|
@@ -684,6 +684,8 @@ int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
|
|
bh = bh->b_this_page, block_start += bsize) {
|
|
bh = bh->b_this_page, block_start += bsize) {
|
|
block_end = block_start + bsize;
|
|
block_end = block_start + bsize;
|
|
|
|
|
|
|
|
+ clear_buffer_new(bh);
|
|
|
|
+
|
|
/*
|
|
/*
|
|
* Ignore blocks outside of our i/o range -
|
|
* Ignore blocks outside of our i/o range -
|
|
* they may belong to unallocated clusters.
|
|
* they may belong to unallocated clusters.
|
|
@@ -698,9 +700,8 @@ int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
|
|
* For an allocating write with cluster size >= page
|
|
* For an allocating write with cluster size >= page
|
|
* size, we always write the entire page.
|
|
* size, we always write the entire page.
|
|
*/
|
|
*/
|
|
-
|
|
|
|
- if (buffer_new(bh))
|
|
|
|
- clear_buffer_new(bh);
|
|
|
|
|
|
+ if (new)
|
|
|
|
+ set_buffer_new(bh);
|
|
|
|
|
|
if (!buffer_mapped(bh)) {
|
|
if (!buffer_mapped(bh)) {
|
|
map_bh(bh, inode->i_sb, *p_blkno);
|
|
map_bh(bh, inode->i_sb, *p_blkno);
|
|
@@ -761,217 +762,232 @@ next_bh:
|
|
return ret;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
|
|
|
|
+#define OCFS2_MAX_CTXT_PAGES 1
|
|
|
|
+#else
|
|
|
|
+#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
|
|
|
|
+
|
|
/*
|
|
/*
|
|
- * This will copy user data from the buffer page in the splice
|
|
|
|
- * context.
|
|
|
|
- *
|
|
|
|
- * For now, we ignore SPLICE_F_MOVE as that would require some extra
|
|
|
|
- * communication out all the way to ocfs2_write().
|
|
|
|
|
|
+ * Describe the state of a single cluster to be written to.
|
|
*/
|
|
*/
|
|
-int ocfs2_map_and_write_splice_data(struct inode *inode,
|
|
|
|
- struct ocfs2_write_ctxt *wc, u64 *p_blkno,
|
|
|
|
- unsigned int *ret_from, unsigned int *ret_to)
|
|
|
|
-{
|
|
|
|
- int ret;
|
|
|
|
- unsigned int to, from, cluster_start, cluster_end;
|
|
|
|
- char *src, *dst;
|
|
|
|
- struct ocfs2_splice_write_priv *sp = wc->w_private;
|
|
|
|
- struct pipe_buffer *buf = sp->s_buf;
|
|
|
|
- unsigned long bytes, src_from;
|
|
|
|
- struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
|
|
|
|
|
+struct ocfs2_write_cluster_desc {
|
|
|
|
+ u32 c_cpos;
|
|
|
|
+ u32 c_phys;
|
|
|
|
+ /*
|
|
|
|
+ * Give this a unique field because c_phys eventually gets
|
|
|
|
+ * filled.
|
|
|
|
+ */
|
|
|
|
+ unsigned c_new;
|
|
|
|
+};
|
|
|
|
|
|
- ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
|
|
|
|
- &cluster_end);
|
|
|
|
|
|
+struct ocfs2_write_ctxt {
|
|
|
|
+ /* Logical cluster position / len of write */
|
|
|
|
+ u32 w_cpos;
|
|
|
|
+ u32 w_clen;
|
|
|
|
|
|
- from = sp->s_offset;
|
|
|
|
- src_from = sp->s_buf_offset;
|
|
|
|
- bytes = wc->w_count;
|
|
|
|
|
|
+ struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
|
|
|
|
|
|
- if (wc->w_large_pages) {
|
|
|
|
- /*
|
|
|
|
- * For cluster size < page size, we have to
|
|
|
|
- * calculate pos within the cluster and obey
|
|
|
|
- * the rightmost boundary.
|
|
|
|
- */
|
|
|
|
- bytes = min(bytes, (unsigned long)(osb->s_clustersize
|
|
|
|
- - (wc->w_pos & (osb->s_clustersize - 1))));
|
|
|
|
- }
|
|
|
|
- to = from + bytes;
|
|
|
|
|
|
+ /*
|
|
|
|
+ * This is true if page_size > cluster_size.
|
|
|
|
+ *
|
|
|
|
+ * It triggers a set of special cases during write which might
|
|
|
|
+ * have to deal with allocating writes to partial pages.
|
|
|
|
+ */
|
|
|
|
+ unsigned int w_large_pages;
|
|
|
|
|
|
- BUG_ON(from > PAGE_CACHE_SIZE);
|
|
|
|
- BUG_ON(to > PAGE_CACHE_SIZE);
|
|
|
|
- BUG_ON(from < cluster_start);
|
|
|
|
- BUG_ON(to > cluster_end);
|
|
|
|
|
|
+ /*
|
|
|
|
+ * Pages involved in this write.
|
|
|
|
+ *
|
|
|
|
+ * w_target_page is the page being written to by the user.
|
|
|
|
+ *
|
|
|
|
+ * w_pages is an array of pages which always contains
|
|
|
|
+ * w_target_page, and in the case of an allocating write with
|
|
|
|
+ * page_size < cluster size, it will contain zero'd and mapped
|
|
|
|
+ * pages adjacent to w_target_page which need to be written
|
|
|
|
+ * out in so that future reads from that region will get
|
|
|
|
+ * zero's.
|
|
|
|
+ */
|
|
|
|
+ struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
|
|
|
|
+ unsigned int w_num_pages;
|
|
|
|
+ struct page *w_target_page;
|
|
|
|
|
|
- if (wc->w_this_page_new)
|
|
|
|
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
|
|
|
|
- cluster_start, cluster_end, 1);
|
|
|
|
- else
|
|
|
|
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
|
|
|
|
- from, to, 0);
|
|
|
|
- if (ret) {
|
|
|
|
- mlog_errno(ret);
|
|
|
|
- goto out;
|
|
|
|
|
|
+ /*
|
|
|
|
+ * ocfs2_write_end() uses this to know what the real range to
|
|
|
|
+ * write in the target should be.
|
|
|
|
+ */
|
|
|
|
+ unsigned int w_target_from;
|
|
|
|
+ unsigned int w_target_to;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We could use journal_current_handle() but this is cleaner,
|
|
|
|
+ * IMHO -Mark
|
|
|
|
+ */
|
|
|
|
+ handle_t *w_handle;
|
|
|
|
+
|
|
|
|
+ struct buffer_head *w_di_bh;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+
|
|
|
|
+ for(i = 0; i < wc->w_num_pages; i++) {
|
|
|
|
+ if (wc->w_pages[i] == NULL)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ unlock_page(wc->w_pages[i]);
|
|
|
|
+ mark_page_accessed(wc->w_pages[i]);
|
|
|
|
+ page_cache_release(wc->w_pages[i]);
|
|
}
|
|
}
|
|
|
|
|
|
- src = buf->ops->map(sp->s_pipe, buf, 1);
|
|
|
|
- dst = kmap_atomic(wc->w_this_page, KM_USER1);
|
|
|
|
- memcpy(dst + from, src + src_from, bytes);
|
|
|
|
- kunmap_atomic(wc->w_this_page, KM_USER1);
|
|
|
|
- buf->ops->unmap(sp->s_pipe, buf, src);
|
|
|
|
|
|
+ brelse(wc->w_di_bh);
|
|
|
|
+ kfree(wc);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
|
|
|
|
+ struct ocfs2_super *osb, loff_t pos,
|
|
|
|
+ unsigned len)
|
|
|
|
+{
|
|
|
|
+ struct ocfs2_write_ctxt *wc;
|
|
|
|
+
|
|
|
|
+ wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
|
|
|
|
+ if (!wc)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
|
|
- wc->w_finished_copy = 1;
|
|
|
|
|
|
+ wc->w_cpos = pos >> osb->s_clustersize_bits;
|
|
|
|
+ wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
|
|
|
|
|
|
- *ret_from = from;
|
|
|
|
- *ret_to = to;
|
|
|
|
-out:
|
|
|
|
|
|
+ if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
|
|
|
|
+ wc->w_large_pages = 1;
|
|
|
|
+ else
|
|
|
|
+ wc->w_large_pages = 0;
|
|
|
|
+
|
|
|
|
+ *wcp = wc;
|
|
|
|
|
|
- return bytes ? (unsigned int)bytes : ret;
|
|
|
|
|
|
+ return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
/*
|
|
- * This will copy user data from the iovec in the buffered write
|
|
|
|
- * context.
|
|
|
|
|
|
+ * If a page has any new buffers, zero them out here, and mark them uptodate
|
|
|
|
+ * and dirty so they'll be written out (in order to prevent uninitialised
|
|
|
|
+ * block data from leaking). And clear the new bit.
|
|
*/
|
|
*/
|
|
-int ocfs2_map_and_write_user_data(struct inode *inode,
|
|
|
|
- struct ocfs2_write_ctxt *wc, u64 *p_blkno,
|
|
|
|
- unsigned int *ret_from, unsigned int *ret_to)
|
|
|
|
|
|
+static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
|
|
{
|
|
{
|
|
- int ret;
|
|
|
|
- unsigned int to, from, cluster_start, cluster_end;
|
|
|
|
- unsigned long bytes, src_from;
|
|
|
|
- char *dst;
|
|
|
|
- struct ocfs2_buffered_write_priv *bp = wc->w_private;
|
|
|
|
- const struct iovec *cur_iov = bp->b_cur_iov;
|
|
|
|
- char __user *buf;
|
|
|
|
- struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
|
|
|
|
|
+ unsigned int block_start, block_end;
|
|
|
|
+ struct buffer_head *head, *bh;
|
|
|
|
|
|
- ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
|
|
|
|
- &cluster_end);
|
|
|
|
|
|
+ BUG_ON(!PageLocked(page));
|
|
|
|
+ if (!page_has_buffers(page))
|
|
|
|
+ return;
|
|
|
|
|
|
- buf = cur_iov->iov_base + bp->b_cur_off;
|
|
|
|
- src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
|
|
|
|
|
|
+ bh = head = page_buffers(page);
|
|
|
|
+ block_start = 0;
|
|
|
|
+ do {
|
|
|
|
+ block_end = block_start + bh->b_size;
|
|
|
|
+
|
|
|
|
+ if (buffer_new(bh)) {
|
|
|
|
+ if (block_end > from && block_start < to) {
|
|
|
|
+ if (!PageUptodate(page)) {
|
|
|
|
+ unsigned start, end;
|
|
|
|
+ void *kaddr;
|
|
|
|
+
|
|
|
|
+ start = max(from, block_start);
|
|
|
|
+ end = min(to, block_end);
|
|
|
|
+
|
|
|
|
+ kaddr = kmap_atomic(page, KM_USER0);
|
|
|
|
+ memset(kaddr+start, 0, end - start);
|
|
|
|
+ flush_dcache_page(page);
|
|
|
|
+ kunmap_atomic(kaddr, KM_USER0);
|
|
|
|
+ set_buffer_uptodate(bh);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ clear_buffer_new(bh);
|
|
|
|
+ mark_buffer_dirty(bh);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
- from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
|
|
|
|
|
|
+ block_start = block_end;
|
|
|
|
+ bh = bh->b_this_page;
|
|
|
|
+ } while (bh != head);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Only called when we have a failure during allocating write to write
|
|
|
|
+ * zero's to the newly allocated region.
|
|
|
|
+ */
|
|
|
|
+static void ocfs2_write_failure(struct inode *inode,
|
|
|
|
+ struct ocfs2_write_ctxt *wc,
|
|
|
|
+ loff_t user_pos, unsigned user_len)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ unsigned from, to;
|
|
|
|
+ struct page *tmppage;
|
|
|
|
+
|
|
|
|
+ ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
|
|
|
|
|
|
- /*
|
|
|
|
- * This is a lot of comparisons, but it reads quite
|
|
|
|
- * easily, which is important here.
|
|
|
|
- */
|
|
|
|
- /* Stay within the src page */
|
|
|
|
- bytes = PAGE_SIZE - src_from;
|
|
|
|
- /* Stay within the vector */
|
|
|
|
- bytes = min(bytes,
|
|
|
|
- (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
|
|
|
|
- /* Stay within count */
|
|
|
|
- bytes = min(bytes, (unsigned long)wc->w_count);
|
|
|
|
- /*
|
|
|
|
- * For clustersize > page size, just stay within
|
|
|
|
- * target page, otherwise we have to calculate pos
|
|
|
|
- * within the cluster and obey the rightmost
|
|
|
|
- * boundary.
|
|
|
|
- */
|
|
|
|
if (wc->w_large_pages) {
|
|
if (wc->w_large_pages) {
|
|
- /*
|
|
|
|
- * For cluster size < page size, we have to
|
|
|
|
- * calculate pos within the cluster and obey
|
|
|
|
- * the rightmost boundary.
|
|
|
|
- */
|
|
|
|
- bytes = min(bytes, (unsigned long)(osb->s_clustersize
|
|
|
|
- - (wc->w_pos & (osb->s_clustersize - 1))));
|
|
|
|
|
|
+ from = wc->w_target_from;
|
|
|
|
+ to = wc->w_target_to;
|
|
} else {
|
|
} else {
|
|
- /*
|
|
|
|
- * cluster size > page size is the most common
|
|
|
|
- * case - we just stay within the target page
|
|
|
|
- * boundary.
|
|
|
|
- */
|
|
|
|
- bytes = min(bytes, PAGE_CACHE_SIZE - from);
|
|
|
|
|
|
+ from = 0;
|
|
|
|
+ to = PAGE_CACHE_SIZE;
|
|
}
|
|
}
|
|
|
|
|
|
- to = from + bytes;
|
|
|
|
|
|
+ for(i = 0; i < wc->w_num_pages; i++) {
|
|
|
|
+ tmppage = wc->w_pages[i];
|
|
|
|
|
|
- BUG_ON(from > PAGE_CACHE_SIZE);
|
|
|
|
- BUG_ON(to > PAGE_CACHE_SIZE);
|
|
|
|
- BUG_ON(from < cluster_start);
|
|
|
|
- BUG_ON(to > cluster_end);
|
|
|
|
|
|
+ if (ocfs2_should_order_data(inode))
|
|
|
|
+ walk_page_buffers(wc->w_handle, page_buffers(tmppage),
|
|
|
|
+ from, to, NULL,
|
|
|
|
+ ocfs2_journal_dirty_data);
|
|
|
|
|
|
- if (wc->w_this_page_new)
|
|
|
|
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
|
|
|
|
- cluster_start, cluster_end, 1);
|
|
|
|
- else
|
|
|
|
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
|
|
|
|
- from, to, 0);
|
|
|
|
- if (ret) {
|
|
|
|
- mlog_errno(ret);
|
|
|
|
- goto out;
|
|
|
|
|
|
+ block_commit_write(tmppage, from, to);
|
|
}
|
|
}
|
|
-
|
|
|
|
- dst = kmap(wc->w_this_page);
|
|
|
|
- memcpy(dst + from, bp->b_src_buf + src_from, bytes);
|
|
|
|
- kunmap(wc->w_this_page);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * XXX: This is slow, but simple. The caller of
|
|
|
|
- * ocfs2_buffered_write_cluster() is responsible for
|
|
|
|
- * passing through the iovecs, so it's difficult to
|
|
|
|
- * predict what our next step is in here after our
|
|
|
|
- * initial write. A future version should be pushing
|
|
|
|
- * that iovec manipulation further down.
|
|
|
|
- *
|
|
|
|
- * By setting this, we indicate that a copy from user
|
|
|
|
- * data was done, and subsequent calls for this
|
|
|
|
- * cluster will skip copying more data.
|
|
|
|
- */
|
|
|
|
- wc->w_finished_copy = 1;
|
|
|
|
-
|
|
|
|
- *ret_from = from;
|
|
|
|
- *ret_to = to;
|
|
|
|
-out:
|
|
|
|
-
|
|
|
|
- return bytes ? (unsigned int)bytes : ret;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
-/*
|
|
|
|
- * Map, fill and write a page to disk.
|
|
|
|
- *
|
|
|
|
- * The work of copying data is done via callback. Newly allocated
|
|
|
|
- * pages which don't take user data will be zero'd (set 'new' to
|
|
|
|
- * indicate an allocating write)
|
|
|
|
- *
|
|
|
|
- * Returns a negative error code or the number of bytes copied into
|
|
|
|
- * the page.
|
|
|
|
- */
|
|
|
|
-static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
|
|
|
|
- u64 *p_blkno, struct page *page,
|
|
|
|
- struct ocfs2_write_ctxt *wc, int new)
|
|
|
|
|
|
+static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
|
|
|
|
+ struct ocfs2_write_ctxt *wc,
|
|
|
|
+ struct page *page, u32 cpos,
|
|
|
|
+ loff_t user_pos, unsigned user_len,
|
|
|
|
+ int new)
|
|
{
|
|
{
|
|
- int ret, copied = 0;
|
|
|
|
- unsigned int from = 0, to = 0;
|
|
|
|
|
|
+ int ret;
|
|
|
|
+ unsigned int map_from = 0, map_to = 0;
|
|
unsigned int cluster_start, cluster_end;
|
|
unsigned int cluster_start, cluster_end;
|
|
- unsigned int zero_from = 0, zero_to = 0;
|
|
|
|
|
|
+ unsigned int user_data_from = 0, user_data_to = 0;
|
|
|
|
|
|
- ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
|
|
|
|
|
|
+ ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
|
|
&cluster_start, &cluster_end);
|
|
&cluster_start, &cluster_end);
|
|
|
|
|
|
- if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
|
|
|
|
- && !wc->w_finished_copy) {
|
|
|
|
-
|
|
|
|
- wc->w_this_page = page;
|
|
|
|
- wc->w_this_page_new = new;
|
|
|
|
- ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
|
|
|
|
- if (ret < 0) {
|
|
|
|
|
|
+ if (page == wc->w_target_page) {
|
|
|
|
+ map_from = user_pos & (PAGE_CACHE_SIZE - 1);
|
|
|
|
+ map_to = map_from + user_len;
|
|
|
|
+
|
|
|
|
+ if (new)
|
|
|
|
+ ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
|
|
|
+ cluster_start, cluster_end,
|
|
|
|
+ new);
|
|
|
|
+ else
|
|
|
|
+ ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
|
|
|
+ map_from, map_to, new);
|
|
|
|
+ if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
|
|
- copied = ret;
|
|
|
|
-
|
|
|
|
- zero_from = from;
|
|
|
|
- zero_to = to;
|
|
|
|
|
|
+ user_data_from = map_from;
|
|
|
|
+ user_data_to = map_to;
|
|
if (new) {
|
|
if (new) {
|
|
- from = cluster_start;
|
|
|
|
- to = cluster_end;
|
|
|
|
|
|
+ map_from = cluster_start;
|
|
|
|
+ map_to = cluster_end;
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ wc->w_target_from = map_from;
|
|
|
|
+ wc->w_target_to = map_to;
|
|
} else {
|
|
} else {
|
|
/*
|
|
/*
|
|
* If we haven't allocated the new page yet, we
|
|
* If we haven't allocated the new page yet, we
|
|
@@ -980,11 +996,11 @@ static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
|
|
*/
|
|
*/
|
|
BUG_ON(!new);
|
|
BUG_ON(!new);
|
|
|
|
|
|
- from = cluster_start;
|
|
|
|
- to = cluster_end;
|
|
|
|
|
|
+ map_from = cluster_start;
|
|
|
|
+ map_to = cluster_end;
|
|
|
|
|
|
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
|
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
|
- cluster_start, cluster_end, 1);
|
|
|
|
|
|
+ cluster_start, cluster_end, new);
|
|
if (ret) {
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out;
|
|
goto out;
|
|
@@ -1003,108 +1019,84 @@ static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
|
|
*/
|
|
*/
|
|
if (new && !PageUptodate(page))
|
|
if (new && !PageUptodate(page))
|
|
ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
|
|
ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
|
|
- wc->w_cpos, zero_from, zero_to);
|
|
|
|
|
|
+ cpos, user_data_from, user_data_to);
|
|
|
|
|
|
flush_dcache_page(page);
|
|
flush_dcache_page(page);
|
|
|
|
|
|
- if (ocfs2_should_order_data(inode)) {
|
|
|
|
- ret = walk_page_buffers(handle,
|
|
|
|
- page_buffers(page),
|
|
|
|
- from, to, NULL,
|
|
|
|
- ocfs2_journal_dirty_data);
|
|
|
|
- if (ret < 0)
|
|
|
|
- mlog_errno(ret);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * We don't use generic_commit_write() because we need to
|
|
|
|
- * handle our own i_size update.
|
|
|
|
- */
|
|
|
|
- ret = block_commit_write(page, from, to);
|
|
|
|
- if (ret)
|
|
|
|
- mlog_errno(ret);
|
|
|
|
out:
|
|
out:
|
|
-
|
|
|
|
- return copied ? copied : ret;
|
|
|
|
|
|
+ return ret;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
/*
|
|
- * Do the actual write of some data into an inode. Optionally allocate
|
|
|
|
- * in order to fulfill the write.
|
|
|
|
- *
|
|
|
|
- * cpos is the logical cluster offset within the file to write at
|
|
|
|
- *
|
|
|
|
- * 'phys' is the physical mapping of that offset. a 'phys' value of
|
|
|
|
- * zero indicates that allocation is required. In this case, data_ac
|
|
|
|
- * and meta_ac should be valid (meta_ac can be null if metadata
|
|
|
|
- * allocation isn't required).
|
|
|
|
|
|
+ * This function will only grab one clusters worth of pages.
|
|
*/
|
|
*/
|
|
-static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
|
|
|
|
- struct buffer_head *di_bh,
|
|
|
|
- struct ocfs2_alloc_context *data_ac,
|
|
|
|
- struct ocfs2_alloc_context *meta_ac,
|
|
|
|
- struct ocfs2_write_ctxt *wc)
|
|
|
|
|
|
+static int ocfs2_grab_pages_for_write(struct address_space *mapping,
|
|
|
|
+ struct ocfs2_write_ctxt *wc,
|
|
|
|
+ u32 cpos, loff_t user_pos, int new)
|
|
{
|
|
{
|
|
- int ret, i, numpages = 1, new;
|
|
|
|
- unsigned int copied = 0;
|
|
|
|
- u32 tmp_pos;
|
|
|
|
- u64 v_blkno, p_blkno;
|
|
|
|
- struct address_space *mapping = file->f_mapping;
|
|
|
|
|
|
+ int ret = 0, i;
|
|
|
|
+ unsigned long start, target_index, index;
|
|
struct inode *inode = mapping->host;
|
|
struct inode *inode = mapping->host;
|
|
- unsigned long index, start;
|
|
|
|
- struct page **cpages;
|
|
|
|
|
|
|
|
- new = phys == 0 ? 1 : 0;
|
|
|
|
|
|
+ target_index = user_pos >> PAGE_CACHE_SHIFT;
|
|
|
|
|
|
/*
|
|
/*
|
|
* Figure out how many pages we'll be manipulating here. For
|
|
* Figure out how many pages we'll be manipulating here. For
|
|
* non allocating write, we just change the one
|
|
* non allocating write, we just change the one
|
|
* page. Otherwise, we'll need a whole clusters worth.
|
|
* page. Otherwise, we'll need a whole clusters worth.
|
|
*/
|
|
*/
|
|
- if (new)
|
|
|
|
- numpages = ocfs2_pages_per_cluster(inode->i_sb);
|
|
|
|
-
|
|
|
|
- cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
|
|
|
|
- if (!cpages) {
|
|
|
|
- ret = -ENOMEM;
|
|
|
|
- mlog_errno(ret);
|
|
|
|
- return ret;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Fill our page array first. That way we've grabbed enough so
|
|
|
|
- * that we can zero and flush if we error after adding the
|
|
|
|
- * extent.
|
|
|
|
- */
|
|
|
|
if (new) {
|
|
if (new) {
|
|
- start = ocfs2_align_clusters_to_page_index(inode->i_sb,
|
|
|
|
- wc->w_cpos);
|
|
|
|
- v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
|
|
|
|
|
|
+ wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
|
|
|
|
+ start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
|
|
} else {
|
|
} else {
|
|
- start = wc->w_pos >> PAGE_CACHE_SHIFT;
|
|
|
|
- v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
|
|
|
|
|
|
+ wc->w_num_pages = 1;
|
|
|
|
+ start = target_index;
|
|
}
|
|
}
|
|
|
|
|
|
- for(i = 0; i < numpages; i++) {
|
|
|
|
|
|
+ for(i = 0; i < wc->w_num_pages; i++) {
|
|
index = start + i;
|
|
index = start + i;
|
|
|
|
|
|
- cpages[i] = find_or_create_page(mapping, index, GFP_NOFS);
|
|
|
|
- if (!cpages[i]) {
|
|
|
|
|
|
+ wc->w_pages[i] = find_or_create_page(mapping, index, GFP_NOFS);
|
|
|
|
+ if (!wc->w_pages[i]) {
|
|
ret = -ENOMEM;
|
|
ret = -ENOMEM;
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ if (index == target_index)
|
|
|
|
+ wc->w_target_page = wc->w_pages[i];
|
|
}
|
|
}
|
|
|
|
+out:
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Prepare a single cluster for write one cluster into the file.
|
|
|
|
+ */
|
|
|
|
+static int ocfs2_write_cluster(struct address_space *mapping,
|
|
|
|
+ u32 phys, struct ocfs2_alloc_context *data_ac,
|
|
|
|
+ struct ocfs2_alloc_context *meta_ac,
|
|
|
|
+ struct ocfs2_write_ctxt *wc, u32 cpos,
|
|
|
|
+ loff_t user_pos, unsigned user_len)
|
|
|
|
+{
|
|
|
|
+ int ret, i, new;
|
|
|
|
+ u64 v_blkno, p_blkno;
|
|
|
|
+ struct inode *inode = mapping->host;
|
|
|
|
+
|
|
|
|
+ new = phys == 0 ? 1 : 0;
|
|
|
|
|
|
if (new) {
|
|
if (new) {
|
|
|
|
+ u32 tmp_pos;
|
|
|
|
+
|
|
/*
|
|
/*
|
|
* This is safe to call with the page locks - it won't take
|
|
* This is safe to call with the page locks - it won't take
|
|
* any additional semaphores or cluster locks.
|
|
* any additional semaphores or cluster locks.
|
|
*/
|
|
*/
|
|
- tmp_pos = wc->w_cpos;
|
|
|
|
|
|
+ tmp_pos = cpos;
|
|
ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
|
|
ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
|
|
- &tmp_pos, 1, di_bh, handle,
|
|
|
|
- data_ac, meta_ac, NULL);
|
|
|
|
|
|
+ &tmp_pos, 1, wc->w_di_bh,
|
|
|
|
+ wc->w_handle, data_ac,
|
|
|
|
+ meta_ac, NULL);
|
|
/*
|
|
/*
|
|
* This shouldn't happen because we must have already
|
|
* This shouldn't happen because we must have already
|
|
* calculated the correct meta data allocation required. The
|
|
* calculated the correct meta data allocation required. The
|
|
@@ -1121,103 +1113,132 @@ static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
|
|
|
|
+ } else {
|
|
|
|
+ v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /*
|
|
|
|
+ * The only reason this should fail is due to an inability to
|
|
|
|
+ * find the extent added.
|
|
|
|
+ */
|
|
ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
|
|
ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
|
|
NULL);
|
|
NULL);
|
|
if (ret < 0) {
|
|
if (ret < 0) {
|
|
-
|
|
|
|
- /*
|
|
|
|
- * XXX: Should we go readonly here?
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- mlog_errno(ret);
|
|
|
|
|
|
+ ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
|
|
|
|
+ "at logical block %llu",
|
|
|
|
+ (unsigned long long)OCFS2_I(inode)->ip_blkno,
|
|
|
|
+ (unsigned long long)v_blkno);
|
|
goto out;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
|
|
BUG_ON(p_blkno == 0);
|
|
BUG_ON(p_blkno == 0);
|
|
|
|
|
|
- for(i = 0; i < numpages; i++) {
|
|
|
|
- ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
|
|
|
|
- wc, new);
|
|
|
|
- if (ret < 0) {
|
|
|
|
- mlog_errno(ret);
|
|
|
|
- goto out;
|
|
|
|
- }
|
|
|
|
|
|
+ for(i = 0; i < wc->w_num_pages; i++) {
|
|
|
|
+ int tmpret;
|
|
|
|
|
|
- copied += ret;
|
|
|
|
|
|
+ tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
|
|
|
|
+ wc->w_pages[i], cpos,
|
|
|
|
+ user_pos, user_len, new);
|
|
|
|
+ if (tmpret) {
|
|
|
|
+ mlog_errno(tmpret);
|
|
|
|
+ if (ret == 0)
|
|
|
|
+ tmpret = ret;
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ /*
|
|
|
|
+ * We only have cleanup to do in case of allocating write.
|
|
|
|
+ */
|
|
|
|
+ if (ret && new)
|
|
|
|
+ ocfs2_write_failure(inode, wc, user_pos, user_len);
|
|
|
|
+
|
|
out:
|
|
out:
|
|
- for(i = 0; i < numpages; i++) {
|
|
|
|
- unlock_page(cpages[i]);
|
|
|
|
- mark_page_accessed(cpages[i]);
|
|
|
|
- page_cache_release(cpages[i]);
|
|
|
|
- }
|
|
|
|
- kfree(cpages);
|
|
|
|
|
|
|
|
- return copied ? copied : ret;
|
|
|
|
|
|
+ return ret;
|
|
}
|
|
}
|
|
|
|
|
|
-static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
|
|
|
|
- struct ocfs2_super *osb, loff_t pos,
|
|
|
|
- size_t count, ocfs2_page_writer *cb,
|
|
|
|
- void *cb_priv)
|
|
|
|
|
|
+/*
|
|
|
|
+ * ocfs2_write_end() wants to know which parts of the target page it
|
|
|
|
+ * should complete the write on. It's easiest to compute them ahead of
|
|
|
|
+ * time when a more complete view of the write is available.
|
|
|
|
+ */
|
|
|
|
+static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
|
|
|
|
+ struct ocfs2_write_ctxt *wc,
|
|
|
|
+ loff_t pos, unsigned len, int alloc)
|
|
{
|
|
{
|
|
- wc->w_count = count;
|
|
|
|
- wc->w_pos = pos;
|
|
|
|
- wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
|
|
|
|
- wc->w_finished_copy = 0;
|
|
|
|
|
|
+ struct ocfs2_write_cluster_desc *desc;
|
|
|
|
|
|
- if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
|
|
|
|
- wc->w_large_pages = 1;
|
|
|
|
- else
|
|
|
|
- wc->w_large_pages = 0;
|
|
|
|
|
|
+ wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
|
|
|
|
+ wc->w_target_to = wc->w_target_from + len;
|
|
|
|
+
|
|
|
|
+ if (alloc == 0)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Allocating write - we may have different boundaries based
|
|
|
|
+ * on page size and cluster size.
|
|
|
|
+ *
|
|
|
|
+ * NOTE: We can no longer compute one value from the other as
|
|
|
|
+ * the actual write length and user provided length may be
|
|
|
|
+ * different.
|
|
|
|
+ */
|
|
|
|
|
|
- wc->w_write_data_page = cb;
|
|
|
|
- wc->w_private = cb_priv;
|
|
|
|
|
|
+ if (wc->w_large_pages) {
|
|
|
|
+ /*
|
|
|
|
+ * We only care about the 1st and last cluster within
|
|
|
|
+ * our range and whether they are holes or not. Either
|
|
|
|
+ * value may be extended out to the start/end of a
|
|
|
|
+ * newly allocated cluster.
|
|
|
|
+ */
|
|
|
|
+ desc = &wc->w_desc[0];
|
|
|
|
+ if (desc->c_new)
|
|
|
|
+ ocfs2_figure_cluster_boundaries(osb,
|
|
|
|
+ desc->c_cpos,
|
|
|
|
+ &wc->w_target_from,
|
|
|
|
+ NULL);
|
|
|
|
+
|
|
|
|
+ desc = &wc->w_desc[wc->w_clen - 1];
|
|
|
|
+ if (desc->c_new)
|
|
|
|
+ ocfs2_figure_cluster_boundaries(osb,
|
|
|
|
+ desc->c_cpos,
|
|
|
|
+ NULL,
|
|
|
|
+ &wc->w_target_to);
|
|
|
|
+ } else {
|
|
|
|
+ wc->w_target_from = 0;
|
|
|
|
+ wc->w_target_to = PAGE_CACHE_SIZE;
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
-/*
|
|
|
|
- * Write a cluster to an inode. The cluster may not be allocated yet,
|
|
|
|
- * in which case it will be. This only exists for buffered writes -
|
|
|
|
- * O_DIRECT takes a more "traditional" path through the kernel.
|
|
|
|
- *
|
|
|
|
- * The caller is responsible for incrementing pos, written counts, etc
|
|
|
|
- *
|
|
|
|
- * For file systems that don't support sparse files, pre-allocation
|
|
|
|
- * and page zeroing up until cpos should be done prior to this
|
|
|
|
- * function call.
|
|
|
|
- *
|
|
|
|
- * Callers should be holding i_sem, and the rw cluster lock.
|
|
|
|
- *
|
|
|
|
- * Returns the number of user bytes written, or less than zero for
|
|
|
|
- * error.
|
|
|
|
- */
|
|
|
|
-ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
|
|
|
|
- size_t count, ocfs2_page_writer *actor,
|
|
|
|
- void *priv)
|
|
|
|
|
|
+int ocfs2_write_begin(struct file *file, struct address_space *mapping,
|
|
|
|
+ loff_t pos, unsigned len, unsigned flags,
|
|
|
|
+ struct page **pagep, void **fsdata)
|
|
{
|
|
{
|
|
- int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
|
|
|
|
- ssize_t written = 0;
|
|
|
|
- u32 phys;
|
|
|
|
- struct inode *inode = file->f_mapping->host;
|
|
|
|
|
|
+ int ret, i, credits = OCFS2_INODE_UPDATE_CREDITS;
|
|
|
|
+ unsigned int num_clusters = 0, clusters_to_alloc = 0;
|
|
|
|
+ u32 phys = 0;
|
|
|
|
+ struct ocfs2_write_ctxt *wc;
|
|
|
|
+ struct inode *inode = mapping->host;
|
|
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
|
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
|
- struct buffer_head *di_bh = NULL;
|
|
|
|
struct ocfs2_dinode *di;
|
|
struct ocfs2_dinode *di;
|
|
struct ocfs2_alloc_context *data_ac = NULL;
|
|
struct ocfs2_alloc_context *data_ac = NULL;
|
|
struct ocfs2_alloc_context *meta_ac = NULL;
|
|
struct ocfs2_alloc_context *meta_ac = NULL;
|
|
handle_t *handle;
|
|
handle_t *handle;
|
|
- struct ocfs2_write_ctxt wc;
|
|
|
|
|
|
+ struct ocfs2_write_cluster_desc *desc;
|
|
|
|
|
|
- ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
|
|
|
|
|
|
+ ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len);
|
|
|
|
+ if (ret) {
|
|
|
|
+ mlog_errno(ret);
|
|
|
|
+ return ret;
|
|
|
|
+ }
|
|
|
|
|
|
- ret = ocfs2_meta_lock(inode, &di_bh, 1);
|
|
|
|
|
|
+ ret = ocfs2_meta_lock(inode, &wc->w_di_bh, 1);
|
|
if (ret) {
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out;
|
|
goto out;
|
|
}
|
|
}
|
|
- di = (struct ocfs2_dinode *)di_bh->b_data;
|
|
|
|
|
|
+ di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
|
|
|
|
|
|
/*
|
|
/*
|
|
* Take alloc sem here to prevent concurrent lookups. That way
|
|
* Take alloc sem here to prevent concurrent lookups. That way
|
|
@@ -1228,23 +1249,60 @@ ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
|
|
*/
|
|
*/
|
|
down_write(&OCFS2_I(inode)->ip_alloc_sem);
|
|
down_write(&OCFS2_I(inode)->ip_alloc_sem);
|
|
|
|
|
|
- ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
|
|
|
|
- if (ret) {
|
|
|
|
- mlog_errno(ret);
|
|
|
|
- goto out_meta;
|
|
|
|
|
|
+ for (i = 0; i < wc->w_clen; i++) {
|
|
|
|
+ desc = &wc->w_desc[i];
|
|
|
|
+ desc->c_cpos = wc->w_cpos + i;
|
|
|
|
+
|
|
|
|
+ if (num_clusters == 0) {
|
|
|
|
+ ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
|
|
|
|
+ &num_clusters, NULL);
|
|
|
|
+ if (ret) {
|
|
|
|
+ mlog_errno(ret);
|
|
|
|
+ goto out_meta;
|
|
|
|
+ }
|
|
|
|
+ } else if (phys) {
|
|
|
|
+ /*
|
|
|
|
+ * Only increment phys if it doesn't describe
|
|
|
|
+ * a hole.
|
|
|
|
+ */
|
|
|
|
+ phys++;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ desc->c_phys = phys;
|
|
|
|
+ if (phys == 0) {
|
|
|
|
+ desc->c_new = 1;
|
|
|
|
+ clusters_to_alloc++;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ num_clusters--;
|
|
}
|
|
}
|
|
|
|
|
|
- /* phys == 0 means that allocation is required. */
|
|
|
|
- if (phys == 0) {
|
|
|
|
- ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
|
|
|
|
|
|
+ /*
|
|
|
|
+ * We set w_target_from, w_target_to here so that
|
|
|
|
+ * ocfs2_write_end() knows which range in the target page to
|
|
|
|
+ * write out. An allocation requires that we write the entire
|
|
|
|
+ * cluster range.
|
|
|
|
+ */
|
|
|
|
+ if (clusters_to_alloc > 0) {
|
|
|
|
+ /*
|
|
|
|
+ * XXX: We are stretching the limits of
|
|
|
|
+ * ocfs2_lock_allocators(). It greately over-estimates
|
|
|
|
+ * the work to be done.
|
|
|
|
+ */
|
|
|
|
+ ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
|
|
|
|
+ &data_ac, &meta_ac);
|
|
if (ret) {
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out_meta;
|
|
goto out_meta;
|
|
}
|
|
}
|
|
|
|
|
|
- credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
|
|
|
|
|
|
+ credits = ocfs2_calc_extend_credits(inode->i_sb, di,
|
|
|
|
+ clusters_to_alloc);
|
|
|
|
+
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ ocfs2_set_target_boundaries(osb, wc, pos, len, clusters_to_alloc);
|
|
|
|
+
|
|
ret = ocfs2_data_lock(inode, 1);
|
|
ret = ocfs2_data_lock(inode, 1);
|
|
if (ret) {
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
@@ -1258,36 +1316,50 @@ ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
|
|
goto out_data;
|
|
goto out_data;
|
|
}
|
|
}
|
|
|
|
|
|
- written = ocfs2_write(file, phys, handle, di_bh, data_ac,
|
|
|
|
- meta_ac, &wc);
|
|
|
|
- if (written < 0) {
|
|
|
|
- ret = written;
|
|
|
|
|
|
+ wc->w_handle = handle;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We don't want this to fail in ocfs2_write_end(), so do it
|
|
|
|
+ * here.
|
|
|
|
+ */
|
|
|
|
+ ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
|
|
|
|
+ OCFS2_JOURNAL_ACCESS_WRITE);
|
|
|
|
+ if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out_commit;
|
|
goto out_commit;
|
|
}
|
|
}
|
|
|
|
|
|
- ret = ocfs2_journal_access(handle, inode, di_bh,
|
|
|
|
- OCFS2_JOURNAL_ACCESS_WRITE);
|
|
|
|
|
|
+ /*
|
|
|
|
+ * Fill our page array first. That way we've grabbed enough so
|
|
|
|
+ * that we can zero and flush if we error after adding the
|
|
|
|
+ * extent.
|
|
|
|
+ */
|
|
|
|
+ ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
|
|
|
|
+ clusters_to_alloc);
|
|
if (ret) {
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
mlog_errno(ret);
|
|
goto out_commit;
|
|
goto out_commit;
|
|
}
|
|
}
|
|
|
|
|
|
- pos += written;
|
|
|
|
- if (pos > inode->i_size) {
|
|
|
|
- i_size_write(inode, pos);
|
|
|
|
- mark_inode_dirty(inode);
|
|
|
|
|
|
+ for (i = 0; i < wc->w_clen; i++) {
|
|
|
|
+ desc = &wc->w_desc[i];
|
|
|
|
+
|
|
|
|
+ ret = ocfs2_write_cluster(mapping, desc->c_phys, data_ac,
|
|
|
|
+ meta_ac, wc, desc->c_cpos, pos, len);
|
|
|
|
+ if (ret) {
|
|
|
|
+ mlog_errno(ret);
|
|
|
|
+ goto out_commit;
|
|
|
|
+ }
|
|
}
|
|
}
|
|
- inode->i_blocks = ocfs2_inode_sector_count(inode);
|
|
|
|
- di->i_size = cpu_to_le64((u64)i_size_read(inode));
|
|
|
|
- inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
|
|
|
- di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
|
|
|
|
- di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
|
|
|
|
|
|
|
|
- ret = ocfs2_journal_dirty(handle, di_bh);
|
|
|
|
- if (ret)
|
|
|
|
- mlog_errno(ret);
|
|
|
|
|
|
+ if (data_ac)
|
|
|
|
+ ocfs2_free_alloc_context(data_ac);
|
|
|
|
+ if (meta_ac)
|
|
|
|
+ ocfs2_free_alloc_context(meta_ac);
|
|
|
|
|
|
|
|
+ *pagep = wc->w_target_page;
|
|
|
|
+ *fsdata = wc;
|
|
|
|
+ return 0;
|
|
out_commit:
|
|
out_commit:
|
|
ocfs2_commit_trans(osb, handle);
|
|
ocfs2_commit_trans(osb, handle);
|
|
|
|
|
|
@@ -1299,13 +1371,85 @@ out_meta:
|
|
ocfs2_meta_unlock(inode, 1);
|
|
ocfs2_meta_unlock(inode, 1);
|
|
|
|
|
|
out:
|
|
out:
|
|
- brelse(di_bh);
|
|
|
|
|
|
+ ocfs2_free_write_ctxt(wc);
|
|
|
|
+
|
|
if (data_ac)
|
|
if (data_ac)
|
|
ocfs2_free_alloc_context(data_ac);
|
|
ocfs2_free_alloc_context(data_ac);
|
|
if (meta_ac)
|
|
if (meta_ac)
|
|
ocfs2_free_alloc_context(meta_ac);
|
|
ocfs2_free_alloc_context(meta_ac);
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int ocfs2_write_end(struct file *file, struct address_space *mapping,
|
|
|
|
+ loff_t pos, unsigned len, unsigned copied,
|
|
|
|
+ struct page *page, void *fsdata)
|
|
|
|
+{
|
|
|
|
+ int i;
|
|
|
|
+ unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
|
|
|
|
+ struct inode *inode = mapping->host;
|
|
|
|
+ struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
|
|
|
+ struct ocfs2_write_ctxt *wc = fsdata;
|
|
|
|
+ struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
|
|
|
|
+ handle_t *handle = wc->w_handle;
|
|
|
|
+ struct page *tmppage;
|
|
|
|
+
|
|
|
|
+ if (unlikely(copied < len)) {
|
|
|
|
+ if (!PageUptodate(wc->w_target_page))
|
|
|
|
+ copied = 0;
|
|
|
|
+
|
|
|
|
+ ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
|
|
|
|
+ start+len);
|
|
|
|
+ }
|
|
|
|
+ flush_dcache_page(wc->w_target_page);
|
|
|
|
+
|
|
|
|
+ for(i = 0; i < wc->w_num_pages; i++) {
|
|
|
|
+ tmppage = wc->w_pages[i];
|
|
|
|
+
|
|
|
|
+ if (tmppage == wc->w_target_page) {
|
|
|
|
+ from = wc->w_target_from;
|
|
|
|
+ to = wc->w_target_to;
|
|
|
|
+
|
|
|
|
+ BUG_ON(from > PAGE_CACHE_SIZE ||
|
|
|
|
+ to > PAGE_CACHE_SIZE ||
|
|
|
|
+ to < from);
|
|
|
|
+ } else {
|
|
|
|
+ /*
|
|
|
|
+ * Pages adjacent to the target (if any) imply
|
|
|
|
+ * a hole-filling write in which case we want
|
|
|
|
+ * to flush their entire range.
|
|
|
|
+ */
|
|
|
|
+ from = 0;
|
|
|
|
+ to = PAGE_CACHE_SIZE;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (ocfs2_should_order_data(inode))
|
|
|
|
+ walk_page_buffers(wc->w_handle, page_buffers(tmppage),
|
|
|
|
+ from, to, NULL,
|
|
|
|
+ ocfs2_journal_dirty_data);
|
|
|
|
+
|
|
|
|
+ block_commit_write(tmppage, from, to);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ pos += copied;
|
|
|
|
+ if (pos > inode->i_size) {
|
|
|
|
+ i_size_write(inode, pos);
|
|
|
|
+ mark_inode_dirty(inode);
|
|
|
|
+ }
|
|
|
|
+ inode->i_blocks = ocfs2_inode_sector_count(inode);
|
|
|
|
+ di->i_size = cpu_to_le64((u64)i_size_read(inode));
|
|
|
|
+ inode->i_mtime = inode->i_ctime = CURRENT_TIME;
|
|
|
|
+ di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
|
|
|
|
+ di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
|
|
|
|
+
|
|
|
|
+ ocfs2_journal_dirty(handle, wc->w_di_bh);
|
|
|
|
+
|
|
|
|
+ ocfs2_commit_trans(osb, handle);
|
|
|
|
+ ocfs2_data_unlock(inode, 1);
|
|
|
|
+ up_write(&OCFS2_I(inode)->ip_alloc_sem);
|
|
|
|
+ ocfs2_meta_unlock(inode, 1);
|
|
|
|
+ ocfs2_free_write_ctxt(wc);
|
|
|
|
|
|
- return written ? written : ret;
|
|
|
|
|
|
+ return copied;
|
|
}
|
|
}
|
|
|
|
|
|
const struct address_space_operations ocfs2_aops = {
|
|
const struct address_space_operations ocfs2_aops = {
|