);
 }
 
-/*
- * Run a function on all other CPUs.
- *  <func>	The function to run. This must be fast and non-blocking.
- *  <info>	An arbitrary pointer to pass to the function.
- *  <retry>	If true, keep retrying until ready.
- *  <wait>	If true, wait until function has completed on other CPUs.
- *  [RETURNS]   0 on success, else a negative status code.
- *
- * Does not return until remote CPUs are nearly ready to execute <func>
- * or are or have executed.
- * You must not call this function with disabled interrupts or from a
- * hardware interrupt handler or from a bottom half handler.
- */
-
-int
-smp_call_function_on_cpu (void (*func) (void *info), void *info, int retry,
-			  int wait, cpumask_t to_whom)
+void arch_send_call_function_ipi(cpumask_t mask)
 {
-	struct smp_call_struct data;
-	unsigned long timeout;
-	int num_cpus_to_call;
-	
-	/* Can deadlock when called with interrupts disabled */
-	WARN_ON(irqs_disabled());
-
-	data.func = func;
-	data.info = info;
-	data.wait = wait;
-
-	cpu_clear(smp_processor_id(), to_whom);
-	num_cpus_to_call = cpus_weight(to_whom);
-
-	atomic_set(&data.unstarted_count, num_cpus_to_call);
-	atomic_set(&data.unfinished_count, num_cpus_to_call);
-
-	/* Acquire the smp_call_function_data mutex.  */
-	if (pointer_lock(&smp_call_function_data, &data, retry))
-		return -EBUSY;
-
-	/* Send a message to the requested CPUs.  */
-	send_ipi_message(to_whom, IPI_CALL_FUNC);
-
-	/* Wait for a minimal response.  */
-	timeout = jiffies + HZ;
-	while (atomic_read (&data.unstarted_count) > 0
-	       && time_before (jiffies, timeout))
-		barrier();
-
-	/* If there's no response yet, log a message but allow a longer
-	 * timeout period -- if we get a response this time, log
-	 * a message saying when we got it.. 
-	 */
-	if (atomic_read(&data.unstarted_count) > 0) {
-		long start_time = jiffies;
-		printk(KERN_ERR "%s: initial timeout -- trying long wait\n",
-		       __func__);
-		timeout = jiffies + 30 * HZ;
-		while (atomic_read(&data.unstarted_count) > 0
-		       && time_before(jiffies, timeout))
-			barrier();
-		if (atomic_read(&data.unstarted_count) <= 0) {
-			long delta = jiffies - start_time;
-			printk(KERN_ERR 
-			       "%s: response %ld.%ld seconds into long wait\n",
-			       __func__, delta / HZ,
-			       (100 * (delta - ((delta / HZ) * HZ))) / HZ);
-		}
-	}
-
-	/* We either got one or timed out -- clear the lock. */
-	mb();
-	smp_call_function_data = NULL;
-
-	/* 
-	 * If after both the initial and long timeout periods we still don't
-	 * have a response, something is very wrong...
-	 */
-	BUG_ON(atomic_read (&data.unstarted_count) > 0);
-
-	/* Wait for a complete response, if needed.  */
-	if (wait) {
-		while (atomic_read (&data.unfinished_count) > 0)
-			barrier();
-	}
-
-	return 0;
+	send_ipi_message(mask, IPI_CALL_FUNC);
 }
-EXPORT_SYMBOL(smp_call_function_on_cpu);
 
-int
-smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
+void arch_send_call_function_single_ipi(int cpu)
 {
-	return smp_call_function_on_cpu (func, info, retry, wait,
-					 cpu_online_map);
+	send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
 }
-EXPORT_SYMBOL(smp_call_function);
 
 static void
 ipi_imb(void *ignored)
@@ -807,7 +657,7 @@ void
 smp_imb(void)
 {
 	/* Must wait other processors to flush their icache before continue. */
-	if (on_each_cpu(ipi_imb, NULL, 1, 1))
+	if (on_each_cpu(ipi_imb, NULL, 1))
 		printk(KERN_CRIT "smp_imb: timed out\n");
 }
 EXPORT_SYMBOL(smp_imb);
@@ -823,7 +673,7 @@ flush_tlb_all(void)
 {
 	/* Although we don't have any data to pass, we do want to
 	   synchronize with the other processors.  */
-	if (on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1)) {
+	if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) {
 		printk(KERN_CRIT "flush_tlb_all: timed out\n");
 	}
 }
@@ -860,7 +710,7 @@ flush_tlb_mm(struct mm_struct *mm)
 		}
 	}
 
-	if (smp_call_function(ipi_flush_tlb_mm, mm, 1, 1)) {
+	if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) {
 		printk(KERN_CRIT "flush_tlb_mm: timed out\n");
 	}
 
@@ -913,7 +763,7 @@ flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
 	data.mm = mm;
 	data.addr = addr;
 
-	if (smp_call_function(ipi_flush_tlb_page, &data, 1, 1)) {
+	if (smp_call_function(ipi_flush_tlb_page, &data, 1)) {
 		printk(KERN_CRIT "flush_tlb_page: timed out\n");
 	}
 
@@ -965,7 +815,7 @@ flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
 		}
 	}
 
-	if (smp_call_function(ipi_flush_icache_page, mm, 1, 1)) {
+	if (smp_call_function(ipi_flush_icache_page, mm, 1)) {
 		printk(KERN_CRIT "flush_icache_page: timed out\n");
 	}
 

+ 3 - 3
arch/alpha/oprofile/common.c

@@ -65,7 +65,7 @@ op_axp_setup(void)
 	model->reg_setup(&reg, ctr, &sys);
 
 	/* Configure the registers on all cpus.  */
-	(void)smp_call_function(model->cpu_setup, &reg, 0, 1);
+	(void)smp_call_function(model->cpu_setup, &reg, 1);
 	model->cpu_setup(&reg);
 	return 0;
 }
@@ -86,7 +86,7 @@ op_axp_cpu_start(void *dummy)
 static int
 op_axp_start(void)
 {
-	(void)smp_call_function(op_axp_cpu_start, NULL, 0, 1);
+	(void)smp_call_function(op_axp_cpu_start, NULL, 1);
 	op_axp_cpu_start(NULL);
 	return 0;
 }
@@ -101,7 +101,7 @@ op_axp_cpu_stop(void *dummy)
 static void
 op_axp_stop(void)
 {
-	(void)smp_call_function(op_axp_cpu_stop, NULL, 0, 1);
+	(void)smp_call_function(op_axp_cpu_stop, NULL, 1);
 	op_axp_cpu_stop(NULL);
 }
 

+ 61 - 30
arch/arm/Kconfig

@@ -14,6 +14,8 @@ config ARM
 	select HAVE_OPROFILE
 	select HAVE_KPROBES if (!XIP_KERNEL)
 	select HAVE_KRETPROBES if (HAVE_KPROBES)
+	select HAVE_FTRACE if (!XIP_KERNEL)
+	select HAVE_DYNAMIC_FTRACE if (HAVE_FTRACE)
 	help
 	  The ARM series is a line of low-power-consumption RISC chip designs
 	  licensed by ARM Ltd and targeted at embedded applications and
@@ -22,6 +24,9 @@ config ARM
 	  Europe.  There is an ARM Linux project with a web page at
 	  <http://www.arm.linux.org.uk/>.
 
+config HAVE_PWM
+	bool
+
 config SYS_SUPPORTS_APM_EMULATION
 	bool
 
@@ -84,6 +89,11 @@ config STACKTRACE_SUPPORT
 	bool
 	default y
 
+config HAVE_LATENCYTOP_SUPPORT
+	bool
+	depends on !SMP
+	default y
+
 config LOCKDEP_SUPPORT
 	bool
 	default y
@@ -147,6 +157,10 @@ config FIQ
 config ARCH_MTD_XIP
 	bool
 
+config GENERIC_HARDIRQS_NO__DO_IRQ
+	bool
+	def_bool y
+
 if OPROFILE
 
 config OPROFILE_ARMV6
@@ -232,13 +246,6 @@ config ARCH_CLPS711X
 	help
 	  Support for Cirrus Logic 711x/721x based boards.
 
-config ARCH_CO285
-	bool "Co-EBSA285"
-	select FOOTBRIDGE
-	select FOOTBRIDGE_ADDIN
-	help
-	  Support for Intel's EBSA285 companion chip.
-
 config ARCH_EBSA110
 	bool "EBSA-110"
 	select ISA
@@ -299,6 +306,8 @@ config ARCH_IOP32X
 	depends on MMU
 	select PLAT_IOP
 	select PCI
+	select GENERIC_GPIO
+	select HAVE_GPIO_LIB
 	help
 	  Support for Intel's 80219 and IOP32X (XScale) family of
 	  processors.
@@ -308,6 +317,8 @@ config ARCH_IOP33X
 	depends on MMU
 	select PLAT_IOP
 	select PCI
+	select GENERIC_GPIO
+	select HAVE_GPIO_LIB
 	help
 	  Support for Intel's IOP33X (XScale) family of processors.
 
@@ -347,6 +358,16 @@ config ARCH_L7200
 	  If you have any questions or comments about the Linux kernel port
 	  to this board, send e-mail to <sjhill@cotw.com>.
 
+config ARCH_KIRKWOOD
+	bool "Marvell Kirkwood"
+	select PCI
+	select GENERIC_TIME
+	select GENERIC_CLOCKEVENTS
+	select PLAT_ORION
+	help
+	  Support for the following Marvell Kirkwood series SoCs:
+	  88F6180, 88F6192 and 88F6281.
+
 config ARCH_KS8695
 	bool "Micrel/Kendin KS8695"
 	select GENERIC_GPIO
@@ -365,9 +386,31 @@ config ARCH_NS9XXX
 
 	  <http://www.digi.com/products/microprocessors/index.jsp>
 
+config ARCH_LOKI
+	bool "Marvell Loki (88RC8480)"
+	select GENERIC_TIME
+	select GENERIC_CLOCKEVENTS
+	select PLAT_ORION
+	help
+	  Support for the Marvell Loki (88RC8480) SoC.
+
+config ARCH_MV78XX0
+	bool "Marvell MV78xx0"
+	select PCI
+	select GENERIC_TIME
+	select GENERIC_CLOCKEVENTS
+	select PLAT_ORION
+	help
+	  Support for the following Marvell MV78xx0 series SoCs:
+	  MV781x0, MV782x0.
+
 config ARCH_MXC
 	bool "Freescale MXC/iMX-based"
+	select GENERIC_TIME
+	select GENERIC_CLOCKEVENTS
 	select ARCH_MTD_XIP
+	select GENERIC_GPIO
+	select HAVE_GPIO_LIB
 	help
 	  Support for Freescale MXC/iMX-based family of processors
 
@@ -381,7 +424,8 @@ config ARCH_ORION5X
 	select PLAT_ORION
 	help
 	  Support for the following Marvell Orion 5x series SoCs:
-	  Orion-1 (5181), Orion-NAS (5182), Orion-2 (5281.)
+	  Orion-1 (5181), Orion-VoIP (5181L), Orion-NAS (5182),
+	  Orion-2 (5281).
 
 config ARCH_PNX4008
 	bool "Philips Nexperia PNX4008 Mobile"
@@ -406,6 +450,7 @@ config ARCH_RPC
 	select FIQ
 	select TIMER_ACORN
 	select ARCH_MAY_HAVE_PC_FDC
+	select HAVE_PATA_PLATFORM
 	select ISA_DMA_API
 	select NO_IOPORT
 	help
@@ -502,6 +547,10 @@ source "arch/arm/mach-ixp2000/Kconfig"
 
 source "arch/arm/mach-ixp23xx/Kconfig"
 
+source "arch/arm/mach-loki/Kconfig"
+
+source "arch/arm/mach-mv78xx0/Kconfig"
+
 source "arch/arm/mach-pxa/Kconfig"
 
 source "arch/arm/mach-sa1100/Kconfig"
@@ -514,6 +563,8 @@ source "arch/arm/mach-omap2/Kconfig"
 
 source "arch/arm/mach-orion5x/Kconfig"
 
+source "arch/arm/mach-kirkwood/Kconfig"
+
 source "arch/arm/plat-s3c24xx/Kconfig"
 source "arch/arm/plat-s3c/Kconfig"
 
@@ -650,6 +701,7 @@ source "kernel/time/Kconfig"
 config SMP
 	bool "Symmetric Multi-Processing (EXPERIMENTAL)"
 	depends on EXPERIMENTAL && (REALVIEW_EB_ARM11MP || MACH_REALVIEW_PB11MP)
+	select USE_GENERIC_SMP_HELPERS
 	help
 	  This enables support for systems with more than one CPU. If you have
 	  a system with only one CPU, like most personal computers, say N. If
@@ -703,27 +755,6 @@ config PREEMPT
 	  Say Y here if you are building a kernel for a desktop, embedded
 	  or real-time system.  Say N if you are unsure.
 
-config NO_IDLE_HZ
-	bool "Dynamic tick timer"
-	depends on !GENERIC_CLOCKEVENTS
-	help
-	  Select this option if you want to disable continuous timer ticks
-	  and have them programmed to occur as required. This option saves
-	  power as the system can remain in idle state for longer.
-
-	  By default dynamic tick is disabled during the boot, and can be
-	  manually enabled with:
-
-	    echo 1 > /sys/devices/system/timer/timer0/dyn_tick
-
-	  Alternatively, if you want dynamic tick automatically enabled
-	  during boot, pass "dyntick=enable" via the kernel command string.
-
-	  Please note that dynamic tick may affect the accuracy of
-	  timekeeping on some platforms depending on the implementation.
-	  Currently at least OMAP, PXA2xx and SA11x0 platforms are known
-	  to have accurate timekeeping with dynamic tick.
-
 config HZ
 	int
 	default 128 if ARCH_L7200
@@ -789,7 +820,7 @@ source "mm/Kconfig"
 
 config LEDS
 	bool "Timer and CPU usage LEDs"
-	depends on ARCH_CDB89712 || ARCH_CO285 || ARCH_EBSA110 || \
+	depends on ARCH_CDB89712 || ARCH_EBSA110 || \
 		   ARCH_EBSA285 || ARCH_IMX || ARCH_INTEGRATOR || \
 		   ARCH_LUBBOCK || MACH_MAINSTONE || ARCH_NETWINDER || \
 		   ARCH_OMAP || ARCH_P720T || ARCH_PXA_IDP || \

+ 4 - 4
arch/arm/Makefile

@@ -100,8 +100,6 @@ textofs-y	:= 0x00008000
   incdir-$(CONFIG_ARCH_CLPS7500)   := cl7500
  machine-$(CONFIG_FOOTBRIDGE)	   := footbridge
   incdir-$(CONFIG_FOOTBRIDGE)	   := ebsa285
- machine-$(CONFIG_ARCH_CO285)	   := footbridge
-  incdir-$(CONFIG_ARCH_CO285)	   := ebsa285
  machine-$(CONFIG_ARCH_SHARK)	   := shark
  machine-$(CONFIG_ARCH_SA1100)	   := sa1100
 ifeq ($(CONFIG_ARCH_SA1100),y)
@@ -135,11 +133,15 @@ endif
  machine-$(CONFIG_ARCH_NETX)	   := netx
  machine-$(CONFIG_ARCH_NS9XXX)	   := ns9xxx
  machine-$(CONFIG_ARCH_DAVINCI)	   := davinci
+ machine-$(CONFIG_ARCH_KIRKWOOD)   := kirkwood
  machine-$(CONFIG_ARCH_KS8695)     := ks8695
   incdir-$(CONFIG_ARCH_MXC)	   := mxc
+ machine-$(CONFIG_ARCH_MX2)	   := mx2
  machine-$(CONFIG_ARCH_MX3)	   := mx3
  machine-$(CONFIG_ARCH_ORION5X)	   := orion5x
  machine-$(CONFIG_ARCH_MSM7X00A)   := msm
+ machine-$(CONFIG_ARCH_LOKI)       := loki
+ machine-$(CONFIG_ARCH_MV78XX0)    := mv78xx0
 
 ifeq ($(CONFIG_ARCH_EBSA110),y)
 # This is what happens if you forget the IOCS16 line.
@@ -190,8 +192,6 @@ core-$(CONFIG_PLAT_S3C24XX)		+= arch/arm/plat-s3c24xx/
 core-$(CONFIG_ARCH_MXC)		+= arch/arm/plat-mxc/
 
 drivers-$(CONFIG_OPROFILE)      += arch/arm/oprofile/
-drivers-$(CONFIG_ARCH_CLPS7500)	+= drivers/acorn/char/
-drivers-$(CONFIG_ARCH_L7200)	+= drivers/acorn/char/
 
 libs-y				:= arch/arm/lib/ $(libs-y)
 

+ 6 - 0
arch/arm/boot/compressed/Makefile

@@ -69,6 +69,12 @@ SEDFLAGS	= s/TEXT_START/$(ZTEXTADDR)/;s/BSS_START/$(ZBSSADDR)/
 
 targets       := vmlinux vmlinux.lds piggy.gz piggy.o font.o font.c \
 		 head.o misc.o $(OBJS)
+
+ifeq ($(CONFIG_FTRACE),y)
+ORIG_CFLAGS := $(KBUILD_CFLAGS)
+KBUILD_CFLAGS = $(subst -pg, , $(ORIG_CFLAGS))
+endif
+
 EXTRA_CFLAGS  := -fpic -fno-builtin
 EXTRA_AFLAGS  :=
 

+ 2 - 2
arch/arm/boot/compressed/head.S

@@ -623,8 +623,8 @@ proc_types:
 		b	__armv4_mmu_cache_off
 		b	__armv4_mmu_cache_flush
 
-		.word	0x56055310		@ Feroceon
-		.word	0xfffffff0
+		.word	0x56050000		@ Feroceon
+		.word	0xff0f0000
 		b	__armv4_mmu_cache_on
 		b	__armv4_mmu_cache_off
 		b	__armv5tej_mmu_cache_flush

+ 0 - 1
arch/arm/common/Makefile

@@ -2,7 +2,6 @@
 # Makefile for the linux kernel.
 #
 
-obj-y				+= rtctime.o
 obj-$(CONFIG_ARM_GIC)		+= gic.o
 obj-$(CONFIG_ARM_VIC)		+= vic.o
 obj-$(CONFIG_ICST525)		+= icst525.o

+ 0 - 434
arch/arm/common/rtctime.c

@@ -1,434 +0,0 @@
-/*
- *  linux/arch/arm/common/rtctime.c
- *
- *  Copyright (C) 2003 Deep Blue Solutions Ltd.
- *  Based on sa1100-rtc.c, Nils Faerber, CIH, Nicolas Pitre.
- *  Based on rtc.c by Paul Gortmaker
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/time.h>
-#include <linux/rtc.h>
-#include <linux/poll.h>
-#include <linux/proc_fs.h>
-#include <linux/miscdevice.h>
-#include <linux/spinlock.h>
-#include <linux/capability.h>
-#include <linux/device.h>
-#include <linux/mutex.h>
-
-#include <asm/rtc.h>
-
-static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
-static struct fasync_struct *rtc_async_queue;
-
-/*
- * rtc_lock protects rtc_irq_data
- */
-static DEFINE_SPINLOCK(rtc_lock);
-static unsigned long rtc_irq_data;
-
-/*
- * rtc_sem protects rtc_inuse and rtc_ops
- */
-static DEFINE_MUTEX(rtc_mutex);
-static unsigned long rtc_inuse;
-static struct rtc_ops *rtc_ops;
-
-#define rtc_epoch 1900UL
-
-/*
- * Calculate the next alarm time given the requested alarm time mask
- * and the current time.
- */
-void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm)
-{
-	unsigned long next_time;
-	unsigned long now_time;
-
-	next->tm_year = now->tm_year;
-	next->tm_mon = now->tm_mon;
-	next->tm_mday = now->tm_mday;
-	next->tm_hour = alrm->tm_hour;
-	next->tm_min = alrm->tm_min;
-	next->tm_sec = alrm->tm_sec;
-
-	rtc_tm_to_time(now, &now_time);
-	rtc_tm_to_time(next, &next_time);
-
-	if (next_time < now_time) {
-		/* Advance one day */
-		next_time += 60 * 60 * 24;
-		rtc_time_to_tm(next_time, next);
-	}
-}
-EXPORT_SYMBOL(rtc_next_alarm_time);
-
-static inline int rtc_arm_read_time(struct rtc_ops *ops, struct rtc_time *tm)
-{
-	memset(tm, 0, sizeof(struct rtc_time));
-	return ops->read_time(tm);
-}
-
-static inline int rtc_arm_set_time(struct rtc_ops *ops, struct rtc_time *tm)
-{
-	int ret;
-
-	ret = rtc_valid_tm(tm);
-	if (ret == 0)
-		ret = ops->set_time(tm);
-
-	return ret;
-}
-
-static inline int rtc_arm_read_alarm(struct rtc_ops *ops, struct rtc_wkalrm *alrm)
-{
-	int ret = -EINVAL;
-	if (ops->read_alarm) {
-		memset(alrm, 0, sizeof(struct rtc_wkalrm));
-		ret = ops->read_alarm(alrm);
-	}
-	return ret;
-}
-
-static inline int rtc_arm_set_alarm(struct rtc_ops *ops, struct rtc_wkalrm *alrm)
-{
-	int ret = -EINVAL;
-	if (ops->set_alarm)
-		ret = ops->set_alarm(alrm);
-	return ret;
-}
-
-void rtc_update(unsigned long num, unsigned long events)
-{
-	spin_lock(&rtc_lock);
-	rtc_irq_data = (rtc_irq_data + (num << 8)) | events;
-	spin_unlock(&rtc_lock);
-
-	wake_up_interruptible(&rtc_wait);
-	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
-}
-EXPORT_SYMBOL(rtc_update);
-
-
-static ssize_t
-rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
-{
-	DECLARE_WAITQUEUE(wait, current);
-	unsigned long data;
-	ssize_t ret;
-
-	if (count < sizeof(unsigned long))
-		return -EINVAL;
-
-	add_wait_queue(&rtc_wait, &wait);
-	do {
-		__set_current_state(TASK_INTERRUPTIBLE);
-
-		spin_lock_irq(&rtc_lock);
-		data = rtc_irq_data;
-		rtc_irq_data = 0;
-		spin_unlock_irq(&rtc_lock);
-
-		if (data != 0) {
-			ret = 0;
-			break;
-		}
-		if (file->f_flags & O_NONBLOCK) {
-			ret = -EAGAIN;
-			break;
-		}
-		if (signal_pending(current)) {
-			ret = -ERESTARTSYS;
-			break;
-		}
-		schedule();
-	} while (1);
-	set_current_state(TASK_RUNNING);
-	remove_wait_queue(&rtc_wait, &wait);
-
-	if (ret == 0) {
-		ret = put_user(data, (unsigned long __user *)buf);
-		if (ret == 0)
-			ret = sizeof(unsigned long);
-	}
-	return ret;
-}
-
-static unsigned int rtc_poll(struct file *file, poll_table *wait)
-{
-	unsigned long data;
-
-	poll_wait(file, &rtc_wait, wait);
-
-	spin_lock_irq(&rtc_lock);
-	data = rtc_irq_data;
-	spin_unlock_irq(&rtc_lock);
-
-	return data != 0 ? POLLIN | POLLRDNORM : 0;
-}
-
-static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
-		     unsigned long arg)
-{
-	struct rtc_ops *ops = file->private_data;
-	struct rtc_time tm;
-	struct rtc_wkalrm alrm;
-	void __user *uarg = (void __user *)arg;
-	int ret = -EINVAL;
-
-	switch (cmd) {
-	case RTC_ALM_READ:
-		ret = rtc_arm_read_alarm(ops, &alrm);
-		if (ret)
-			break;
-		ret = copy_to_user(uarg, &alrm.time, sizeof(tm));
-		if (ret)
-			ret = -EFAULT;
-		break;
-
-	case RTC_ALM_SET:
-		ret = copy_from_user(&alrm.time, uarg, sizeof(tm));
-		if (ret) {
-			ret = -EFAULT;
-			break;
-		}
-		alrm.enabled = 0;
-		alrm.pending = 0;
-		alrm.time.tm_mday = -1;
-		alrm.time.tm_mon = -1;
-		alrm.time.tm_year = -1;
-		alrm.time.tm_wday = -1;
-		alrm.time.tm_yday = -1;
-		alrm.time.tm_isdst = -1;
-		ret = rtc_arm_set_alarm(ops, &alrm);
-		break;
-
-	case RTC_RD_TIME:
-		ret = rtc_arm_read_time(ops, &tm);
-		if (ret)
-			break;
-		ret = copy_to_user(uarg, &tm, sizeof(tm));
-		if (ret)
-			ret = -EFAULT;
-		break;
-
-	case RTC_SET_TIME:
-		if (!capable(CAP_SYS_TIME)) {
-			ret = -EACCES;
-			break;
-		}
-		ret = copy_from_user(&tm, uarg, sizeof(tm));
-		if (ret) {
-			ret = -EFAULT;
-			break;
-		}
-		ret = rtc_arm_set_time(ops, &tm);
-		break;
-
-	case RTC_EPOCH_SET:
-#ifndef rtc_epoch
-		/*
-		 * There were no RTC clocks before 1900.
-		 */
-		if (arg < 1900) {
-			ret = -EINVAL;
-			break;
-		}
-		if (!capable(CAP_SYS_TIME)) {
-			ret = -EACCES;
-			break;
-		}
-		rtc_epoch = arg;
-		ret = 0;
-#endif
-		break;
-
-	case RTC_EPOCH_READ:
-		ret = put_user(rtc_epoch, (unsigned long __user *)uarg);
-		break;
-
-	case RTC_WKALM_SET:
-		ret = copy_from_user(&alrm, uarg, sizeof(alrm));
-		if (ret) {
-			ret = -EFAULT;
-			break;
-		}
-		ret = rtc_arm_set_alarm(ops, &alrm);
-		break;
-
-	case RTC_WKALM_RD:
-		ret = rtc_arm_read_alarm(ops, &alrm);
-		if (ret)
-			break;
-		ret = copy_to_user(uarg, &alrm, sizeof(alrm));
-		if (ret)
-			ret = -EFAULT;
-		break;
-
-	default:
-		if (ops->ioctl)
-			ret = ops->ioctl(cmd, arg);
-		break;
-	}
-	return ret;
-}
-
-static int rtc_open(struct inode *inode, struct file *file)
-{
-	int ret;
-
-	mutex_lock(&rtc_mutex);
-
-	if (rtc_inuse) {
-		ret = -EBUSY;
-	} else if (!rtc_ops || !try_module_get(rtc_ops->owner)) {
-		ret = -ENODEV;
-	} else {
-		file->private_data = rtc_ops;
-
-		ret = rtc_ops->open ? rtc_ops->open() : 0;
-		if (ret == 0) {
-			spin_lock_irq(&rtc_lock);
-			rtc_irq_data = 0;
-			spin_unlock_irq(&rtc_lock);
-
-			rtc_inuse = 1;
-		}
-	}
-	mutex_unlock(&rtc_mutex);
-
-	return ret;
-}
-
-static int rtc_release(struct inode *inode, struct file *file)
-{
-	struct rtc_ops *ops = file->private_data;
-
-	if (ops->release)
-		ops->release();
-
-	spin_lock_irq(&rtc_lock);
-	rtc_irq_data = 0;
-	spin_unlock_irq(&rtc_lock);
-
-	module_put(rtc_ops->owner);
-	rtc_inuse = 0;
-
-	return 0;
-}
-
-static int rtc_fasync(int fd, struct file *file, int on)
-{
-	return fasync_helper(fd, file, on, &rtc_async_queue);
-}
-
-static const struct file_operations rtc_fops = {
-	.owner		= THIS_MODULE,
-	.llseek		= no_llseek,
-	.read		= rtc_read,
-	.poll		= rtc_poll,
-	.ioctl		= rtc_ioctl,
-	.open		= rtc_open,
-	.release	= rtc_release,
-	.fasync		= rtc_fasync,
-};
-
-static struct miscdevice rtc_miscdev = {
-	.minor		= RTC_MINOR,
-	.name		= "rtc",
-	.fops		= &rtc_fops,
-};
-
-
-static int rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data)
-{
-	struct rtc_ops *ops = data;
-	struct rtc_wkalrm alrm;
-	struct rtc_time tm;
-	char *p = page;
-
-	if (rtc_arm_read_time(ops, &tm) == 0) {
-		p += sprintf(p,
-			"rtc_time\t: %02d:%02d:%02d\n"
-			"rtc_date\t: %04d-%02d-%02d\n"
-			"rtc_epoch\t: %04lu\n",
-			tm.tm_hour, tm.tm_min, tm.tm_sec,
-			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
-			rtc_epoch);
-	}
-
-	if (rtc_arm_read_alarm(ops, &alrm) == 0) {
-		p += sprintf(p, "alrm_time\t: ");
-		if ((unsigned int)alrm.time.tm_hour <= 24)
-			p += sprintf(p, "%02d:", alrm.time.tm_hour);
-		else
-			p += sprintf(p, "**:");
-		if ((unsigned int)alrm.time.tm_min <= 59)
-			p += sprintf(p, "%02d:", alrm.time.tm_min);
-		else
-			p += sprintf(p, "**:");
-		if ((unsigned int)alrm.time.tm_sec <= 59)
-			p += sprintf(p, "%02d\n", alrm.time.tm_sec);
-		else
-			p += sprintf(p, "**\n");
-
-		p += sprintf(p, "alrm_date\t: ");
-		if ((unsigned int)alrm.time.tm_year <= 200)
-			p += sprintf(p, "%04d-", alrm.time.tm_year + 1900);
-		else
-			p += sprintf(p, "****-");
-		if ((unsigned int)alrm.time.tm_mon <= 11)
-			p += sprintf(p, "%02d-", alrm.time.tm_mon + 1);
-		else
-			p += sprintf(p, "**-");
-		if ((unsigned int)alrm.time.tm_mday <= 31)
-			p += sprintf(p, "%02d\n", alrm.time.tm_mday);
-		else
-			p += sprintf(p, "**\n");
-		p += sprintf(p, "alrm_wakeup\t: %s\n",
-			     alrm.enabled ? "yes" : "no");
-		p += sprintf(p, "alrm_pending\t: %s\n",
-			     alrm.pending ? "yes" : "no");
-	}
-
-	if (ops->proc)
-		p += ops->proc(p);
-
-	return p - page;
-}
-
-int register_rtc(struct rtc_ops *ops)
-{
-	int ret = -EBUSY;
-
-	mutex_lock(&rtc_mutex);
-	if (rtc_ops == NULL) {
-		rtc_ops = ops;
-
-		ret = misc_register(&rtc_miscdev);
-		if (ret == 0)
-			create_proc_read_entry("driver/rtc", 0, NULL,
-					       rtc_read_proc, ops);
-	}
-	mutex_unlock(&rtc_mutex);
-
-	return ret;
-}
-EXPORT_SYMBOL(register_rtc);
-
-void unregister_rtc(struct rtc_ops *rtc)
-{
-	mutex_lock(&rtc_mutex);
-	if (rtc == rtc_ops) {
-		remove_proc_entry("driver/rtc", NULL);
-		misc_deregister(&rtc_miscdev);
-		rtc_ops = NULL;
-	}
-	mutex_unlock(&rtc_mutex);
-}
-EXPORT_SYMBOL(unregister_rtc);

+ 3 - 0
arch/arm/common/sharpsl_pm.c

@@ -31,6 +31,7 @@
 #include <asm/irq.h>
 #include <asm/arch/pm.h>
 #include <asm/arch/pxa-regs.h>
+#include <asm/arch/pxa2xx-regs.h>
 #include <asm/arch/sharpsl.h>
 #include <asm/hardware/sharpsl_pm.h>
 
@@ -157,6 +158,7 @@ static void sharpsl_battery_thread(struct work_struct *private_)
 	dev_dbg(sharpsl_pm.dev, "Battery: voltage: %d, status: %d, percentage: %d, time: %ld\n", voltage,
 			sharpsl_pm.battstat.mainbat_status, sharpsl_pm.battstat.mainbat_percent, jiffies);
 
+#ifdef CONFIG_BACKLIGHT_CORGI
 	/* If battery is low. limit backlight intensity to save power. */
 	if ((sharpsl_pm.battstat.ac_status != APM_AC_ONLINE)
 			&& ((sharpsl_pm.battstat.mainbat_status == APM_BATTERY_STATUS_LOW) ||
@@ -169,6 +171,7 @@ static void sharpsl_battery_thread(struct work_struct *private_)
 		sharpsl_pm.machinfo->backlight_limit(0);
 		sharpsl_pm.flags &= ~SHARPSL_BL_LIMIT;
 	}
+#endif
 
 	/* Suspend if critical battery level */
 	if ((sharpsl_pm.battstat.ac_status != APM_AC_ONLINE)

+ 79 - 3
arch/arm/configs/at91cap9adk_defconfig

@@ -213,7 +213,6 @@ CONFIG_CPU_CP15_MMU=y
 #
 # CONFIG_TICK_ONESHOT is not set
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 CONFIG_AEABI=y
 CONFIG_OABI_COMPAT=y
@@ -907,7 +906,32 @@ CONFIG_USB_MON=y
 #
 # USB Gadget Support
 #
-# CONFIG_USB_GADGET is not set
+CONFIG_USB_GADGET=y
+# CONFIG_USB_GADGET_DEBUG is not set
+# CONFIG_USB_GADGET_DEBUG_FILES is not set
+CONFIG_USB_GADGET_SELECTED=y
+# CONFIG_USB_GADGET_AMD5536UDC is not set
+CONFIG_USB_GADGET_ATMEL_USBA=y
+CONFIG_USB_ATMEL_USBA=y
+# CONFIG_USB_GADGET_FSL_USB2 is not set
+# CONFIG_USB_GADGET_NET2280 is not set
+# CONFIG_USB_GADGET_PXA2XX is not set
+# CONFIG_USB_GADGET_M66592 is not set
+# CONFIG_USB_GADGET_GOKU is not set
+# CONFIG_USB_GADGET_LH7A40X is not set
+# CONFIG_USB_GADGET_OMAP is not set
+# CONFIG_USB_GADGET_S3C2410 is not set
+# CONFIG_USB_GADGET_AT91 is not set
+# CONFIG_USB_GADGET_DUMMY_HCD is not set
+CONFIG_USB_GADGET_DUALSPEED=y
+# CONFIG_USB_ZERO is not set
+CONFIG_USB_ETH=m
+CONFIG_USB_ETH_RNDIS=y
+# CONFIG_USB_GADGETFS is not set
+CONFIG_USB_FILE_STORAGE=m
+# CONFIG_USB_FILE_STORAGE_TEST is not set
+# CONFIG_USB_G_SERIAL is not set
+# CONFIG_USB_MIDI_GADGET is not set
 CONFIG_MMC=y
 # CONFIG_MMC_DEBUG is not set
 # CONFIG_MMC_UNSAFE_RESUME is not set
@@ -926,7 +950,59 @@ CONFIG_MMC_AT91=y
 # CONFIG_MMC_SPI is not set
 # CONFIG_NEW_LEDS is not set
 CONFIG_RTC_LIB=y
-# CONFIG_RTC_CLASS is not set
+CONFIG_RTC_CLASS=y
+CONFIG_RTC_HCTOSYS=y
+CONFIG_RTC_HCTOSYS_DEVICE="rtc0"
+# CONFIG_RTC_DEBUG is not set
+
+#
+# RTC interfaces
+#
+CONFIG_RTC_INTF_SYSFS=y
+CONFIG_RTC_INTF_PROC=y
+CONFIG_RTC_INTF_DEV=y
+# CONFIG_RTC_INTF_DEV_UIE_EMUL is not set
+# CONFIG_RTC_DRV_TEST is not set
+
+#
+# I2C RTC drivers
+#
+# CONFIG_RTC_DRV_DS1307 is not set
+# CONFIG_RTC_DRV_DS1374 is not set
+# CONFIG_RTC_DRV_DS1672 is not set
+# CONFIG_RTC_DRV_MAX6900 is not set
+# CONFIG_RTC_DRV_RS5C372 is not set
+# CONFIG_RTC_DRV_ISL1208 is not set
+# CONFIG_RTC_DRV_X1205 is not set
+# CONFIG_RTC_DRV_PCF8563 is not set
+# CONFIG_RTC_DRV_PCF8583 is not set
+# CONFIG_RTC_DRV_M41T80 is not set
+
+#
+# SPI RTC drivers
+#
+# CONFIG_RTC_DRV_MAX6902 is not set
+# CONFIG_RTC_DRV_R9701 is not set
+# CONFIG_RTC_DRV_RS5C348 is not set
+
+#
+# Platform RTC drivers
+#
+# CONFIG_RTC_DRV_CMOS is not set
+# CONFIG_RTC_DRV_DS1511 is not set
+# CONFIG_RTC_DRV_DS1553 is not set
+# CONFIG_RTC_DRV_DS1742 is not set
+# CONFIG_RTC_DRV_STK17TA8 is not set
+# CONFIG_RTC_DRV_M48T86 is not set
+# CONFIG_RTC_DRV_M48T59 is not set
+# CONFIG_RTC_DRV_V3020 is not set
+
+#
+# on-CPU RTC drivers
+#
+CONFIG_RTC_DRV_AT91SAM9=y
+CONFIG_RTC_DRV_AT91SAM9_RTT=0
+CONFIG_RTC_DRV_AT91SAM9_GPBR=0
 
 #
 # File systems

+ 0 - 1
arch/arm/configs/at91rm9200dk_defconfig

@@ -169,7 +169,6 @@ CONFIG_AT91_CF=y
 # Kernel Features
 #
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
 CONFIG_SELECT_MEMORY_MODEL=y
 CONFIG_FLATMEM_MANUAL=y

+ 0 - 1
arch/arm/configs/at91rm9200ek_defconfig

@@ -160,7 +160,6 @@ CONFIG_ISA_DMA_API=y
 # Kernel Features
 #
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
 CONFIG_SELECT_MEMORY_MODEL=y
 CONFIG_FLATMEM_MANUAL=y

+ 0 - 1
arch/arm/configs/at91sam9260ek_defconfig

@@ -220,7 +220,6 @@ CONFIG_CPU_CP15_MMU=y
 #
 # CONFIG_TICK_ONESHOT is not set
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set

+ 0 - 1
arch/arm/configs/at91sam9261ek_defconfig

@@ -213,7 +213,6 @@ CONFIG_CPU_CP15_MMU=y
 #
 # CONFIG_TICK_ONESHOT is not set
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set

+ 0 - 1
arch/arm/configs/at91sam9263ek_defconfig

@@ -213,7 +213,6 @@ CONFIG_CPU_CP15_MMU=y
 #
 # CONFIG_TICK_ONESHOT is not set
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set

+ 1168 - 0
arch/arm/configs/at91sam9g20ek_defconfig

@@ -0,0 +1,1168 @@
+#
+# Automatically generated make config: don't edit
+# Linux kernel version: 2.6.24
+# Tue Jun 10 15:51:52 2008
+#
+CONFIG_ARM=y
+CONFIG_SYS_SUPPORTS_APM_EMULATION=y
+CONFIG_GENERIC_GPIO=y
+CONFIG_GENERIC_TIME=y
+CONFIG_GENERIC_CLOCKEVENTS=y
+CONFIG_MMU=y
+# CONFIG_NO_IOPORT is not set
+CONFIG_GENERIC_HARDIRQS=y
+CONFIG_STACKTRACE_SUPPORT=y
+CONFIG_LOCKDEP_SUPPORT=y
+CONFIG_TRACE_IRQFLAGS_SUPPORT=y
+CONFIG_HARDIRQS_SW_RESEND=y
+CONFIG_GENERIC_IRQ_PROBE=y
+CONFIG_RWSEM_GENERIC_SPINLOCK=y
+# CONFIG_ARCH_HAS_ILOG2_U32 is not set
+# CONFIG_ARCH_HAS_ILOG2_U64 is not set
+CONFIG_GENERIC_HWEIGHT=y
+CONFIG_GENERIC_CALIBRATE_DELAY=y
+CONFIG_ZONE_DMA=y
+CONFIG_VECTORS_BASE=0xffff0000
+CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"
+
+#
+# General setup
+#
+CONFIG_EXPERIMENTAL=y
+CONFIG_BROKEN_ON_SMP=y
+CONFIG_INIT_ENV_ARG_LIMIT=32
+CONFIG_LOCALVERSION=""
+# CONFIG_LOCALVERSION_AUTO is not set
+# CONFIG_SWAP is not set
+CONFIG_SYSVIPC=y
+CONFIG_SYSVIPC_SYSCTL=y
+# CONFIG_POSIX_MQUEUE is not set
+# CONFIG_BSD_PROCESS_ACCT is not set
+# CONFIG_TASKSTATS is not set
+# CONFIG_USER_NS is not set
+# CONFIG_PID_NS is not set
+# CONFIG_AUDIT is not set
+# CONFIG_IKCONFIG is not set
+CONFIG_LOG_BUF_SHIFT=14
+# CONFIG_CGROUPS is not set
+# CONFIG_FAIR_GROUP_SCHED is not set
+CONFIG_SYSFS_DEPRECATED=y
+# CONFIG_RELAY is not set
+CONFIG_BLK_DEV_INITRD=y
+CONFIG_INITRAMFS_SOURCE=""
+CONFIG_CC_OPTIMIZE_FOR_SIZE=y
+CONFIG_SYSCTL=y
+# CONFIG_EMBEDDED is not set
+CONFIG_UID16=y
+CONFIG_SYSCTL_SYSCALL=y
+CONFIG_KALLSYMS=y
+# CONFIG_KALLSYMS_EXTRA_PASS is not set
+CONFIG_HOTPLUG=y
+CONFIG_PRINTK=y
+CONFIG_BUG=y
+CONFIG_ELF_CORE=y
+CONFIG_BASE_FULL=y
+CONFIG_FUTEX=y
+CONFIG_ANON_INODES=y
+CONFIG_EPOLL=y
+CONFIG_SIGNALFD=y
+CONFIG_EVENTFD=y
+CONFIG_SHMEM=y
+CONFIG_VM_EVENT_COUNTERS=y
+CONFIG_SLAB=y
+# CONFIG_SLUB is not set
+# CONFIG_SLOB is not set
+CONFIG_SLABINFO=y
+CONFIG_RT_MUTEXES=y
+# CONFIG_TINY_SHMEM is not set
+CONFIG_BASE_SMALL=0
+CONFIG_MODULES=y
+CONFIG_MODULE_UNLOAD=y
+# CONFIG_MODULE_FORCE_UNLOAD is not set
+# CONFIG_MODVERSIONS is not set
+# CONFIG_MODULE_SRCVERSION_ALL is not set
+CONFIG_KMOD=y
+CONFIG_BLOCK=y
+# CONFIG_LBD is not set
+# CONFIG_BLK_DEV_IO_TRACE is not set
+# CONFIG_LSF is not set
+# CONFIG_BLK_DEV_BSG is not set
+
+#
+# IO Schedulers
+#
+CONFIG_IOSCHED_NOOP=y
+CONFIG_IOSCHED_AS=y
+# CONFIG_IOSCHED_DEADLINE is not set
+# CONFIG_IOSCHED_CFQ is not set
+CONFIG_DEFAULT_AS=y
+# CONFIG_DEFAULT_DEADLINE is not set
+# CONFIG_DEFAULT_CFQ is not set
+# CONFIG_DEFAULT_NOOP is not set
+CONFIG_DEFAULT_IOSCHED="anticipatory"
+
+#
+# System Type
+#
+# CONFIG_ARCH_AAEC2000 is not set
+# CONFIG_ARCH_INTEGRATOR is not set
+# CONFIG_ARCH_REALVIEW is not set
+# CONFIG_ARCH_VERSATILE is not set
+CONFIG_ARCH_AT91=y
+# CONFIG_ARCH_CLPS7500 is not set
+# CONFIG_ARCH_CLPS711X is not set
+# CONFIG_ARCH_CO285 is not set
+# CONFIG_ARCH_EBSA110 is not set
+# CONFIG_ARCH_EP93XX is not set
+# CONFIG_ARCH_FOOTBRIDGE is not set
+# CONFIG_ARCH_NETX is not set
+# CONFIG_ARCH_H720X is not set
+# CONFIG_ARCH_IMX is not set
+# CONFIG_ARCH_IOP13XX is not set
+# CONFIG_ARCH_IOP32X is not set
+# CONFIG_ARCH_IOP33X is not set
+# CONFIG_ARCH_IXP23XX is not set
+# CONFIG_ARCH_IXP2000 is not set
+# CONFIG_ARCH_IXP4XX is not set
+# CONFIG_ARCH_L7200 is not set
+# CONFIG_ARCH_KS8695 is not set
+# CONFIG_ARCH_NS9XXX is not set
+# CONFIG_ARCH_MXC is not set
+# CONFIG_ARCH_PNX4008 is not set
+# CONFIG_ARCH_PXA is not set
+# CONFIG_ARCH_RPC is not set
+# CONFIG_ARCH_SA1100 is not set
+# CONFIG_ARCH_S3C2410 is not set
+# CONFIG_ARCH_SHARK is not set
+# CONFIG_ARCH_LH7A40X is not set
+# CONFIG_ARCH_DAVINCI is not set
+# CONFIG_ARCH_OMAP is not set
+
+#
+# Boot options
+#
+
+#
+# Power management
+#
+
+#
+# Atmel AT91 System-on-Chip
+#
+# CONFIG_ARCH_AT91RM9200 is not set
+# CONFIG_ARCH_AT91SAM9260 is not set
+# CONFIG_ARCH_AT91SAM9261 is not set
+# CONFIG_ARCH_AT91SAM9263 is not set
+# CONFIG_ARCH_AT91SAM9RL is not set
+CONFIG_ARCH_AT91SAM9G20=y
+# CONFIG_ARCH_AT91CAP9 is not set
+# CONFIG_ARCH_AT91X40 is not set
+CONFIG_AT91_PMC_UNIT=y
+
+#
+# AT91SAM9G20 Board Type
+#
+CONFIG_MACH_AT91SAM9G20EK=y
+
+#
+# AT91 Board Options
+#
+# CONFIG_MTD_AT91_DATAFLASH_CARD is not set
+# CONFIG_MTD_NAND_AT91_BUSWIDTH_16 is not set
+
+#
+# AT91 Feature Selections
+#
+CONFIG_AT91_PROGRAMMABLE_CLOCKS=y
+# CONFIG_AT91_SLOW_CLOCK is not set
+CONFIG_AT91_TIMER_HZ=100
+CONFIG_AT91_EARLY_DBGU=y
+# CONFIG_AT91_EARLY_USART0 is not set
+# CONFIG_AT91_EARLY_USART1 is not set
+# CONFIG_AT91_EARLY_USART2 is not set
+# CONFIG_AT91_EARLY_USART3 is not set
+# CONFIG_AT91_EARLY_USART4 is not set
+# CONFIG_AT91_EARLY_USART5 is not set
+
+#
+# Processor Type
+#
+CONFIG_CPU_32=y
+CONFIG_CPU_ARM926T=y
+CONFIG_CPU_32v5=y
+CONFIG_CPU_ABRT_EV5TJ=y
+CONFIG_CPU_CACHE_VIVT=y
+CONFIG_CPU_COPY_V4WB=y
+CONFIG_CPU_TLB_V4WBI=y
+CONFIG_CPU_CP15=y
+CONFIG_CPU_CP15_MMU=y
+
+#
+# Processor Features
+#
+# CONFIG_ARM_THUMB is not set
+# CONFIG_CPU_ICACHE_DISABLE is not set
+# CONFIG_CPU_DCACHE_DISABLE is not set
+# CONFIG_CPU_DCACHE_WRITETHROUGH is not set
+# CONFIG_CPU_CACHE_ROUND_ROBIN is not set
+# CONFIG_OUTER_CACHE is not set
+
+#
+# Bus support
+#
+# CONFIG_PCI_SYSCALL is not set
+# CONFIG_ARCH_SUPPORTS_MSI is not set
+# CONFIG_PCCARD is not set
+
+#
+# Kernel Features
+#
+# CONFIG_TICK_ONESHOT is not set
+# CONFIG_NO_HZ is not set
+# CONFIG_HIGH_RES_TIMERS is not set
+CONFIG_GENERIC_CLOCKEVENTS_BUILD=y
+# CONFIG_PREEMPT is not set
+CONFIG_HZ=100
+CONFIG_AEABI=y
+CONFIG_OABI_COMPAT=y
+# CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
+CONFIG_SELECT_MEMORY_MODEL=y
+CONFIG_FLATMEM_MANUAL=y
+# CONFIG_DISCONTIGMEM_MANUAL is not set
+# CONFIG_SPARSEMEM_MANUAL is not set
+CONFIG_FLATMEM=y
+CONFIG_FLAT_NODE_MEM_MAP=y
+# CONFIG_SPARSEMEM_STATIC is not set
+# CONFIG_SPARSEMEM_VMEMMAP_ENABLE is not set
+CONFIG_SPLIT_PTLOCK_CPUS=4096
+# CONFIG_RESOURCES_64BIT is not set
+CONFIG_ZONE_DMA_FLAG=1
+CONFIG_BOUNCE=y
+CONFIG_VIRT_TO_BUS=y
+CONFIG_LEDS=y
+CONFIG_LEDS_CPU=y
+CONFIG_ALIGNMENT_TRAP=y
+
+#
+# Boot options
+#
+CONFIG_ZBOOT_ROM_TEXT=0x0
+CONFIG_ZBOOT_ROM_BSS=0x0
+CONFIG_CMDLINE="mem=64M console=ttyS0,115200 initrd=0x21100000,3145728 root=/dev/ram0 rw"
+# CONFIG_XIP_KERNEL is not set
+# CONFIG_KEXEC is not set
+
+#
+# Floating point emulation
+#
+
+#
+# At least one emulation must be selected
+#
+CONFIG_FPE_NWFPE=y
+# CONFIG_FPE_NWFPE_XP is not set
+# CONFIG_FPE_FASTFPE is not set
+# CONFIG_VFP is not set
+
+#
+# Userspace binary formats
+#
+CONFIG_BINFMT_ELF=y
+# CONFIG_BINFMT_AOUT is not set
+# CONFIG_BINFMT_MISC is not set
+
+#
+# Power management options
+#
+CONFIG_PM=y
+# CONFIG_PM_LEGACY is not set
+# CONFIG_PM_DEBUG is not set
+CONFIG_PM_SLEEP=y
+CONFIG_SUSPEND_UP_POSSIBLE=y
+CONFIG_SUSPEND=y
+# CONFIG_APM_EMULATION is not set
+
+#
+# Networking
+#
+CONFIG_NET=y
+
+#
+# Networking options
+#
+CONFIG_PACKET=y
+# CONFIG_PACKET_MMAP is not set
+CONFIG_UNIX=y
+# CONFIG_NET_KEY is not set
+CONFIG_INET=y
+# CONFIG_IP_MULTICAST is not set
+# CONFIG_IP_ADVANCED_ROUTER is not set
+CONFIG_IP_FIB_HASH=y
+CONFIG_IP_PNP=y
+# CONFIG_IP_PNP_DHCP is not set
+CONFIG_IP_PNP_BOOTP=y
+# CONFIG_IP_PNP_RARP is not set
+# CONFIG_NET_IPIP is not set
+# CONFIG_NET_IPGRE is not set
+# CONFIG_ARPD is not set
+# CONFIG_SYN_COOKIES is not set
+# CONFIG_INET_AH is not set
+# CONFIG_INET_ESP is not set
+# CONFIG_INET_IPCOMP is not set
+# CONFIG_INET_XFRM_TUNNEL is not set
+# CONFIG_INET_TUNNEL is not set
+# CONFIG_INET_XFRM_MODE_TRANSPORT is not set
+# CONFIG_INET_XFRM_MODE_TUNNEL is not set
+# CONFIG_INET_XFRM_MODE_BEET is not set
+# CONFIG_INET_LRO is not set
+CONFIG_INET_DIAG=y
+CONFIG_INET_TCP_DIAG=y
+# CONFIG_TCP_CONG_ADVANCED is not set
+CONFIG_TCP_CONG_CUBIC=y
+CONFIG_DEFAULT_TCP_CONG="cubic"
+# CONFIG_TCP_MD5SIG is not set
+# CONFIG_IPV6 is not set
+# CONFIG_INET6_XFRM_TUNNEL is not set
+# CONFIG_INET6_TUNNEL is not set
+# CONFIG_NETWORK_SECMARK is not set
+# CONFIG_NETFILTER is not set
+# CONFIG_IP_DCCP is not set
+# CONFIG_IP_SCTP is not set
+# CONFIG_TIPC is not set
+# CONFIG_ATM is not set
+# CONFIG_BRIDGE is not set
+# CONFIG_VLAN_8021Q is not set
+# CONFIG_DECNET is not set
+# CONFIG_LLC2 is not set
+# CONFIG_IPX is not set
+# CONFIG_ATALK is not set
+# CONFIG_X25 is not set
+# CONFIG_LAPB is not set
+# CONFIG_ECONET is not set
+# CONFIG_WAN_ROUTER is not set
+# CONFIG_NET_SCHED is not set
+
+#
+# Network testing
+#
+# CONFIG_NET_PKTGEN is not set
+# CONFIG_HAMRADIO is not set
+# CONFIG_IRDA is not set
+# CONFIG_BT is not set
+# CONFIG_AF_RXRPC is not set
+
+#
+# Wireless
+#
+# CONFIG_CFG80211 is not set
+# CONFIG_WIRELESS_EXT is not set
+# CONFIG_MAC80211 is not set
+# CONFIG_IEEE80211 is not set
+# CONFIG_RFKILL is not set
+# CONFIG_NET_9P is not set
+
+#
+# Device Drivers
+#
+
+#
+# Generic Driver Options
+#
+CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"
+CONFIG_STANDALONE=y
+CONFIG_PREVENT_FIRMWARE_BUILD=y
+# CONFIG_FW_LOADER is not set
+# CONFIG_SYS_HYPERVISOR is not set
+# CONFIG_CONNECTOR is not set
+CONFIG_MTD=y
+# CONFIG_MTD_DEBUG is not set
+CONFIG_MTD_CONCAT=y
+CONFIG_MTD_PARTITIONS=y
+# CONFIG_MTD_REDBOOT_PARTS is not set
+CONFIG_MTD_CMDLINE_PARTS=y
+# CONFIG_MTD_AFS_PARTS is not set
+
+#
+# User Modules And Translation Layers
+#
+CONFIG_MTD_CHAR=y
+CONFIG_MTD_BLKDEVS=y
+CONFIG_MTD_BLOCK=y
+# CONFIG_FTL is not set
+# CONFIG_NFTL is not set
+# CONFIG_INFTL is not set
+# CONFIG_RFD_FTL is not set
+# CONFIG_SSFDC is not set
+# CONFIG_MTD_OOPS is not set
+
+#
+# RAM/ROM/Flash chip drivers
+#
+# CONFIG_MTD_CFI is not set
+# CONFIG_MTD_JEDECPROBE is not set
+CONFIG_MTD_MAP_BANK_WIDTH_1=y
+CONFIG_MTD_MAP_BANK_WIDTH_2=y
+CONFIG_MTD_MAP_BANK_WIDTH_4=y
+# CONFIG_MTD_MAP_BANK_WIDTH_8 is not set
+# CONFIG_MTD_MAP_BANK_WIDTH_16 is not set
+# CONFIG_MTD_MAP_BANK_WIDTH_32 is not set
+CONFIG_MTD_CFI_I1=y
+CONFIG_MTD_CFI_I2=y
+# CONFIG_MTD_CFI_I4 is not set
+# CONFIG_MTD_CFI_I8 is not set
+# CONFIG_MTD_RAM is not set
+# CONFIG_MTD_ROM is not set
+# CONFIG_MTD_ABSENT is not set
+
+#
+# Mapping drivers for chip access
+#
+# CONFIG_MTD_COMPLEX_MAPPINGS is not set
+# CONFIG_MTD_PLATRAM is not set
+
+#
+# Self-contained MTD device drivers
+#
+CONFIG_MTD_DATAFLASH=y
+# CONFIG_MTD_M25P80 is not set
+# CONFIG_MTD_SLRAM is not set
+# CONFIG_MTD_PHRAM is not set
+# CONFIG_MTD_MTDRAM is not set
+# CONFIG_MTD_BLOCK2MTD is not set
+
+#
+# Disk-On-Chip Device Drivers
+#
+# CONFIG_MTD_DOC2000 is not set
+# CONFIG_MTD_DOC2001 is not set
+# CONFIG_MTD_DOC2001PLUS is not set
+CONFIG_MTD_NAND=y
+# CONFIG_MTD_NAND_VERIFY_WRITE is not set
+# CONFIG_MTD_NAND_ECC_SMC is not set
+# CONFIG_MTD_NAND_MUSEUM_IDS is not set
+CONFIG_MTD_NAND_IDS=y
+# CONFIG_MTD_NAND_DISKONCHIP is not set
+CONFIG_MTD_NAND_AT91=y
+CONFIG_MTD_NAND_AT91_ECC_SOFT=y
+# CONFIG_MTD_NAND_AT91_ECC_HW is not set
+# CONFIG_MTD_NAND_AT91_ECC_NONE is not set
+# CONFIG_MTD_NAND_NANDSIM is not set
+# CONFIG_MTD_NAND_PLATFORM is not set
+# CONFIG_MTD_ALAUDA is not set
+# CONFIG_MTD_ONENAND is not set
+
+#
+# UBI - Unsorted block images
+#
+# CONFIG_MTD_UBI is not set
+# CONFIG_PARPORT is not set
+CONFIG_BLK_DEV=y
+# CONFIG_BLK_DEV_COW_COMMON is not set
+CONFIG_BLK_DEV_LOOP=y
+# CONFIG_BLK_DEV_CRYPTOLOOP is not set
+# CONFIG_BLK_DEV_NBD is not set
+# CONFIG_BLK_DEV_UB is not set
+CONFIG_BLK_DEV_RAM=y
+CONFIG_BLK_DEV_RAM_COUNT=16
+CONFIG_BLK_DEV_RAM_SIZE=8192
+CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024
+# CONFIG_CDROM_PKTCDVD is not set
+# CONFIG_ATA_OVER_ETH is not set
+CONFIG_MISC_DEVICES=y
+CONFIG_ATMEL_PWM=y
+# CONFIG_EEPROM_93CX6 is not set
+CONFIG_ATMEL_SSC=y
+
+#
+# SCSI device support
+#
+# CONFIG_RAID_ATTRS is not set
+CONFIG_SCSI=y
+CONFIG_SCSI_DMA=y
+# CONFIG_SCSI_TGT is not set
+# CONFIG_SCSI_NETLINK is not set
+CONFIG_SCSI_PROC_FS=y
+
+#
+# SCSI support type (disk, tape, CD-ROM)
+#
+CONFIG_BLK_DEV_SD=y
+# CONFIG_CHR_DEV_ST is not set
+# CONFIG_CHR_DEV_OSST is not set
+# CONFIG_BLK_DEV_SR is not set
+# CONFIG_CHR_DEV_SG is not set
+# CONFIG_CHR_DEV_SCH is not set
+
+#
+# Some SCSI devices (e.g. CD jukebox) support multiple LUNs
+#
+CONFIG_SCSI_MULTI_LUN=y
+# CONFIG_SCSI_CONSTANTS is not set
+# CONFIG_SCSI_LOGGING is not set
+# CONFIG_SCSI_SCAN_ASYNC is not set
+CONFIG_SCSI_WAIT_SCAN=m
+
+#
+# SCSI Transports
+#
+# CONFIG_SCSI_SPI_ATTRS is not set
+# CONFIG_SCSI_FC_ATTRS is not set
+# CONFIG_SCSI_ISCSI_ATTRS is not set
+# CONFIG_SCSI_SAS_LIBSAS is not set
+# CONFIG_SCSI_SRP_ATTRS is not set
+# CONFIG_SCSI_LOWLEVEL is not set
+# CONFIG_ATA is not set
+# CONFIG_MD is not set
+CONFIG_NETDEVICES=y
+# CONFIG_NETDEVICES_MULTIQUEUE is not set
+# CONFIG_DUMMY is not set
+# CONFIG_BONDING is not set
+# CONFIG_MACVLAN is not set
+# CONFIG_EQUALIZER is not set
+# CONFIG_TUN is not set
+# CONFIG_VETH is not set
+CONFIG_PHYLIB=y
+
+#
+# MII PHY device drivers
+#
+# CONFIG_MARVELL_PHY is not set
+# CONFIG_DAVICOM_PHY is not set
+# CONFIG_QSEMI_PHY is not set
+# CONFIG_LXT_PHY is not set
+# CONFIG_CICADA_PHY is not set
+# CONFIG_VITESSE_PHY is not set
+# CONFIG_SMSC_PHY is not set
+# CONFIG_BROADCOM_PHY is not set
+# CONFIG_ICPLUS_PHY is not set
+# CONFIG_FIXED_PHY is not set
+# CONFIG_MDIO_BITBANG is not set
+CONFIG_NET_ETHERNET=y
+CONFIG_MII=y
+CONFIG_MACB=y
+# CONFIG_AX88796 is not set
+# CONFIG_SMC91X is not set
+# CONFIG_DM9000 is not set
+# CONFIG_IBM_NEW_EMAC_ZMII is not set
+# CONFIG_IBM_NEW_EMAC_RGMII is not set
+# CONFIG_IBM_NEW_EMAC_TAH is not set
+# CONFIG_IBM_NEW_EMAC_EMAC4 is not set
+# CONFIG_B44 is not set
+# CONFIG_NETDEV_1000 is not set
+# CONFIG_NETDEV_10000 is not set
+
+#
+# Wireless LAN
+#
+# CONFIG_WLAN_PRE80211 is not set
+# CONFIG_WLAN_80211 is not set
+
+#
+# USB Network Adapters
+#
+# CONFIG_USB_CATC is not set
+# CONFIG_USB_KAWETH is not set
+# CONFIG_USB_PEGASUS is not set
+# CONFIG_USB_RTL8150 is not set
+# CONFIG_USB_USBNET is not set
+# CONFIG_WAN is not set
+# CONFIG_PPP is not set
+# CONFIG_SLIP is not set
+# CONFIG_SHAPER is not set
+# CONFIG_NETCONSOLE is not set
+# CONFIG_NETPOLL is not set
+# CONFIG_NET_POLL_CONTROLLER is not set
+# CONFIG_ISDN is not set
+
+#
+# Input device support
+#
+CONFIG_INPUT=y
+# CONFIG_INPUT_FF_MEMLESS is not set
+# CONFIG_INPUT_POLLDEV is not set
+
+#
+# Userland interfaces
+#
+CONFIG_INPUT_MOUSEDEV=y
+# CONFIG_INPUT_MOUSEDEV_PSAUX is not set
+CONFIG_INPUT_MOUSEDEV_SCREEN_X=320
+CONFIG_INPUT_MOUSEDEV_SCREEN_Y=240
+# CONFIG_INPUT_JOYDEV is not set
+CONFIG_INPUT_EVDEV=y
+# CONFIG_INPUT_EVBUG is not set
+
+#
+# Input Device Drivers
+#
+CONFIG_INPUT_KEYBOARD=y
+# CONFIG_KEYBOARD_ATKBD is not set
+# CONFIG_KEYBOARD_SUNKBD is not set
+# CONFIG_KEYBOARD_LKKBD is not set
+# CONFIG_KEYBOARD_XTKBD is not set
+# CONFIG_KEYBOARD_NEWTON is not set
+# CONFIG_KEYBOARD_STOWAWAY is not set
+CONFIG_KEYBOARD_GPIO=y
+# CONFIG_INPUT_MOUSE is not set
+# CONFIG_INPUT_JOYSTICK is not set
+# CONFIG_INPUT_TABLET is not set
+# CONFIG_INPUT_TOUCHSCREEN is not set
+# CONFIG_INPUT_MISC is not set
+
+#
+# Hardware I/O ports
+#
+CONFIG_SERIO=y
+CONFIG_SERIO_SERPORT=y
+# CONFIG_SERIO_RAW is not set
+# CONFIG_GAMEPORT is not set
+
+#
+# Character devices
+#
+CONFIG_VT=y
+CONFIG_VT_CONSOLE=y
+CONFIG_HW_CONSOLE=y
+# CONFIG_VT_HW_CONSOLE_BINDING is not set
+# CONFIG_SERIAL_NONSTANDARD is not set
+
+#
+# Serial drivers
+#
+# CONFIG_SERIAL_8250 is not set
+
+#
+# Non-8250 serial port support
+#
+CONFIG_SERIAL_ATMEL=y
+CONFIG_SERIAL_ATMEL_CONSOLE=y
+# CONFIG_SERIAL_ATMEL_TTYAT is not set
+CONFIG_SERIAL_CORE=y
+CONFIG_SERIAL_CORE_CONSOLE=y
+CONFIG_UNIX98_PTYS=y
+CONFIG_LEGACY_PTYS=y
+CONFIG_LEGACY_PTY_COUNT=16
+# CONFIG_IPMI_HANDLER is not set
+CONFIG_HW_RANDOM=y
+# CONFIG_NVRAM is not set
+# CONFIG_R3964 is not set
+# CONFIG_RAW_DRIVER is not set
+# CONFIG_TCG_TPM is not set
+# CONFIG_I2C is not set
+
+#
+# SPI support
+#
+CONFIG_SPI=y
+CONFIG_SPI_MASTER=y
+
+#
+# SPI Master Controller Drivers
+#
+CONFIG_SPI_ATMEL=y
+# CONFIG_SPI_BITBANG is not set
+
+#
+# SPI Protocol Masters
+#
+# CONFIG_SPI_AT25 is not set
+CONFIG_SPI_SPIDEV=y
+# CONFIG_SPI_TLE62X0 is not set
+# CONFIG_W1 is not set
+# CONFIG_POWER_SUPPLY is not set
+# CONFIG_HWMON is not set
+# CONFIG_WATCHDOG is not set
+
+#
+# Sonics Silicon Backplane
+#
+CONFIG_SSB_POSSIBLE=y
+# CONFIG_SSB is not set
+
+#
+# Multifunction device drivers
+#
+# CONFIG_MFD_SM501 is not set
+
+#
+# Multimedia devices
+#
+# CONFIG_VIDEO_DEV is not set
+# CONFIG_DVB_CORE is not set
+# CONFIG_DAB is not set
+
+#
+# Graphics support
+#
+# CONFIG_VGASTATE is not set
+# CONFIG_VIDEO_OUTPUT_CONTROL is not set
+# CONFIG_FB is not set
+# CONFIG_BACKLIGHT_LCD_SUPPORT is not set
+
+#
+# Display device support
+#
+# CONFIG_DISPLAY_SUPPORT is not set
+
+#
+# Console display driver support
+#
+# CONFIG_VGA_CONSOLE is not set
+CONFIG_DUMMY_CONSOLE=y
+
+#
+# Sound
+#
+CONFIG_SOUND=y
+
+#
+# Advanced Linux Sound Architecture
+#
+CONFIG_SND=y
+CONFIG_SND_TIMER=y
+CONFIG_SND_PCM=y
+CONFIG_SND_SEQUENCER=y
+# CONFIG_SND_SEQ_DUMMY is not set
+CONFIG_SND_OSSEMUL=y
+CONFIG_SND_MIXER_OSS=y
+CONFIG_SND_PCM_OSS=y
+CONFIG_SND_PCM_OSS_PLUGINS=y
+CONFIG_SND_SEQUENCER_OSS=y
+# CONFIG_SND_DYNAMIC_MINORS is not set
+CONFIG_SND_SUPPORT_OLD_API=y
+# CONFIG_SND_VERBOSE_PROCFS is not set
+# CONFIG_SND_VERBOSE_PRINTK is not set
+# CONFIG_SND_DEBUG is not set
+
+#
+# Generic devices
+#
+# CONFIG_SND_DUMMY is not set
+# CONFIG_SND_VIRMIDI is not set
+# CONFIG_SND_MTPAV is not set
+# CONFIG_SND_SERIAL_U16550 is not set
+# CONFIG_SND_MPU401 is not set
+
+#
+# ALSA ARM devices
+#
+# CONFIG_SND_AT91_AC97 is not set
+
+#
+# SPI devices
+#
+CONFIG_SND_AT73C213=y
+CONFIG_SND_AT73C213_TARGET_BITRATE=48000
+
+#
+# USB devices
+#
+# CONFIG_SND_USB_AUDIO is not set
+# CONFIG_SND_USB_CAIAQ is not set
+
+#
+# System on Chip audio support
+#
+# CONFIG_SND_SOC is not set
+
+#
+# SoC Audio support for SuperH
+#
+
+#
+# Open Sound System
+#
+# CONFIG_SOUND_PRIME is not set
+CONFIG_HID_SUPPORT=y
+CONFIG_HID=y
+# CONFIG_HID_DEBUG is not set
+# CONFIG_HIDRAW is not set
+
+#
+# USB Input Devices
+#
+CONFIG_USB_HID=y
+# CONFIG_USB_HIDINPUT_POWERBOOK is not set
+# CONFIG_HID_FF is not set
+# CONFIG_USB_HIDDEV is not set
+CONFIG_USB_SUPPORT=y
+CONFIG_USB_ARCH_HAS_HCD=y
+CONFIG_USB_ARCH_HAS_OHCI=y
+# CONFIG_USB_ARCH_HAS_EHCI is not set
+CONFIG_USB=y
+# CONFIG_USB_DEBUG is not set
+
+#
+# Miscellaneous USB options
+#
+CONFIG_USB_DEVICEFS=y
+# CONFIG_USB_DEVICE_CLASS is not set
+# CONFIG_USB_DYNAMIC_MINORS is not set
+# CONFIG_USB_SUSPEND is not set
+# CONFIG_USB_PERSIST is not set
+# CONFIG_USB_OTG is not set
+
+#
+# USB Host Controller Drivers
+#
+# CONFIG_USB_ISP116X_HCD is not set
+CONFIG_USB_OHCI_HCD=y
+# CONFIG_USB_OHCI_BIG_ENDIAN_DESC is not set
+# CONFIG_USB_OHCI_BIG_ENDIAN_MMIO is not set
+CONFIG_USB_OHCI_LITTLE_ENDIAN=y
+# CONFIG_USB_SL811_HCD is not set
+# CONFIG_USB_R8A66597_HCD is not set
+
+#
+# USB Device Class drivers
+#
+# CONFIG_USB_ACM is not set
+# CONFIG_USB_PRINTER is not set
+
+#
+# NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support'
+#
+
+#
+# may also be needed; see USB_STORAGE Help for more information
+#
+CONFIG_USB_STORAGE=y
+# CONFIG_USB_STORAGE_DEBUG is not set
+# CONFIG_USB_STORAGE_DATAFAB is not set
+# CONFIG_USB_STORAGE_FREECOM is not set
+# CONFIG_USB_STORAGE_ISD200 is not set
+# CONFIG_USB_STORAGE_DPCM is not set
+# CONFIG_USB_STORAGE_USBAT is not set
+# CONFIG_USB_STORAGE_SDDR09 is not set
+# CONFIG_USB_STORAGE_SDDR55 is not set
+# CONFIG_USB_STORAGE_JUMPSHOT is not set
+# CONFIG_USB_STORAGE_ALAUDA is not set
+# CONFIG_USB_STORAGE_KARMA is not set
+# CONFIG_USB_LIBUSUAL is not set
+
+#
+# USB Imaging devices
+#
+# CONFIG_USB_MDC800 is not set
+# CONFIG_USB_MICROTEK is not set
+CONFIG_USB_MON=y
+
+#
+# USB port drivers
+#
+
+#
+# USB Serial Converter support
+#
+# CONFIG_USB_SERIAL is not set
+
+#
+# USB Miscellaneous drivers
+#
+# CONFIG_USB_EMI62 is not set
+# CONFIG_USB_EMI26 is not set
+# CONFIG_USB_ADUTUX is not set
+# CONFIG_USB_AUERSWALD is not set
+# CONFIG_USB_RIO500 is not set
+# CONFIG_USB_LEGOTOWER is not set
+# CONFIG_USB_LCD is not set
+# CONFIG_USB_BERRY_CHARGE is not set
+# CONFIG_USB_LED is not set
+# CONFIG_USB_CYPRESS_CY7C63 is not set
+# CONFIG_USB_CYTHERM is not set
+# CONFIG_USB_PHIDGET is not set
+# CONFIG_USB_IDMOUSE is not set
+# CONFIG_USB_FTDI_ELAN is not set
+# CONFIG_USB_APPLEDISPLAY is not set
+# CONFIG_USB_LD is not set
+# CONFIG_USB_TRANCEVIBRATOR is not set
+# CONFIG_USB_IOWARRIOR is not set
+# CONFIG_USB_TEST is not set
+
+#
+# USB DSL modem support
+#
+
+#
+# USB Gadget Support
+#
+CONFIG_USB_GADGET=y
+# CONFIG_USB_GADGET_DEBUG_FILES is not set
+CONFIG_USB_GADGET_SELECTED=y
+# CONFIG_USB_GADGET_AMD5536UDC is not set
+# CONFIG_USB_GADGET_ATMEL_USBA is not set
+# CONFIG_USB_GADGET_FSL_USB2 is not set
+# CONFIG_USB_GADGET_NET2280 is not set
+# CONFIG_USB_GADGET_PXA2XX is not set
+# CONFIG_USB_GADGET_M66592 is not set
+# CONFIG_USB_GADGET_GOKU is not set
+# CONFIG_USB_GADGET_LH7A40X is not set
+# CONFIG_USB_GADGET_OMAP is not set
+# CONFIG_USB_GADGET_S3C2410 is not set
+CONFIG_USB_GADGET_AT91=y
+CONFIG_USB_AT91=y
+# CONFIG_USB_GADGET_DUMMY_HCD is not set
+# CONFIG_USB_GADGET_DUALSPEED is not set
+CONFIG_USB_ZERO=m
+# CONFIG_USB_ETH is not set
+CONFIG_USB_GADGETFS=m
+CONFIG_USB_FILE_STORAGE=m
+# CONFIG_USB_FILE_STORAGE_TEST is not set
+CONFIG_USB_G_SERIAL=m
+# CONFIG_USB_MIDI_GADGET is not set
+CONFIG_MMC=y
+# CONFIG_MMC_DEBUG is not set
+# CONFIG_MMC_UNSAFE_RESUME is not set
+
+#
+# MMC/SD Card Drivers
+#
+CONFIG_MMC_BLOCK=y
+CONFIG_MMC_BLOCK_BOUNCE=y
+# CONFIG_SDIO_UART is not set
+
+#
+# MMC/SD Host Controller Drivers
+#
+CONFIG_MMC_AT91=y
+# CONFIG_MMC_SPI is not set
+CONFIG_NEW_LEDS=y
+CONFIG_LEDS_CLASS=y
+
+#
+# LED drivers
+#
+CONFIG_LEDS_ATMEL_PWM=y
+CONFIG_LEDS_GPIO=y
+
+#
+# LED Triggers
+#
+CONFIG_LEDS_TRIGGERS=y
+CONFIG_LEDS_TRIGGER_TIMER=y
+CONFIG_LEDS_TRIGGER_HEARTBEAT=y
+CONFIG_RTC_LIB=y
+CONFIG_RTC_CLASS=y
+CONFIG_RTC_HCTOSYS=y
+CONFIG_RTC_HCTOSYS_DEVICE="rtc0"
+# CONFIG_RTC_DEBUG is not set
+
+#
+# RTC interfaces
+#
+CONFIG_RTC_INTF_SYSFS=y
+CONFIG_RTC_INTF_PROC=y
+CONFIG_RTC_INTF_DEV=y
+# CONFIG_RTC_INTF_DEV_UIE_EMUL is not set
+# CONFIG_RTC_DRV_TEST is not set
+
+#
+# SPI RTC drivers
+#
+# CONFIG_RTC_DRV_RS5C348 is not set
+# CONFIG_RTC_DRV_MAX6902 is not set
+
+#
+# Platform RTC drivers
+#
+# CONFIG_RTC_DRV_CMOS is not set
+# CONFIG_RTC_DRV_DS1553 is not set
+# CONFIG_RTC_DRV_STK17TA8 is not set
+# CONFIG_RTC_DRV_DS1742 is not set
+# CONFIG_RTC_DRV_M48T86 is not set
+# CONFIG_RTC_DRV_M48T59 is not set
+# CONFIG_RTC_DRV_V3020 is not set
+
+#
+# on-CPU RTC drivers
+#
+CONFIG_RTC_DRV_AT91SAM9=y
+CONFIG_RTC_DRV_AT91SAM9_RTT=0
+CONFIG_RTC_DRV_AT91SAM9_GPBR=0
+
+#
+# File systems
+#
+CONFIG_EXT2_FS=y
+# CONFIG_EXT2_FS_XATTR is not set
+# CONFIG_EXT2_FS_XIP is not set
+# CONFIG_EXT3_FS is not set
+# CONFIG_EXT4DEV_FS is not set
+# CONFIG_REISERFS_FS is not set
+# CONFIG_JFS_FS is not set
+# CONFIG_FS_POSIX_ACL is not set
+# CONFIG_XFS_FS is not set
+# CONFIG_GFS2_FS is not set
+# CONFIG_OCFS2_FS is not set
+# CONFIG_MINIX_FS is not set
+# CONFIG_ROMFS_FS is not set
+CONFIG_INOTIFY=y
+CONFIG_INOTIFY_USER=y
+# CONFIG_QUOTA is not set
+CONFIG_DNOTIFY=y
+# CONFIG_AUTOFS_FS is not set
+# CONFIG_AUTOFS4_FS is not set
+# CONFIG_FUSE_FS is not set
+
+#
+# CD-ROM/DVD Filesystems
+#
+# CONFIG_ISO9660_FS is not set
+# CONFIG_UDF_FS is not set
+
+#
+# DOS/FAT/NT Filesystems
+#
+CONFIG_FAT_FS=y
+CONFIG_MSDOS_FS=y
+CONFIG_VFAT_FS=y
+CONFIG_FAT_DEFAULT_CODEPAGE=437
+CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
+# CONFIG_NTFS_FS is not set
+
+#
+# Pseudo filesystems
+#
+CONFIG_PROC_FS=y
+CONFIG_PROC_SYSCTL=y
+CONFIG_SYSFS=y
+CONFIG_TMPFS=y
+# CONFIG_TMPFS_POSIX_ACL is not set
+# CONFIG_HUGETLB_PAGE is not set
+# CONFIG_CONFIGFS_FS is not set
+
+#
+# Miscellaneous filesystems
+#
+# CONFIG_ADFS_FS is not set
+# CONFIG_AFFS_FS is not set
+# CONFIG_HFS_FS is not set
+# CONFIG_HFSPLUS_FS is not set
+# CONFIG_BEFS_FS is not set
+# CONFIG_BFS_FS is not set
+# CONFIG_EFS_FS is not set
+CONFIG_JFFS2_FS=y
+CONFIG_JFFS2_FS_DEBUG=0
+CONFIG_JFFS2_FS_WRITEBUFFER=y
+# CONFIG_JFFS2_FS_WBUF_VERIFY is not set
+CONFIG_JFFS2_SUMMARY=y
+# CONFIG_JFFS2_FS_XATTR is not set
+# CONFIG_JFFS2_COMPRESSION_OPTIONS is not set
+CONFIG_JFFS2_ZLIB=y
+# CONFIG_JFFS2_LZO is not set
+CONFIG_JFFS2_RTIME=y
+# CONFIG_JFFS2_RUBIN is not set
+CONFIG_CRAMFS=y
+# CONFIG_VXFS_FS is not set
+# CONFIG_HPFS_FS is not set
+# CONFIG_QNX4FS_FS is not set
+# CONFIG_SYSV_FS is not set
+# CONFIG_UFS_FS is not set
+CONFIG_NETWORK_FILESYSTEMS=y
+CONFIG_NFS_FS=y
+CONFIG_NFS_V3=y
+# CONFIG_NFS_V3_ACL is not set
+# CONFIG_NFS_V4 is not set
+# CONFIG_NFS_DIRECTIO is not set
+# CONFIG_NFSD is not set
+CONFIG_ROOT_NFS=y
+CONFIG_LOCKD=y
+CONFIG_LOCKD_V4=y
+CONFIG_NFS_COMMON=y
+CONFIG_SUNRPC=y
+# CONFIG_SUNRPC_BIND34 is not set
+# CONFIG_RPCSEC_GSS_KRB5 is not set
+# CONFIG_RPCSEC_GSS_SPKM3 is not set
+# CONFIG_SMB_FS is not set
+# CONFIG_CIFS is not set
+# CONFIG_NCP_FS is not set
+# CONFIG_CODA_FS is not set
+# CONFIG_AFS_FS is not set
+
+#
+# Partition Types
+#
+# CONFIG_PARTITION_ADVANCED is not set
+CONFIG_MSDOS_PARTITION=y
+CONFIG_NLS=y
+CONFIG_NLS_DEFAULT="iso8859-1"
+CONFIG_NLS_CODEPAGE_437=y
+# CONFIG_NLS_CODEPAGE_737 is not set
+# CONFIG_NLS_CODEPAGE_775 is not set
+CONFIG_NLS_CODEPAGE_850=y
+# CONFIG_NLS_CODEPAGE_852 is not set
+# CONFIG_NLS_CODEPAGE_855 is not set
+# CONFIG_NLS_CODEPAGE_857 is not set
+# CONFIG_NLS_CODEPAGE_860 is not set
+# CONFIG_NLS_CODEPAGE_861 is not set
+# CONFIG_NLS_CODEPAGE_862 is not set
+# CONFIG_NLS_CODEPAGE_863 is not set
+# CONFIG_NLS_CODEPAGE_864 is not set
+# CONFIG_NLS_CODEPAGE_865 is not set
+# CONFIG_NLS_CODEPAGE_866 is not set
+# CONFIG_NLS_CODEPAGE_869 is not set
+# CONFIG_NLS_CODEPAGE_936 is not set
+# CONFIG_NLS_CODEPAGE_950 is not set
+# CONFIG_NLS_CODEPAGE_932 is not set
+# CONFIG_NLS_CODEPAGE_949 is not set
+# CONFIG_NLS_CODEPAGE_874 is not set
+# CONFIG_NLS_ISO8859_8 is not set
+# CONFIG_NLS_CODEPAGE_1250 is not set
+# CONFIG_NLS_CODEPAGE_1251 is not set
+# CONFIG_NLS_ASCII is not set
+CONFIG_NLS_ISO8859_1=y
+# CONFIG_NLS_ISO8859_2 is not set
+# CONFIG_NLS_ISO8859_3 is not set
+# CONFIG_NLS_ISO8859_4 is not set
+# CONFIG_NLS_ISO8859_5 is not set
+# CONFIG_NLS_ISO8859_6 is not set
+# CONFIG_NLS_ISO8859_7 is not set
+# CONFIG_NLS_ISO8859_9 is not set
+# CONFIG_NLS_ISO8859_13 is not set
+# CONFIG_NLS_ISO8859_14 is not set
+CONFIG_NLS_ISO8859_15=y
+# CONFIG_NLS_KOI8_R is not set
+# CONFIG_NLS_KOI8_U is not set
+CONFIG_NLS_UTF8=y
+# CONFIG_DLM is not set
+# CONFIG_INSTRUMENTATION is not set
+
+#
+# Kernel hacking
+#
+# CONFIG_PRINTK_TIME is not set
+# CONFIG_ENABLE_WARN_DEPRECATED is not set
+CONFIG_ENABLE_MUST_CHECK=y
+# CONFIG_MAGIC_SYSRQ is not set
+# CONFIG_UNUSED_SYMBOLS is not set
+# CONFIG_DEBUG_FS is not set
+# CONFIG_HEADERS_CHECK is not set
+# CONFIG_DEBUG_KERNEL is not set
+CONFIG_DEBUG_BUGVERBOSE=y
+CONFIG_FRAME_POINTER=y
+# CONFIG_SAMPLES is not set
+# CONFIG_DEBUG_USER is not set
+
+#
+# Security options
+#
+# CONFIG_KEYS is not set
+# CONFIG_SECURITY is not set
+# CONFIG_SECURITY_FILE_CAPABILITIES is not set
+# CONFIG_CRYPTO is not set
+
+#
+# Library routines
+#
+CONFIG_BITREVERSE=y
+# CONFIG_CRC_CCITT is not set
+# CONFIG_CRC16 is not set
+# CONFIG_CRC_ITU_T is not set
+CONFIG_CRC32=y
+# CONFIG_CRC7 is not set
+# CONFIG_LIBCRC32C is not set
+CONFIG_ZLIB_INFLATE=y
+CONFIG_ZLIB_DEFLATE=y
+CONFIG_PLIST=y
+CONFIG_HAS_IOMEM=y
+CONFIG_HAS_IOPORT=y

+ 0 - 1
arch/arm/configs/at91sam9rlek_defconfig

@@ -211,7 +211,6 @@ CONFIG_CPU_CP15_MMU=y
 #
 # CONFIG_TICK_ONESHOT is not set
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set

+ 0 - 1
arch/arm/configs/ateb9200_defconfig

@@ -171,7 +171,6 @@ CONFIG_AT91_CF=m
 # Kernel Features
 #
 CONFIG_PREEMPT=y
-CONFIG_NO_IDLE_HZ=y
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set

+ 0 - 1410
arch/arm/configs/cm_x270_defconfig

@@ -1,1410 +0,0 @@
-#
-# Automatically generated make config: don't edit
-# Linux kernel version: 2.6.22
-# Wed Jul 18 14:11:48 2007
-#
-CONFIG_ARM=y
-CONFIG_SYS_SUPPORTS_APM_EMULATION=y
-CONFIG_GENERIC_GPIO=y
-CONFIG_GENERIC_TIME=y
-# CONFIG_GENERIC_CLOCKEVENTS is not set
-CONFIG_MMU=y
-# CONFIG_NO_IOPORT is not set
-CONFIG_GENERIC_HARDIRQS=y
-CONFIG_STACKTRACE_SUPPORT=y
-CONFIG_LOCKDEP_SUPPORT=y
-CONFIG_TRACE_IRQFLAGS_SUPPORT=y
-CONFIG_HARDIRQS_SW_RESEND=y
-CONFIG_GENERIC_IRQ_PROBE=y
-CONFIG_RWSEM_GENERIC_SPINLOCK=y
-# CONFIG_ARCH_HAS_ILOG2_U32 is not set
-# CONFIG_ARCH_HAS_ILOG2_U64 is not set
-CONFIG_GENERIC_HWEIGHT=y
-CONFIG_GENERIC_CALIBRATE_DELAY=y
-CONFIG_ZONE_DMA=y
-CONFIG_ARCH_MTD_XIP=y
-CONFIG_VECTORS_BASE=0xffff0000
-CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"
-
-#
-# Code maturity level options
-#
-CONFIG_EXPERIMENTAL=y
-CONFIG_BROKEN_ON_SMP=y
-CONFIG_INIT_ENV_ARG_LIMIT=32
-
-#
-# General setup
-#
-CONFIG_LOCALVERSION=""
-# CONFIG_LOCALVERSION_AUTO is not set
-CONFIG_SWAP=y
-CONFIG_SYSVIPC=y
-CONFIG_SYSVIPC_SYSCTL=y
-# CONFIG_POSIX_MQUEUE is not set
-# CONFIG_BSD_PROCESS_ACCT is not set
-# CONFIG_TASKSTATS is not set
-# CONFIG_USER_NS is not set
-# CONFIG_AUDIT is not set
-CONFIG_IKCONFIG=y
-CONFIG_IKCONFIG_PROC=y
-CONFIG_LOG_BUF_SHIFT=17
-CONFIG_SYSFS_DEPRECATED=y
-# CONFIG_RELAY is not set
-CONFIG_BLK_DEV_INITRD=y
-CONFIG_INITRAMFS_SOURCE=""
-CONFIG_CC_OPTIMIZE_FOR_SIZE=y
-CONFIG_SYSCTL=y
-CONFIG_EMBEDDED=y
-CONFIG_UID16=y
-CONFIG_SYSCTL_SYSCALL=y
-CONFIG_KALLSYMS=y
-# CONFIG_KALLSYMS_ALL is not set
-# CONFIG_KALLSYMS_EXTRA_PASS is not set
-CONFIG_HOTPLUG=y
-CONFIG_PRINTK=y
-CONFIG_BUG=y
-CONFIG_ELF_CORE=y
-CONFIG_BASE_FULL=y
-CONFIG_FUTEX=y
-CONFIG_ANON_INODES=y
-# CONFIG_EPOLL is not set
-# CONFIG_SIGNALFD is not set
-# CONFIG_TIMERFD is not set
-# CONFIG_EVENTFD is not set
-CONFIG_SHMEM=y
-CONFIG_VM_EVENT_COUNTERS=y
-CONFIG_SLAB=y
-# CONFIG_SLUB is not set
-# CONFIG_SLOB is not set
-CONFIG_RT_MUTEXES=y
-# CONFIG_TINY_SHMEM is not set
-CONFIG_BASE_SMALL=0
-CONFIG_MODULES=y
-CONFIG_MODULE_UNLOAD=y
-CONFIG_MODULE_FORCE_UNLOAD=y
-# CONFIG_MODVERSIONS is not set
-# CONFIG_MODULE_SRCVERSION_ALL is not set
-CONFIG_KMOD=y
-CONFIG_BLOCK=y
-# CONFIG_LBD is not set
-# CONFIG_BLK_DEV_IO_TRACE is not set
-# CONFIG_LSF is not set
-# CONFIG_BLK_DEV_BSG is not set
-
-#
-# IO Schedulers
-#
-CONFIG_IOSCHED_NOOP=y
-CONFIG_IOSCHED_AS=y
-CONFIG_IOSCHED_DEADLINE=y
-CONFIG_IOSCHED_CFQ=y
-CONFIG_DEFAULT_AS=y
-# CONFIG_DEFAULT_DEADLINE is not set
-# CONFIG_DEFAULT_CFQ is not set
-# CONFIG_DEFAULT_NOOP is not set
-CONFIG_DEFAULT_IOSCHED="anticipatory"
-
-#
-# System Type
-#
-# CONFIG_ARCH_AAEC2000 is not set
-# CONFIG_ARCH_INTEGRATOR is not set
-# CONFIG_ARCH_REALVIEW is not set
-# CONFIG_ARCH_VERSATILE is not set
-# CONFIG_ARCH_AT91 is not set
-# CONFIG_ARCH_CLPS7500 is not set
-# CONFIG_ARCH_CLPS711X is not set
-# CONFIG_ARCH_CO285 is not set
-# CONFIG_ARCH_EBSA110 is not set
-# CONFIG_ARCH_EP93XX is not set
-# CONFIG_ARCH_FOOTBRIDGE is not set
-# CONFIG_ARCH_NETX is not set
-# CONFIG_ARCH_H720X is not set
-# CONFIG_ARCH_IMX is not set
-# CONFIG_ARCH_IOP13XX is not set
-# CONFIG_ARCH_IOP32X is not set
-# CONFIG_ARCH_IOP33X is not set
-# CONFIG_ARCH_IXP23XX is not set
-# CONFIG_ARCH_IXP2000 is not set
-# CONFIG_ARCH_IXP4XX is not set
-# CONFIG_ARCH_L7200 is not set
-# CONFIG_ARCH_KS8695 is not set
-# CONFIG_ARCH_NS9XXX is not set
-# CONFIG_ARCH_PNX4008 is not set
-CONFIG_ARCH_PXA=y
-# CONFIG_ARCH_RPC is not set
-# CONFIG_ARCH_SA1100 is not set
-# CONFIG_ARCH_S3C2410 is not set
-# CONFIG_ARCH_SHARK is not set
-# CONFIG_ARCH_LH7A40X is not set
-# CONFIG_ARCH_DAVINCI is not set
-# CONFIG_ARCH_OMAP is not set
-CONFIG_DMABOUNCE=y
-
-#
-# Intel PXA2xx Implementations
-#
-# CONFIG_ARCH_LUBBOCK is not set
-# CONFIG_MACH_LOGICPD_PXA270 is not set
-# CONFIG_MACH_MAINSTONE is not set
-# CONFIG_ARCH_PXA_IDP is not set
-# CONFIG_PXA_SHARPSL is not set
-# CONFIG_MACH_TRIZEPS4 is not set
-CONFIG_MACH_ARMCORE=y
-CONFIG_PXA27x=y
-
-#
-# Processor Type
-#
-CONFIG_CPU_32=y
-CONFIG_CPU_XSCALE=y
-CONFIG_CPU_32v5=y
-CONFIG_CPU_ABRT_EV5T=y
-CONFIG_CPU_CACHE_VIVT=y
-CONFIG_CPU_TLB_V4WBI=y
-CONFIG_CPU_CP15=y
-CONFIG_CPU_CP15_MMU=y
-
-#
-# Processor Features
-#
-CONFIG_ARM_THUMB=y
-# CONFIG_CPU_DCACHE_DISABLE is not set
-# CONFIG_OUTER_CACHE is not set
-CONFIG_IWMMXT=y
-CONFIG_XSCALE_PMU=y
-
-#
-# Bus support
-#
-CONFIG_PCI=y
-CONFIG_PCI_SYSCALL=y
-CONFIG_PCI_HOST_ITE8152=y
-# CONFIG_ARCH_SUPPORTS_MSI is not set
-# CONFIG_PCI_DEBUG is not set
-
-#
-# PCCARD (PCMCIA/CardBus) support
-#
-# CONFIG_PCCARD is not set
-
-#
-# Kernel Features
-#
-# CONFIG_TICK_ONESHOT is not set
-# CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
-CONFIG_HZ=100
-# CONFIG_AEABI is not set
-# CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
-CONFIG_SELECT_MEMORY_MODEL=y
-CONFIG_FLATMEM_MANUAL=y
-# CONFIG_DISCONTIGMEM_MANUAL is not set
-# CONFIG_SPARSEMEM_MANUAL is not set
-CONFIG_FLATMEM=y
-CONFIG_FLAT_NODE_MEM_MAP=y
-# CONFIG_SPARSEMEM_STATIC is not set
-CONFIG_SPLIT_PTLOCK_CPUS=4096
-# CONFIG_RESOURCES_64BIT is not set
-CONFIG_ZONE_DMA_FLAG=1
-CONFIG_BOUNCE=y
-CONFIG_VIRT_TO_BUS=y
-CONFIG_ALIGNMENT_TRAP=y
-
-#
-# Boot options
-#
-CONFIG_ZBOOT_ROM_TEXT=0x0
-CONFIG_ZBOOT_ROM_BSS=0x0
-CONFIG_CMDLINE=""
-# CONFIG_XIP_KERNEL is not set
-# CONFIG_KEXEC is not set
-
-#
-# Floating point emulation
-#
-
-#
-# At least one emulation must be selected
-#
-CONFIG_FPE_NWFPE=y
-# CONFIG_FPE_NWFPE_XP is not set
-# CONFIG_FPE_FASTFPE is not set
-
-#
-# Userspace binary formats
-#
-CONFIG_BINFMT_ELF=y
-# CONFIG_BINFMT_AOUT is not set
-# CONFIG_BINFMT_MISC is not set
-# CONFIG_ARTHUR is not set
-
-#
-# Power management options
-#
-CONFIG_PM=y
-# CONFIG_PM_LEGACY is not set
-# CONFIG_PM_DEBUG is not set
-# CONFIG_PM_SYSFS_DEPRECATED is not set
-# CONFIG_APM_EMULATION is not set
-
-#
-# Networking
-#
-CONFIG_NET=y
-
-#
-# Networking options
-#
-CONFIG_PACKET=y
-# CONFIG_PACKET_MMAP is not set
-CONFIG_UNIX=y
-CONFIG_XFRM=y
-# CONFIG_XFRM_USER is not set
-# CONFIG_XFRM_SUB_POLICY is not set
-# CONFIG_XFRM_MIGRATE is not set
-# CONFIG_NET_KEY is not set
-CONFIG_INET=y
-# CONFIG_IP_MULTICAST is not set
-# CONFIG_IP_ADVANCED_ROUTER is not set
-CONFIG_IP_FIB_HASH=y
-CONFIG_IP_PNP=y
-CONFIG_IP_PNP_DHCP=y
-CONFIG_IP_PNP_BOOTP=y
-# CONFIG_IP_PNP_RARP is not set
-# CONFIG_NET_IPIP is not set
-# CONFIG_NET_IPGRE is not set
-# CONFIG_ARPD is not set
-# CONFIG_SYN_COOKIES is not set
-# CONFIG_INET_AH is not set
-# CONFIG_INET_ESP is not set
-# CONFIG_INET_IPCOMP is not set
-# CONFIG_INET_XFRM_TUNNEL is not set
-# CONFIG_INET_TUNNEL is not set
-CONFIG_INET_XFRM_MODE_TRANSPORT=y
-CONFIG_INET_XFRM_MODE_TUNNEL=y
-CONFIG_INET_XFRM_MODE_BEET=y
-CONFIG_INET_DIAG=y
-CONFIG_INET_TCP_DIAG=y
-# CONFIG_TCP_CONG_ADVANCED is not set
-CONFIG_TCP_CONG_CUBIC=y
-CONFIG_DEFAULT_TCP_CONG="cubic"
-# CONFIG_TCP_MD5SIG is not set
-# CONFIG_IPV6 is not set
-# CONFIG_INET6_XFRM_TUNNEL is not set
-# CONFIG_INET6_TUNNEL is not set
-# CONFIG_NETWORK_SECMARK is not set
-# CONFIG_NETFILTER is not set
-# CONFIG_IP_DCCP is not set
-# CONFIG_IP_SCTP is not set
-# CONFIG_TIPC is not set
-# CONFIG_ATM is not set
-# CONFIG_BRIDGE is not set
-# CONFIG_VLAN_8021Q is not set
-# CONFIG_DECNET is not set
-# CONFIG_LLC2 is not set
-# CONFIG_IPX is not set
-# CONFIG_ATALK is not set
-# CONFIG_X25 is not set
-# CONFIG_LAPB is not set
-# CONFIG_ECONET is not set
-# CONFIG_WAN_ROUTER is not set
-
-#
-# QoS and/or fair queueing
-#
-# CONFIG_NET_SCHED is not set
-
-#
-# Network testing
-#
-# CONFIG_NET_PKTGEN is not set
-# CONFIG_HAMRADIO is not set
-# CONFIG_IRDA is not set
-# CONFIG_BT is not set
-# CONFIG_AF_RXRPC is not set
-
-#
-# Wireless
-#
-# CONFIG_CFG80211 is not set
-CONFIG_WIRELESS_EXT=y
-# CONFIG_MAC80211 is not set
-CONFIG_IEEE80211=m
-# CONFIG_IEEE80211_DEBUG is not set
-CONFIG_IEEE80211_CRYPT_WEP=m
-CONFIG_IEEE80211_CRYPT_CCMP=m
-# CONFIG_IEEE80211_CRYPT_TKIP is not set
-# CONFIG_IEEE80211_SOFTMAC is not set
-# CONFIG_RFKILL is not set
-# CONFIG_NET_9P is not set
-
-#
-# Device Drivers
-#
-
-#
-# Generic Driver Options
-#
-CONFIG_STANDALONE=y
-CONFIG_PREVENT_FIRMWARE_BUILD=y
-CONFIG_FW_LOADER=y
-# CONFIG_DEBUG_DRIVER is not set
-# CONFIG_DEBUG_DEVRES is not set
-# CONFIG_SYS_HYPERVISOR is not set
-# CONFIG_CONNECTOR is not set
-CONFIG_MTD=m
-# CONFIG_MTD_DEBUG is not set
-# CONFIG_MTD_CONCAT is not set
-CONFIG_MTD_PARTITIONS=y
-# CONFIG_MTD_REDBOOT_PARTS is not set
-# CONFIG_MTD_AFS_PARTS is not set
-
-#
-# User Modules And Translation Layers
-#
-CONFIG_MTD_CHAR=m
-CONFIG_MTD_BLKDEVS=m
-CONFIG_MTD_BLOCK=m
-# CONFIG_MTD_BLOCK_RO is not set
-# CONFIG_FTL is not set
-# CONFIG_NFTL is not set
-# CONFIG_INFTL is not set
-# CONFIG_RFD_FTL is not set
-# CONFIG_SSFDC is not set
-
-#
-# RAM/ROM/Flash chip drivers
-#
-# CONFIG_MTD_CFI is not set
-# CONFIG_MTD_JEDECPROBE is not set
-CONFIG_MTD_MAP_BANK_WIDTH_1=y
-CONFIG_MTD_MAP_BANK_WIDTH_2=y
-CONFIG_MTD_MAP_BANK_WIDTH_4=y
-# CONFIG_MTD_MAP_BANK_WIDTH_8 is not set
-# CONFIG_MTD_MAP_BANK_WIDTH_16 is not set
-# CONFIG_MTD_MAP_BANK_WIDTH_32 is not set
-CONFIG_MTD_CFI_I1=y
-CONFIG_MTD_CFI_I2=y
-# CONFIG_MTD_CFI_I4 is not set
-# CONFIG_MTD_CFI_I8 is not set
-# CONFIG_MTD_RAM is not set
-# CONFIG_MTD_ROM is not set
-# CONFIG_MTD_ABSENT is not set
-
-#
-# Mapping drivers for chip access
-#
-# CONFIG_MTD_COMPLEX_MAPPINGS is not set
-# CONFIG_MTD_SHARP_SL is not set
-# CONFIG_MTD_PLATRAM is not set
-
-#
-# Self-contained MTD device drivers
-#
-# CONFIG_MTD_PMC551 is not set
-# CONFIG_MTD_SLRAM is not set
-# CONFIG_MTD_PHRAM is not set
-# CONFIG_MTD_MTDRAM is not set
-# CONFIG_MTD_BLOCK2MTD is not set
-
-#
-# Disk-On-Chip Device Drivers
-#
-# CONFIG_MTD_DOC2000 is not set
-# CONFIG_MTD_DOC2001 is not set
-# CONFIG_MTD_DOC2001PLUS is not set
-CONFIG_MTD_NAND=m
-# CONFIG_MTD_NAND_VERIFY_WRITE is not set
-# CONFIG_MTD_NAND_ECC_SMC is not set
-# CONFIG_MTD_NAND_MUSEUM_IDS is not set
-# CONFIG_MTD_NAND_H1900 is not set
-CONFIG_MTD_NAND_IDS=m
-# CONFIG_MTD_NAND_DISKONCHIP is not set
-# CONFIG_MTD_NAND_SHARPSL is not set
-# CONFIG_MTD_NAND_CAFE is not set
-CONFIG_MTD_NAND_CM_X270=m
-# CONFIG_MTD_NAND_NANDSIM is not set
-# CONFIG_MTD_NAND_PLATFORM is not set
-# CONFIG_MTD_ONENAND is not set
-
-#
-# UBI - Unsorted block images
-#
-# CONFIG_MTD_UBI is not set
-# CONFIG_PARPORT is not set
-CONFIG_BLK_DEV=y
-# CONFIG_BLK_CPQ_DA is not set
-# CONFIG_BLK_CPQ_CISS_DA is not set
-# CONFIG_BLK_DEV_DAC960 is not set
-# CONFIG_BLK_DEV_UMEM is not set
-# CONFIG_BLK_DEV_COW_COMMON is not set
-CONFIG_BLK_DEV_LOOP=y
-# CONFIG_BLK_DEV_CRYPTOLOOP is not set
-# CONFIG_BLK_DEV_NBD is not set
-# CONFIG_BLK_DEV_SX8 is not set
-# CONFIG_BLK_DEV_UB is not set
-CONFIG_BLK_DEV_RAM=y
-CONFIG_BLK_DEV_RAM_COUNT=16
-CONFIG_BLK_DEV_RAM_SIZE=12000
-CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024
-# CONFIG_CDROM_PKTCDVD is not set
-# CONFIG_ATA_OVER_ETH is not set
-CONFIG_IDE=m
-CONFIG_IDE_MAX_HWIFS=4
-CONFIG_BLK_DEV_IDE=m
-
-#
-# Please see Documentation/ide.txt for help/info on IDE drives
-#
-# CONFIG_BLK_DEV_IDE_SATA is not set
-CONFIG_BLK_DEV_IDEDISK=m
-# CONFIG_IDEDISK_MULTI_MODE is not set
-CONFIG_BLK_DEV_IDECD=m
-# CONFIG_BLK_DEV_IDETAPE is not set
-# CONFIG_BLK_DEV_IDEFLOPPY is not set
-# CONFIG_BLK_DEV_IDESCSI is not set
-# CONFIG_IDE_TASK_IOCTL is not set
-CONFIG_IDE_PROC_FS=y
-
-#
-# IDE chipset support/bugfixes
-#
-# CONFIG_IDE_GENERIC is not set
-# CONFIG_BLK_DEV_IDEPCI is not set
-# CONFIG_IDEPCI_PCIBUS_ORDER is not set
-# CONFIG_IDE_ARM is not set
-# CONFIG_BLK_DEV_IDEDMA is not set
-# CONFIG_BLK_DEV_HD is not set
-
-#
-# SCSI device support
-#
-# CONFIG_RAID_ATTRS is not set
-CONFIG_SCSI=y
-CONFIG_SCSI_DMA=y
-# CONFIG_SCSI_TGT is not set
-# CONFIG_SCSI_NETLINK is not set
-# CONFIG_SCSI_PROC_FS is not set
-
-#
-# SCSI support type (disk, tape, CD-ROM)
-#
-CONFIG_BLK_DEV_SD=y
-# CONFIG_CHR_DEV_ST is not set
-# CONFIG_CHR_DEV_OSST is not set
-# CONFIG_BLK_DEV_SR is not set
-# CONFIG_CHR_DEV_SG is not set
-# CONFIG_CHR_DEV_SCH is not set
-
-#
-# Some SCSI devices (e.g. CD jukebox) support multiple LUNs
-#
-# CONFIG_SCSI_MULTI_LUN is not set
-# CONFIG_SCSI_CONSTANTS is not set
-# CONFIG_SCSI_LOGGING is not set
-# CONFIG_SCSI_SCAN_ASYNC is not set
-CONFIG_SCSI_WAIT_SCAN=m
-
-#
-# SCSI Transports
-#
-# CONFIG_SCSI_SPI_ATTRS is not set
-# CONFIG_SCSI_FC_ATTRS is not set
-# CONFIG_SCSI_ISCSI_ATTRS is not set
-# CONFIG_SCSI_SAS_ATTRS is not set
-# CONFIG_SCSI_SAS_LIBSAS is not set
-
-#
-# SCSI low-level drivers
-#
-# CONFIG_ISCSI_TCP is not set
-# CONFIG_BLK_DEV_3W_XXXX_RAID is not set
-# CONFIG_SCSI_3W_9XXX is not set
-# CONFIG_SCSI_ACARD is not set
-# CONFIG_SCSI_AACRAID is not set
-# CONFIG_SCSI_AIC7XXX is not set
-# CONFIG_SCSI_AIC7XXX_OLD is not set
-# CONFIG_SCSI_AIC79XX is not set
-# CONFIG_SCSI_AIC94XX is not set
-# CONFIG_SCSI_DPT_I2O is not set
-# CONFIG_SCSI_ARCMSR is not set
-# CONFIG_MEGARAID_NEWGEN is not set
-# CONFIG_MEGARAID_LEGACY is not set
-# CONFIG_MEGARAID_SAS is not set
-# CONFIG_SCSI_HPTIOP is not set
-# CONFIG_SCSI_DMX3191D is not set
-# CONFIG_SCSI_FUTURE_DOMAIN is not set
-# CONFIG_SCSI_IPS is not set
-# CONFIG_SCSI_INITIO is not set
-# CONFIG_SCSI_INIA100 is not set
-# CONFIG_SCSI_STEX is not set
-# CONFIG_SCSI_SYM53C8XX_2 is not set
-# CONFIG_SCSI_QLOGIC_1280 is not set
-# CONFIG_SCSI_QLA_FC is not set
-# CONFIG_SCSI_QLA_ISCSI is not set
-# CONFIG_SCSI_LPFC is not set
-# CONFIG_SCSI_DC395x is not set
-# CONFIG_SCSI_DC390T is not set
-# CONFIG_SCSI_NSP32 is not set
-# CONFIG_SCSI_DEBUG is not set
-# CONFIG_SCSI_SRP is not set
-# CONFIG_ATA is not set
-# CONFIG_MD is not set
-
-#
-# Fusion MPT device support
-#
-# CONFIG_FUSION is not set
-# CONFIG_FUSION_SPI is not set
-# CONFIG_FUSION_FC is not set
-# CONFIG_FUSION_SAS is not set
-
-#
-# IEEE 1394 (FireWire) support
-#
-# CONFIG_FIREWIRE is not set
-# CONFIG_IEEE1394 is not set
-# CONFIG_I2O is not set
-CONFIG_NETDEVICES=y
-# CONFIG_NETDEVICES_MULTIQUEUE is not set
-# CONFIG_DUMMY is not set
-# CONFIG_BONDING is not set
-# CONFIG_MACVLAN is not set
-# CONFIG_EQUALIZER is not set
-# CONFIG_TUN is not set
-# CONFIG_ARCNET is not set
-# CONFIG_PHYLIB is not set
-CONFIG_NET_ETHERNET=y
-CONFIG_MII=y
-# CONFIG_AX88796 is not set
-# CONFIG_HAPPYMEAL is not set
-# CONFIG_SUNGEM is not set
-# CONFIG_CASSINI is not set
-# CONFIG_NET_VENDOR_3COM is not set
-# CONFIG_SMC91X is not set
-CONFIG_DM9000=y
-# CONFIG_SMC911X is not set
-# CONFIG_NET_TULIP is not set
-# CONFIG_HP100 is not set
-CONFIG_NET_PCI=y
-# CONFIG_PCNET32 is not set
-# CONFIG_AMD8111_ETH is not set
-# CONFIG_ADAPTEC_STARFIRE is not set
-# CONFIG_B44 is not set
-# CONFIG_FORCEDETH is not set
-# CONFIG_DGRS is not set
-# CONFIG_EEPRO100 is not set
-# CONFIG_E100 is not set
-# CONFIG_FEALNX is not set
-# CONFIG_NATSEMI is not set
-# CONFIG_NE2K_PCI is not set
-# CONFIG_8139CP is not set
-CONFIG_8139TOO=m
-# CONFIG_8139TOO_PIO is not set
-# CONFIG_8139TOO_TUNE_TWISTER is not set
-# CONFIG_8139TOO_8129 is not set
-# CONFIG_8139_OLD_RX_RESET is not set
-# CONFIG_SIS900 is not set
-# CONFIG_EPIC100 is not set
-# CONFIG_SUNDANCE is not set
-# CONFIG_TLAN is not set
-# CONFIG_VIA_RHINE is not set
-# CONFIG_SC92031 is not set
-CONFIG_NETDEV_1000=y
-# CONFIG_ACENIC is not set
-# CONFIG_DL2K is not set
-# CONFIG_E1000 is not set
-# CONFIG_NS83820 is not set
-# CONFIG_HAMACHI is not set
-# CONFIG_YELLOWFIN is not set
-# CONFIG_R8169 is not set
-# CONFIG_SIS190 is not set
-# CONFIG_SKGE is not set
-# CONFIG_SKY2 is not set
-# CONFIG_VIA_VELOCITY is not set
-# CONFIG_TIGON3 is not set
-# CONFIG_BNX2 is not set
-# CONFIG_QLA3XXX is not set
-# CONFIG_ATL1 is not set
-CONFIG_NETDEV_10000=y
-# CONFIG_CHELSIO_T1 is not set
-# CONFIG_CHELSIO_T3 is not set
-# CONFIG_IXGB is not set
-# CONFIG_S2IO is not set
-# CONFIG_MYRI10GE is not set
-# CONFIG_NETXEN_NIC is not set
-# CONFIG_MLX4_CORE is not set
-# CONFIG_TR is not set
-
-#
-# Wireless LAN
-#
-# CONFIG_WLAN_PRE80211 is not set
-# CONFIG_WLAN_80211 is not set
-
-#
-# USB Network Adapters
-#
-# CONFIG_USB_CATC is not set
-# CONFIG_USB_KAWETH is not set
-# CONFIG_USB_PEGASUS is not set
-# CONFIG_USB_RTL8150 is not set
-# CONFIG_USB_USBNET_MII is not set
-# CONFIG_USB_USBNET is not set
-# CONFIG_WAN is not set
-# CONFIG_FDDI is not set
-# CONFIG_HIPPI is not set
-# CONFIG_PPP is not set
-# CONFIG_SLIP is not set
-# CONFIG_NET_FC is not set
-# CONFIG_SHAPER is not set
-# CONFIG_NETCONSOLE is not set
-# CONFIG_NETPOLL is not set
-# CONFIG_NET_POLL_CONTROLLER is not set
-# CONFIG_ISDN is not set
-
-#
-# Input device support
-#
-CONFIG_INPUT=y
-# CONFIG_INPUT_FF_MEMLESS is not set
-# CONFIG_INPUT_POLLDEV is not set
-
-#
-# Userland interfaces
-#
-# CONFIG_INPUT_MOUSEDEV is not set
-# CONFIG_INPUT_JOYDEV is not set
-# CONFIG_INPUT_TSDEV is not set
-CONFIG_INPUT_EVDEV=y
-# CONFIG_INPUT_EVBUG is not set
-
-#
-# Input Device Drivers
-#
-# CONFIG_INPUT_KEYBOARD is not set
-# CONFIG_INPUT_MOUSE is not set
-# CONFIG_INPUT_JOYSTICK is not set
-# CONFIG_INPUT_TABLET is not set
-CONFIG_INPUT_TOUCHSCREEN=y
-# CONFIG_TOUCHSCREEN_GUNZE is not set
-# CONFIG_TOUCHSCREEN_ELO is not set
-# CONFIG_TOUCHSCREEN_MTOUCH is not set
-# CONFIG_TOUCHSCREEN_MK712 is not set
-# CONFIG_TOUCHSCREEN_PENMOUNT is not set
-# CONFIG_TOUCHSCREEN_TOUCHRIGHT is not set
-# CONFIG_TOUCHSCREEN_TOUCHWIN is not set
-CONFIG_TOUCHSCREEN_UCB1400=m
-# CONFIG_TOUCHSCREEN_USB_COMPOSITE is not set
-# CONFIG_INPUT_MISC is not set
-
-#
-# Hardware I/O ports
-#
-# CONFIG_SERIO is not set
-# CONFIG_GAMEPORT is not set
-
-#
-# Character devices
-#
-CONFIG_VT=y
-CONFIG_VT_CONSOLE=y
-CONFIG_HW_CONSOLE=y
-# CONFIG_VT_HW_CONSOLE_BINDING is not set
-# CONFIG_SERIAL_NONSTANDARD is not set
-
-#
-# Serial drivers
-#
-# CONFIG_SERIAL_8250 is not set
-
-#
-# Non-8250 serial port support
-#
-CONFIG_SERIAL_PXA=y
-CONFIG_SERIAL_PXA_CONSOLE=y
-CONFIG_SERIAL_CORE=y
-CONFIG_SERIAL_CORE_CONSOLE=y
-# CONFIG_SERIAL_JSM is not set
-CONFIG_UNIX98_PTYS=y
-CONFIG_LEGACY_PTYS=y
-CONFIG_LEGACY_PTY_COUNT=256
-# CONFIG_IPMI_HANDLER is not set
-# CONFIG_WATCHDOG is not set
-CONFIG_HW_RANDOM=m
-# CONFIG_NVRAM is not set
-# CONFIG_R3964 is not set
-# CONFIG_APPLICOM is not set
-# CONFIG_DRM is not set
-# CONFIG_RAW_DRIVER is not set
-# CONFIG_TCG_TPM is not set
-CONFIG_DEVPORT=y
-# CONFIG_I2C is not set
-
-#
-# SPI support
-#
-# CONFIG_SPI is not set
-# CONFIG_SPI_MASTER is not set
-# CONFIG_W1 is not set
-# CONFIG_HWMON is not set
-CONFIG_MISC_DEVICES=y
-# CONFIG_PHANTOM is not set
-# CONFIG_EEPROM_93CX6 is not set
-# CONFIG_SGI_IOC4 is not set
-# CONFIG_TIFM_CORE is not set
-
-#
-# Multifunction device drivers
-#
-# CONFIG_MFD_SM501 is not set
-
-#
-# LED devices
-#
-CONFIG_NEW_LEDS=y
-CONFIG_LEDS_CLASS=y
-
-#
-# LED drivers
-#
-CONFIG_LEDS_CM_X270=y
-
-#
-# LED Triggers
-#
-CONFIG_LEDS_TRIGGERS=y
-# CONFIG_LEDS_TRIGGER_TIMER is not set
-# CONFIG_LEDS_TRIGGER_IDE_DISK is not set
-CONFIG_LEDS_TRIGGER_HEARTBEAT=y
-
-#
-# Multimedia devices
-#
-# CONFIG_VIDEO_DEV is not set
-# CONFIG_DVB_CORE is not set
-CONFIG_DAB=y
-# CONFIG_USB_DABUSB is not set
-
-#
-# Graphics support
-#
-# CONFIG_BACKLIGHT_LCD_SUPPORT is not set
-
-#
-# Display device support
-#
-# CONFIG_DISPLAY_SUPPORT is not set
-# CONFIG_VGASTATE is not set
-CONFIG_FB=y
-# CONFIG_FIRMWARE_EDID is not set
-# CONFIG_FB_DDC is not set
-CONFIG_FB_CFB_FILLRECT=y
-CONFIG_FB_CFB_COPYAREA=y
-CONFIG_FB_CFB_IMAGEBLIT=y
-# CONFIG_FB_SYS_FILLRECT is not set
-# CONFIG_FB_SYS_COPYAREA is not set
-# CONFIG_FB_SYS_IMAGEBLIT is not set
-# CONFIG_FB_SYS_FOPS is not set
-CONFIG_FB_DEFERRED_IO=y
-# CONFIG_FB_SVGALIB is not set
-# CONFIG_FB_MACMODES is not set
-# CONFIG_FB_BACKLIGHT is not set
-# CONFIG_FB_MODE_HELPERS is not set
-# CONFIG_FB_TILEBLITTING is not set
-
-#
-# Frame buffer hardware drivers
-#
-# CONFIG_FB_CIRRUS is not set
-# CONFIG_FB_PM2 is not set
-# CONFIG_FB_CYBER2000 is not set
-# CONFIG_FB_ASILIANT is not set
-# CONFIG_FB_IMSTT is not set
-# CONFIG_FB_S1D13XXX is not set
-# CONFIG_FB_NVIDIA is not set
-# CONFIG_FB_RIVA is not set
-# CONFIG_FB_MATROX is not set
-# CONFIG_FB_RADEON is not set
-# CONFIG_FB_ATY128 is not set
-# CONFIG_FB_ATY is not set
-# CONFIG_FB_S3 is not set
-# CONFIG_FB_SAVAGE is not set
-# CONFIG_FB_SIS is not set
-# CONFIG_FB_NEOMAGIC is not set
-# CONFIG_FB_KYRO is not set
-# CONFIG_FB_3DFX is not set
-# CONFIG_FB_VOODOO1 is not set
-# CONFIG_FB_VT8623 is not set
-# CONFIG_FB_TRIDENT is not set
-# CONFIG_FB_ARK is not set
-# CONFIG_FB_PM3 is not set
-CONFIG_FB_PXA=y
-# CONFIG_FB_PXA_PARAMETERS is not set
-CONFIG_FB_MBX=m
-# CONFIG_FB_VIRTUAL is not set
-
-#
-# Console display driver support
-#
-# CONFIG_VGA_CONSOLE is not set
-CONFIG_DUMMY_CONSOLE=y
-CONFIG_FRAMEBUFFER_CONSOLE=y
-# CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY is not set
-# CONFIG_FRAMEBUFFER_CONSOLE_ROTATION is not set
-# CONFIG_FONTS is not set
-CONFIG_FONT_8x8=y
-CONFIG_FONT_8x16=y
-CONFIG_LOGO=y
-CONFIG_LOGO_LINUX_MONO=y
-CONFIG_LOGO_LINUX_VGA16=y
-CONFIG_LOGO_LINUX_CLUT224=y
-
-#
-# Sound
-#
-CONFIG_SOUND=m
-
-#
-# Advanced Linux Sound Architecture
-#
-CONFIG_SND=m
-CONFIG_SND_TIMER=m
-CONFIG_SND_PCM=m
-# CONFIG_SND_SEQUENCER is not set
-CONFIG_SND_OSSEMUL=y
-CONFIG_SND_MIXER_OSS=m
-CONFIG_SND_PCM_OSS=m
-CONFIG_SND_PCM_OSS_PLUGINS=y
-# CONFIG_SND_DYNAMIC_MINORS is not set
-CONFIG_SND_SUPPORT_OLD_API=y
-CONFIG_SND_VERBOSE_PROCFS=y
-# CONFIG_SND_VERBOSE_PRINTK is not set
-# CONFIG_SND_DEBUG is not set
-
-#
-# Generic devices
-#
-CONFIG_SND_AC97_CODEC=m
-# CONFIG_SND_DUMMY is not set
-# CONFIG_SND_MTPAV is not set
-# CONFIG_SND_SERIAL_U16550 is not set
-# CONFIG_SND_MPU401 is not set
-
-#
-# PCI devices
-#
-# CONFIG_SND_AD1889 is not set
-# CONFIG_SND_ALS300 is not set
-# CONFIG_SND_ALI5451 is not set
-# CONFIG_SND_ATIIXP is not set
-# CONFIG_SND_ATIIXP_MODEM is not set
-# CONFIG_SND_AU8810 is not set
-# CONFIG_SND_AU8820 is not set
-# CONFIG_SND_AU8830 is not set
-# CONFIG_SND_AZT3328 is not set
-# CONFIG_SND_BT87X is not set
-# CONFIG_SND_CA0106 is not set
-# CONFIG_SND_CMIPCI is not set
-# CONFIG_SND_CS4281 is not set
-# CONFIG_SND_CS46XX is not set
-# CONFIG_SND_DARLA20 is not set
-# CONFIG_SND_GINA20 is not set
-# CONFIG_SND_LAYLA20 is not set
-# CONFIG_SND_DARLA24 is not set
-# CONFIG_SND_GINA24 is not set
-# CONFIG_SND_LAYLA24 is not set
-# CONFIG_SND_MONA is not set
-# CONFIG_SND_MIA is not set
-# CONFIG_SND_ECHO3G is not set
-# CONFIG_SND_INDIGO is not set
-# CONFIG_SND_INDIGOIO is not set
-# CONFIG_SND_INDIGODJ is not set
-# CONFIG_SND_EMU10K1 is not set
-# CONFIG_SND_EMU10K1X is not set
-# CONFIG_SND_ENS1370 is not set
-# CONFIG_SND_ENS1371 is not set
-# CONFIG_SND_ES1938 is not set
-# CONFIG_SND_ES1968 is not set
-# CONFIG_SND_FM801 is not set
-# CONFIG_SND_HDA_INTEL is not set
-# CONFIG_SND_HDSP is not set
-# CONFIG_SND_HDSPM is not set
-# CONFIG_SND_ICE1712 is not set
-# CONFIG_SND_ICE1724 is not set
-# CONFIG_SND_INTEL8X0 is not set
-# CONFIG_SND_INTEL8X0M is not set
-# CONFIG_SND_KORG1212 is not set
-# CONFIG_SND_MAESTRO3 is not set
-# CONFIG_SND_MIXART is not set
-# CONFIG_SND_NM256 is not set
-# CONFIG_SND_PCXHR is not set
-# CONFIG_SND_RIPTIDE is not set
-# CONFIG_SND_RME32 is not set
-# CONFIG_SND_RME96 is not set
-# CONFIG_SND_RME9652 is not set
-# CONFIG_SND_SONICVIBES is not set
-# CONFIG_SND_TRIDENT is not set
-# CONFIG_SND_VIA82XX is not set
-# CONFIG_SND_VIA82XX_MODEM is not set
-# CONFIG_SND_VX222 is not set
-# CONFIG_SND_YMFPCI is not set
-# CONFIG_SND_AC97_POWER_SAVE is not set
-
-#
-# ALSA ARM devices
-#
-CONFIG_SND_PXA2XX_PCM=m
-CONFIG_SND_PXA2XX_AC97=m
-
-#
-# USB devices
-#
-# CONFIG_SND_USB_AUDIO is not set
-# CONFIG_SND_USB_CAIAQ is not set
-
-#
-# System on Chip audio support
-#
-# CONFIG_SND_SOC is not set
-
-#
-# Open Sound System
-#
-# CONFIG_SOUND_PRIME is not set
-CONFIG_AC97_BUS=m
-CONFIG_HID_SUPPORT=y
-CONFIG_HID=y
-# CONFIG_HID_DEBUG is not set
-
-#
-# USB Input Devices
-#
-CONFIG_USB_HID=y
-# CONFIG_USB_HIDINPUT_POWERBOOK is not set
-# CONFIG_HID_FF is not set
-# CONFIG_USB_HIDDEV is not set
-CONFIG_USB_SUPPORT=y
-CONFIG_USB_ARCH_HAS_HCD=y
-CONFIG_USB_ARCH_HAS_OHCI=y
-CONFIG_USB_ARCH_HAS_EHCI=y
-CONFIG_USB=y
-# CONFIG_USB_DEBUG is not set
-
-#
-# Miscellaneous USB options
-#
-CONFIG_USB_DEVICEFS=y
-# CONFIG_USB_DEVICE_CLASS is not set
-# CONFIG_USB_DYNAMIC_MINORS is not set
-# CONFIG_USB_SUSPEND is not set
-# CONFIG_USB_PERSIST is not set
-# CONFIG_USB_OTG is not set
-
-#
-# USB Host Controller Drivers
-#
-# CONFIG_USB_EHCI_HCD is not set
-# CONFIG_USB_ISP116X_HCD is not set
-CONFIG_USB_OHCI_HCD=y
-# CONFIG_USB_OHCI_BIG_ENDIAN_DESC is not set
-# CONFIG_USB_OHCI_BIG_ENDIAN_MMIO is not set
-CONFIG_USB_OHCI_LITTLE_ENDIAN=y
-# CONFIG_USB_UHCI_HCD is not set
-# CONFIG_USB_SL811_HCD is not set
-# CONFIG_USB_R8A66597_HCD is not set
-
-#
-# USB Device Class drivers
-#
-# CONFIG_USB_ACM is not set
-# CONFIG_USB_PRINTER is not set
-
-#
-# NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support'
-#
-
-#
-# may also be needed; see USB_STORAGE Help for more information
-#
-CONFIG_USB_STORAGE=y
-# CONFIG_USB_STORAGE_DEBUG is not set
-# CONFIG_USB_STORAGE_DATAFAB is not set
-# CONFIG_USB_STORAGE_FREECOM is not set
-# CONFIG_USB_STORAGE_DPCM is not set
-# CONFIG_USB_STORAGE_USBAT is not set
-# CONFIG_USB_STORAGE_SDDR09 is not set
-# CONFIG_USB_STORAGE_SDDR55 is not set
-# CONFIG_USB_STORAGE_JUMPSHOT is not set
-# CONFIG_USB_STORAGE_ALAUDA is not set
-# CONFIG_USB_STORAGE_KARMA is not set
-# CONFIG_USB_LIBUSUAL is not set
-
-#
-# USB Imaging devices
-#
-# CONFIG_USB_MDC800 is not set
-# CONFIG_USB_MICROTEK is not set
-CONFIG_USB_MON=y
-
-#
-# USB port drivers
-#
-
-#
-# USB Serial Converter support
-#
-# CONFIG_USB_SERIAL is not set
-
-#
-# USB Miscellaneous drivers
-#
-# CONFIG_USB_EMI62 is not set
-# CONFIG_USB_EMI26 is not set
-# CONFIG_USB_ADUTUX is not set
-# CONFIG_USB_AUERSWALD is not set
-# CONFIG_USB_RIO500 is not set
-# CONFIG_USB_LEGOTOWER is not set
-# CONFIG_USB_LCD is not set
-# CONFIG_USB_BERRY_CHARGE is not set
-# CONFIG_USB_LED is not set
-# CONFIG_USB_CYPRESS_CY7C63 is not set
-# CONFIG_USB_CYTHERM is not set
-# CONFIG_USB_PHIDGET is not set
-# CONFIG_USB_IDMOUSE is not set
-# CONFIG_USB_FTDI_ELAN is not set
-# CONFIG_USB_APPLEDISPLAY is not set
-# CONFIG_USB_LD is not set
-# CONFIG_USB_TRANCEVIBRATOR is not set
-# CONFIG_USB_IOWARRIOR is not set
-# CONFIG_USB_TEST is not set
-
-#
-# USB DSL modem support
-#
-
-#
-# USB Gadget Support
-#
-# CONFIG_USB_GADGET is not set
-CONFIG_MMC=m
-# CONFIG_MMC_DEBUG is not set
-# CONFIG_MMC_UNSAFE_RESUME is not set
-
-#
-# MMC/SD Card Drivers
-#
-CONFIG_MMC_BLOCK=m
-CONFIG_MMC_BLOCK_BOUNCE=y
-
-#
-# MMC/SD Host Controller Drivers
-#
-CONFIG_MMC_PXA=m
-# CONFIG_MMC_SDHCI is not set
-# CONFIG_MMC_TIFM_SD is not set
-
-#
-# Real Time Clock
-#
-CONFIG_RTC_LIB=y
-CONFIG_RTC_CLASS=y
-CONFIG_RTC_HCTOSYS=y
-CONFIG_RTC_HCTOSYS_DEVICE="rtc0"
-# CONFIG_RTC_DEBUG is not set
-
-#
-# RTC interfaces
-#
-CONFIG_RTC_INTF_SYSFS=y
-CONFIG_RTC_INTF_PROC=y
-CONFIG_RTC_INTF_DEV=y
-# CONFIG_RTC_INTF_DEV_UIE_EMUL is not set
-# CONFIG_RTC_DRV_TEST is not set
-
-#
-# Platform RTC drivers
-#
-# CONFIG_RTC_DRV_CMOS is not set
-# CONFIG_RTC_DRV_DS1553 is not set
-# CONFIG_RTC_DRV_DS1742 is not set
-# CONFIG_RTC_DRV_M48T86 is not set
-# CONFIG_RTC_DRV_M48T59 is not set
-CONFIG_RTC_DRV_V3020=y
-
-#
-# on-CPU RTC drivers
-#
-CONFIG_RTC_DRV_SA1100=y
-
-#
-# DMA Engine support
-#
-# CONFIG_DMA_ENGINE is not set
-
-#
-# DMA Clients
-#
-
-#
-# DMA Devices
-#
-
-#
-# File systems
-#
-CONFIG_EXT2_FS=y
-# CONFIG_EXT2_FS_XATTR is not set
-# CONFIG_EXT2_FS_XIP is not set
-CONFIG_EXT3_FS=y
-CONFIG_EXT3_FS_XATTR=y
-# CONFIG_EXT3_FS_POSIX_ACL is not set
-# CONFIG_EXT3_FS_SECURITY is not set
-# CONFIG_EXT4DEV_FS is not set
-CONFIG_JBD=y
-# CONFIG_JBD_DEBUG is not set
-CONFIG_FS_MBCACHE=y
-# CONFIG_REISERFS_FS is not set
-# CONFIG_JFS_FS is not set
-# CONFIG_FS_POSIX_ACL is not set
-# CONFIG_XFS_FS is not set
-# CONFIG_GFS2_FS is not set
-# CONFIG_OCFS2_FS is not set
-# CONFIG_MINIX_FS is not set
-# CONFIG_ROMFS_FS is not set
-CONFIG_INOTIFY=y
-CONFIG_INOTIFY_USER=y
-# CONFIG_QUOTA is not set
-CONFIG_DNOTIFY=y
-# CONFIG_AUTOFS_FS is not set
-# CONFIG_AUTOFS4_FS is not set
-# CONFIG_FUSE_FS is not set
-
-#
-# CD-ROM/DVD Filesystems
-#
-# CONFIG_ISO9660_FS is not set
-# CONFIG_UDF_FS is not set
-
-#
-# DOS/FAT/NT Filesystems
-#
-CONFIG_FAT_FS=y
-CONFIG_MSDOS_FS=y
-CONFIG_VFAT_FS=y
-CONFIG_FAT_DEFAULT_CODEPAGE=437
-CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
-# CONFIG_NTFS_FS is not set
-
-#
-# Pseudo filesystems
-#
-CONFIG_PROC_FS=y
-CONFIG_PROC_SYSCTL=y
-CONFIG_SYSFS=y
-CONFIG_TMPFS=y
-# CONFIG_TMPFS_POSIX_ACL is not set
-# CONFIG_HUGETLB_PAGE is not set
-CONFIG_RAMFS=y
-# CONFIG_CONFIGFS_FS is not set
-
-#
-# Miscellaneous filesystems
-#
-# CONFIG_ADFS_FS is not set
-# CONFIG_AFFS_FS is not set
-# CONFIG_HFS_FS is not set
-# CONFIG_HFSPLUS_FS is not set
-# CONFIG_BEFS_FS is not set
-# CONFIG_BFS_FS is not set
-# CONFIG_EFS_FS is not set
-# CONFIG_JFFS2_FS is not set
-# CONFIG_CRAMFS is not set
-# CONFIG_VXFS_FS is not set
-# CONFIG_HPFS_FS is not set
-# CONFIG_QNX4FS_FS is not set
-# CONFIG_SYSV_FS is not set
-# CONFIG_UFS_FS is not set
-
-#
-# Network File Systems
-#
-CONFIG_NFS_FS=y
-CONFIG_NFS_V3=y
-# CONFIG_NFS_V3_ACL is not set
-# CONFIG_NFS_V4 is not set
-# CONFIG_NFS_DIRECTIO is not set
-# CONFIG_NFSD is not set
-CONFIG_ROOT_NFS=y
-CONFIG_LOCKD=y
-CONFIG_LOCKD_V4=y
-CONFIG_NFS_COMMON=y
-CONFIG_SUNRPC=y
-# CONFIG_SUNRPC_BIND34 is not set
-# CONFIG_RPCSEC_GSS_KRB5 is not set
-# CONFIG_RPCSEC_GSS_SPKM3 is not set
-CONFIG_SMB_FS=y
-# CONFIG_SMB_NLS_DEFAULT is not set
-# CONFIG_CIFS is not set
-# CONFIG_NCP_FS is not set
-# CONFIG_CODA_FS is not set
-# CONFIG_AFS_FS is not set
-
-#
-# Partition Types
-#
-# CONFIG_PARTITION_ADVANCED is not set
-CONFIG_MSDOS_PARTITION=y
-
-#
-# Native Language Support
-#
-CONFIG_NLS=y
-CONFIG_NLS_DEFAULT="iso8859-1"
-CONFIG_NLS_CODEPAGE_437=y
-# CONFIG_NLS_CODEPAGE_737 is not set
-# CONFIG_NLS_CODEPAGE_775 is not set
-# CONFIG_NLS_CODEPAGE_850 is not set
-# CONFIG_NLS_CODEPAGE_852 is not set
-# CONFIG_NLS_CODEPAGE_855 is not set
-# CONFIG_NLS_CODEPAGE_857 is not set
-# CONFIG_NLS_CODEPAGE_860 is not set
-# CONFIG_NLS_CODEPAGE_861 is not set
-# CONFIG_NLS_CODEPAGE_862 is not set
-# CONFIG_NLS_CODEPAGE_863 is not set
-# CONFIG_NLS_CODEPAGE_864 is not set
-# CONFIG_NLS_CODEPAGE_865 is not set
-# CONFIG_NLS_CODEPAGE_866 is not set
-# CONFIG_NLS_CODEPAGE_869 is not set
-# CONFIG_NLS_CODEPAGE_936 is not set
-# CONFIG_NLS_CODEPAGE_950 is not set
-# CONFIG_NLS_CODEPAGE_932 is not set
-# CONFIG_NLS_CODEPAGE_949 is not set
-# CONFIG_NLS_CODEPAGE_874 is not set
-# CONFIG_NLS_ISO8859_8 is not set
-# CONFIG_NLS_CODEPAGE_1250 is not set
-# CONFIG_NLS_CODEPAGE_1251 is not set
-# CONFIG_NLS_ASCII is not set
-CONFIG_NLS_ISO8859_1=y
-# CONFIG_NLS_ISO8859_2 is not set
-# CONFIG_NLS_ISO8859_3 is not set
-# CONFIG_NLS_ISO8859_4 is not set
-# CONFIG_NLS_ISO8859_5 is not set
-# CONFIG_NLS_ISO8859_6 is not set
-# CONFIG_NLS_ISO8859_7 is not set
-# CONFIG_NLS_ISO8859_9 is not set
-# CONFIG_NLS_ISO8859_13 is not set
-# CONFIG_NLS_ISO8859_14 is not set
-# CONFIG_NLS_ISO8859_15 is not set
-# CONFIG_NLS_KOI8_R is not set
-# CONFIG_NLS_KOI8_U is not set
-# CONFIG_NLS_UTF8 is not set
-
-#
-# Distributed Lock Manager
-#
-# CONFIG_DLM is not set
-
-#
-# Profiling support
-#
-# CONFIG_PROFILING is not set
-
-#
-# Kernel hacking
-#
-# CONFIG_PRINTK_TIME is not set
-CONFIG_ENABLE_MUST_CHECK=y
-CONFIG_MAGIC_SYSRQ=y
-# CONFIG_UNUSED_SYMBOLS is not set
-# CONFIG_DEBUG_FS is not set
-# CONFIG_HEADERS_CHECK is not set
-CONFIG_DEBUG_KERNEL=y
-# CONFIG_DEBUG_SHIRQ is not set
-# CONFIG_DETECT_SOFTLOCKUP is not set
-CONFIG_SCHED_DEBUG=y
-# CONFIG_SCHEDSTATS is not set
-# CONFIG_TIMER_STATS is not set
-# CONFIG_DEBUG_SLAB is not set
-# CONFIG_DEBUG_RT_MUTEXES is not set
-# CONFIG_RT_MUTEX_TESTER is not set
-# CONFIG_DEBUG_SPINLOCK is not set
-# CONFIG_DEBUG_MUTEXES is not set
-# CONFIG_DEBUG_LOCK_ALLOC is not set
-# CONFIG_PROVE_LOCKING is not set
-# CONFIG_DEBUG_SPINLOCK_SLEEP is not set
-# CONFIG_DEBUG_LOCKING_API_SELFTESTS is not set
-# CONFIG_DEBUG_KOBJECT is not set
-# CONFIG_DEBUG_BUGVERBOSE is not set
-CONFIG_DEBUG_INFO=y
-# CONFIG_DEBUG_VM is not set
-# CONFIG_DEBUG_LIST is not set
-CONFIG_FRAME_POINTER=y
-CONFIG_FORCED_INLINING=y
-# CONFIG_RCU_TORTURE_TEST is not set
-# CONFIG_FAULT_INJECTION is not set
-CONFIG_DEBUG_USER=y
-CONFIG_DEBUG_ERRORS=y
-CONFIG_DEBUG_LL=y
-# CONFIG_DEBUG_ICEDCC is not set
-
-#
-# Security options
-#
-# CONFIG_KEYS is not set
-# CONFIG_SECURITY is not set
-CONFIG_CRYPTO=y
-CONFIG_CRYPTO_ALGAPI=m
-CONFIG_CRYPTO_BLKCIPHER=m
-CONFIG_CRYPTO_MANAGER=m
-# CONFIG_CRYPTO_HMAC is not set
-# CONFIG_CRYPTO_XCBC is not set
-# CONFIG_CRYPTO_NULL is not set
-# CONFIG_CRYPTO_MD4 is not set
-# CONFIG_CRYPTO_MD5 is not set
-# CONFIG_CRYPTO_SHA1 is not set
-# CONFIG_CRYPTO_SHA256 is not set
-# CONFIG_CRYPTO_SHA512 is not set
-# CONFIG_CRYPTO_WP512 is not set
-# CONFIG_CRYPTO_TGR192 is not set
-# CONFIG_CRYPTO_GF128MUL is not set
-CONFIG_CRYPTO_ECB=m
-CONFIG_CRYPTO_CBC=m
-CONFIG_CRYPTO_PCBC=m
-# CONFIG_CRYPTO_LRW is not set
-# CONFIG_CRYPTO_CRYPTD is not set
-# CONFIG_CRYPTO_DES is not set
-# CONFIG_CRYPTO_FCRYPT is not set
-# CONFIG_CRYPTO_BLOWFISH is not set
-# CONFIG_CRYPTO_TWOFISH is not set
-# CONFIG_CRYPTO_SERPENT is not set
-CONFIG_CRYPTO_AES=m
-# CONFIG_CRYPTO_CAST5 is not set
-# CONFIG_CRYPTO_CAST6 is not set
-# CONFIG_CRYPTO_TEA is not set
-CONFIG_CRYPTO_ARC4=m
-# CONFIG_CRYPTO_KHAZAD is not set
-# CONFIG_CRYPTO_ANUBIS is not set
-# CONFIG_CRYPTO_DEFLATE is not set
-# CONFIG_CRYPTO_MICHAEL_MIC is not set
-# CONFIG_CRYPTO_CRC32C is not set
-# CONFIG_CRYPTO_CAMELLIA is not set
-# CONFIG_CRYPTO_TEST is not set
-CONFIG_CRYPTO_HW=y
-
-#
-# Library routines
-#
-CONFIG_BITREVERSE=y
-# CONFIG_CRC_CCITT is not set
-# CONFIG_CRC16 is not set
-# CONFIG_CRC_ITU_T is not set
-CONFIG_CRC32=y
-# CONFIG_CRC7 is not set
-# CONFIG_LIBCRC32C is not set
-CONFIG_PLIST=y
-CONFIG_HAS_IOMEM=y
-CONFIG_HAS_IOPORT=y
-CONFIG_HAS_DMA=y

+ 0 - 1
arch/arm/configs/collie_defconfig

@@ -166,7 +166,6 @@ CONFIG_PCMCIA_SA1100=y
 # Kernel Features
 #
 # CONFIG_PREEMPT is not set
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 CONFIG_ARCH_DISCONTIGMEM_ENABLE=y

+ 0 - 1
arch/arm/configs/corgi_defconfig

@@ -165,7 +165,6 @@ CONFIG_PCMCIA_PXA2XX=y
 # Kernel Features
 #
 CONFIG_PREEMPT=y
-# CONFIG_NO_IDLE_HZ is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set
 CONFIG_SELECT_MEMORY_MODEL=y
 CONFIG_FLATMEM_MANUAL=y

+ 0 - 1
arch/arm/configs/ecbat91_defconfig

@@ -230,7 +230,6 @@ CONFIG_AT91_CF=y
 #
 # CONFIG_TICK_ONESHOT is not set
 CONFIG_PREEMPT=y
-# CONFIG_NO_IDLE_HZ is not set
 CONFIG_HZ=100
 # CONFIG_AEABI is not set
 # CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set

部分文件因为文件数量过多而无法显示