|
@@ -13,476 +13,19 @@
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
|
|
#include <linux/sched.h>
|
|
|
-#include <linux/kernel_stat.h>
|
|
|
-#include <linux/regset.h>
|
|
|
#include <linux/hardirq.h>
|
|
|
-#include <linux/slab.h>
|
|
|
-#include <asm/asm.h>
|
|
|
-#include <asm/cpufeature.h>
|
|
|
-#include <asm/processor.h>
|
|
|
-#include <asm/sigcontext.h>
|
|
|
-#include <asm/user.h>
|
|
|
-#include <asm/uaccess.h>
|
|
|
-#include <asm/xsave.h>
|
|
|
+#include <asm/system.h>
|
|
|
+
|
|
|
+struct pt_regs;
|
|
|
+struct user_i387_struct;
|
|
|
|
|
|
-extern unsigned int sig_xstate_size;
|
|
|
-extern void fpu_init(void);
|
|
|
-extern void mxcsr_feature_mask_init(void);
|
|
|
extern int init_fpu(struct task_struct *child);
|
|
|
-extern void math_state_restore(void);
|
|
|
extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
|
|
|
+extern void math_state_restore(void);
|
|
|
|
|
|
-DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
|
|
|
-
|
|
|
-extern user_regset_active_fn fpregs_active, xfpregs_active;
|
|
|
-extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
|
|
|
- xstateregs_get;
|
|
|
-extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
|
|
|
- xstateregs_set;
|
|
|
-
|
|
|
-/*
|
|
|
- * xstateregs_active == fpregs_active. Please refer to the comment
|
|
|
- * at the definition of fpregs_active.
|
|
|
- */
|
|
|
-#define xstateregs_active fpregs_active
|
|
|
-
|
|
|
-extern struct _fpx_sw_bytes fx_sw_reserved;
|
|
|
-#ifdef CONFIG_IA32_EMULATION
|
|
|
-extern unsigned int sig_xstate_ia32_size;
|
|
|
-extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
|
|
|
-struct _fpstate_ia32;
|
|
|
-struct _xstate_ia32;
|
|
|
-extern int save_i387_xstate_ia32(void __user *buf);
|
|
|
-extern int restore_i387_xstate_ia32(void __user *buf);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CONFIG_MATH_EMULATION
|
|
|
-extern void finit_soft_fpu(struct i387_soft_struct *soft);
|
|
|
-#else
|
|
|
-static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
|
|
|
-#endif
|
|
|
-
|
|
|
-#define X87_FSW_ES (1 << 7) /* Exception Summary */
|
|
|
-
|
|
|
-static __always_inline __pure bool use_xsaveopt(void)
|
|
|
-{
|
|
|
- return static_cpu_has(X86_FEATURE_XSAVEOPT);
|
|
|
-}
|
|
|
-
|
|
|
-static __always_inline __pure bool use_xsave(void)
|
|
|
-{
|
|
|
- return static_cpu_has(X86_FEATURE_XSAVE);
|
|
|
-}
|
|
|
-
|
|
|
-static __always_inline __pure bool use_fxsr(void)
|
|
|
-{
|
|
|
- return static_cpu_has(X86_FEATURE_FXSR);
|
|
|
-}
|
|
|
-
|
|
|
-extern void __sanitize_i387_state(struct task_struct *);
|
|
|
-
|
|
|
-static inline void sanitize_i387_state(struct task_struct *tsk)
|
|
|
-{
|
|
|
- if (!use_xsaveopt())
|
|
|
- return;
|
|
|
- __sanitize_i387_state(tsk);
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef CONFIG_X86_64
|
|
|
-static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
|
|
-{
|
|
|
- int err;
|
|
|
-
|
|
|
- /* See comment in fxsave() below. */
|
|
|
-#ifdef CONFIG_AS_FXSAVEQ
|
|
|
- asm volatile("1: fxrstorq %[fx]\n\t"
|
|
|
- "2:\n"
|
|
|
- ".section .fixup,\"ax\"\n"
|
|
|
- "3: movl $-1,%[err]\n"
|
|
|
- " jmp 2b\n"
|
|
|
- ".previous\n"
|
|
|
- _ASM_EXTABLE(1b, 3b)
|
|
|
- : [err] "=r" (err)
|
|
|
- : [fx] "m" (*fx), "0" (0));
|
|
|
-#else
|
|
|
- asm volatile("1: rex64/fxrstor (%[fx])\n\t"
|
|
|
- "2:\n"
|
|
|
- ".section .fixup,\"ax\"\n"
|
|
|
- "3: movl $-1,%[err]\n"
|
|
|
- " jmp 2b\n"
|
|
|
- ".previous\n"
|
|
|
- _ASM_EXTABLE(1b, 3b)
|
|
|
- : [err] "=r" (err)
|
|
|
- : [fx] "R" (fx), "m" (*fx), "0" (0));
|
|
|
-#endif
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
|
|
|
-{
|
|
|
- int err;
|
|
|
-
|
|
|
- /*
|
|
|
- * Clear the bytes not touched by the fxsave and reserved
|
|
|
- * for the SW usage.
|
|
|
- */
|
|
|
- err = __clear_user(&fx->sw_reserved,
|
|
|
- sizeof(struct _fpx_sw_bytes));
|
|
|
- if (unlikely(err))
|
|
|
- return -EFAULT;
|
|
|
-
|
|
|
- /* See comment in fxsave() below. */
|
|
|
-#ifdef CONFIG_AS_FXSAVEQ
|
|
|
- asm volatile("1: fxsaveq %[fx]\n\t"
|
|
|
- "2:\n"
|
|
|
- ".section .fixup,\"ax\"\n"
|
|
|
- "3: movl $-1,%[err]\n"
|
|
|
- " jmp 2b\n"
|
|
|
- ".previous\n"
|
|
|
- _ASM_EXTABLE(1b, 3b)
|
|
|
- : [err] "=r" (err), [fx] "=m" (*fx)
|
|
|
- : "0" (0));
|
|
|
-#else
|
|
|
- asm volatile("1: rex64/fxsave (%[fx])\n\t"
|
|
|
- "2:\n"
|
|
|
- ".section .fixup,\"ax\"\n"
|
|
|
- "3: movl $-1,%[err]\n"
|
|
|
- " jmp 2b\n"
|
|
|
- ".previous\n"
|
|
|
- _ASM_EXTABLE(1b, 3b)
|
|
|
- : [err] "=r" (err), "=m" (*fx)
|
|
|
- : [fx] "R" (fx), "0" (0));
|
|
|
-#endif
|
|
|
- if (unlikely(err) &&
|
|
|
- __clear_user(fx, sizeof(struct i387_fxsave_struct)))
|
|
|
- err = -EFAULT;
|
|
|
- /* No need to clear here because the caller clears USED_MATH */
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-static inline void fpu_fxsave(struct fpu *fpu)
|
|
|
-{
|
|
|
- /* Using "rex64; fxsave %0" is broken because, if the memory operand
|
|
|
- uses any extended registers for addressing, a second REX prefix
|
|
|
- will be generated (to the assembler, rex64 followed by semicolon
|
|
|
- is a separate instruction), and hence the 64-bitness is lost. */
|
|
|
-
|
|
|
-#ifdef CONFIG_AS_FXSAVEQ
|
|
|
- /* Using "fxsaveq %0" would be the ideal choice, but is only supported
|
|
|
- starting with gas 2.16. */
|
|
|
- __asm__ __volatile__("fxsaveq %0"
|
|
|
- : "=m" (fpu->state->fxsave));
|
|
|
-#else
|
|
|
- /* Using, as a workaround, the properly prefixed form below isn't
|
|
|
- accepted by any binutils version so far released, complaining that
|
|
|
- the same type of prefix is used twice if an extended register is
|
|
|
- needed for addressing (fix submitted to mainline 2005-11-21).
|
|
|
- asm volatile("rex64/fxsave %0"
|
|
|
- : "=m" (fpu->state->fxsave));
|
|
|
- This, however, we can work around by forcing the compiler to select
|
|
|
- an addressing mode that doesn't require extended registers. */
|
|
|
- asm volatile("rex64/fxsave (%[fx])"
|
|
|
- : "=m" (fpu->state->fxsave)
|
|
|
- : [fx] "R" (&fpu->state->fxsave));
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-#else /* CONFIG_X86_32 */
|
|
|
-
|
|
|
-/* perform fxrstor iff the processor has extended states, otherwise frstor */
|
|
|
-static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
|
|
|
-{
|
|
|
- /*
|
|
|
- * The "nop" is needed to make the instructions the same
|
|
|
- * length.
|
|
|
- */
|
|
|
- alternative_input(
|
|
|
- "nop ; frstor %1",
|
|
|
- "fxrstor %1",
|
|
|
- X86_FEATURE_FXSR,
|
|
|
- "m" (*fx));
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static inline void fpu_fxsave(struct fpu *fpu)
|
|
|
-{
|
|
|
- asm volatile("fxsave %[fx]"
|
|
|
- : [fx] "=m" (fpu->state->fxsave));
|
|
|
-}
|
|
|
-
|
|
|
-#endif /* CONFIG_X86_64 */
|
|
|
-
|
|
|
-/*
|
|
|
- * These must be called with preempt disabled. Returns
|
|
|
- * 'true' if the FPU state is still intact.
|
|
|
- */
|
|
|
-static inline int fpu_save_init(struct fpu *fpu)
|
|
|
-{
|
|
|
- if (use_xsave()) {
|
|
|
- fpu_xsave(fpu);
|
|
|
-
|
|
|
- /*
|
|
|
- * xsave header may indicate the init state of the FP.
|
|
|
- */
|
|
|
- if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
|
|
|
- return 1;
|
|
|
- } else if (use_fxsr()) {
|
|
|
- fpu_fxsave(fpu);
|
|
|
- } else {
|
|
|
- asm volatile("fnsave %[fx]; fwait"
|
|
|
- : [fx] "=m" (fpu->state->fsave));
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * If exceptions are pending, we need to clear them so
|
|
|
- * that we don't randomly get exceptions later.
|
|
|
- *
|
|
|
- * FIXME! Is this perhaps only true for the old-style
|
|
|
- * irq13 case? Maybe we could leave the x87 state
|
|
|
- * intact otherwise?
|
|
|
- */
|
|
|
- if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
|
|
|
- asm volatile("fnclex");
|
|
|
- return 0;
|
|
|
- }
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int __save_init_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- return fpu_save_init(&tsk->thread.fpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline int fpu_fxrstor_checking(struct fpu *fpu)
|
|
|
-{
|
|
|
- return fxrstor_checking(&fpu->state->fxsave);
|
|
|
-}
|
|
|
-
|
|
|
-static inline int fpu_restore_checking(struct fpu *fpu)
|
|
|
-{
|
|
|
- if (use_xsave())
|
|
|
- return fpu_xrstor_checking(fpu);
|
|
|
- else
|
|
|
- return fpu_fxrstor_checking(fpu);
|
|
|
-}
|
|
|
-
|
|
|
-static inline int restore_fpu_checking(struct task_struct *tsk)
|
|
|
-{
|
|
|
- /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
|
|
|
- is pending. Clear the x87 state here by setting it to fixed
|
|
|
- values. "m" is a random variable that should be in L1 */
|
|
|
- alternative_input(
|
|
|
- ASM_NOP8 ASM_NOP2,
|
|
|
- "emms\n\t" /* clear stack tags */
|
|
|
- "fildl %P[addr]", /* set F?P to defined value */
|
|
|
- X86_FEATURE_FXSAVE_LEAK,
|
|
|
- [addr] "m" (tsk->thread.fpu.has_fpu));
|
|
|
-
|
|
|
- return fpu_restore_checking(&tsk->thread.fpu);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Software FPU state helpers. Careful: these need to
|
|
|
- * be preemption protection *and* they need to be
|
|
|
- * properly paired with the CR0.TS changes!
|
|
|
- */
|
|
|
-static inline int __thread_has_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- return tsk->thread.fpu.has_fpu;
|
|
|
-}
|
|
|
-
|
|
|
-/* Must be paired with an 'stts' after! */
|
|
|
-static inline void __thread_clear_has_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- tsk->thread.fpu.has_fpu = 0;
|
|
|
- percpu_write(fpu_owner_task, NULL);
|
|
|
-}
|
|
|
-
|
|
|
-/* Must be paired with a 'clts' before! */
|
|
|
-static inline void __thread_set_has_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- tsk->thread.fpu.has_fpu = 1;
|
|
|
- percpu_write(fpu_owner_task, tsk);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Encapsulate the CR0.TS handling together with the
|
|
|
- * software flag.
|
|
|
- *
|
|
|
- * These generally need preemption protection to work,
|
|
|
- * do try to avoid using these on their own.
|
|
|
- */
|
|
|
-static inline void __thread_fpu_end(struct task_struct *tsk)
|
|
|
-{
|
|
|
- __thread_clear_has_fpu(tsk);
|
|
|
- stts();
|
|
|
-}
|
|
|
-
|
|
|
-static inline void __thread_fpu_begin(struct task_struct *tsk)
|
|
|
-{
|
|
|
- clts();
|
|
|
- __thread_set_has_fpu(tsk);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * FPU state switching for scheduling.
|
|
|
- *
|
|
|
- * This is a two-stage process:
|
|
|
- *
|
|
|
- * - switch_fpu_prepare() saves the old state and
|
|
|
- * sets the new state of the CR0.TS bit. This is
|
|
|
- * done within the context of the old process.
|
|
|
- *
|
|
|
- * - switch_fpu_finish() restores the new state as
|
|
|
- * necessary.
|
|
|
- */
|
|
|
-typedef struct { int preload; } fpu_switch_t;
|
|
|
-
|
|
|
-/*
|
|
|
- * FIXME! We could do a totally lazy restore, but we need to
|
|
|
- * add a per-cpu "this was the task that last touched the FPU
|
|
|
- * on this CPU" variable, and the task needs to have a "I last
|
|
|
- * touched the FPU on this CPU" and check them.
|
|
|
- *
|
|
|
- * We don't do that yet, so "fpu_lazy_restore()" always returns
|
|
|
- * false, but some day..
|
|
|
- */
|
|
|
-static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
|
|
|
-{
|
|
|
- return new == percpu_read_stable(fpu_owner_task) &&
|
|
|
- cpu == new->thread.fpu.last_cpu;
|
|
|
-}
|
|
|
-
|
|
|
-static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
|
|
|
-{
|
|
|
- fpu_switch_t fpu;
|
|
|
-
|
|
|
- fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
|
|
|
- if (__thread_has_fpu(old)) {
|
|
|
- if (!__save_init_fpu(old))
|
|
|
- cpu = ~0;
|
|
|
- old->thread.fpu.last_cpu = cpu;
|
|
|
- old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
|
|
|
-
|
|
|
- /* Don't change CR0.TS if we just switch! */
|
|
|
- if (fpu.preload) {
|
|
|
- new->fpu_counter++;
|
|
|
- __thread_set_has_fpu(new);
|
|
|
- prefetch(new->thread.fpu.state);
|
|
|
- } else
|
|
|
- stts();
|
|
|
- } else {
|
|
|
- old->fpu_counter = 0;
|
|
|
- old->thread.fpu.last_cpu = ~0;
|
|
|
- if (fpu.preload) {
|
|
|
- new->fpu_counter++;
|
|
|
- if (fpu_lazy_restore(new, cpu))
|
|
|
- fpu.preload = 0;
|
|
|
- else
|
|
|
- prefetch(new->thread.fpu.state);
|
|
|
- __thread_fpu_begin(new);
|
|
|
- }
|
|
|
- }
|
|
|
- return fpu;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * By the time this gets called, we've already cleared CR0.TS and
|
|
|
- * given the process the FPU if we are going to preload the FPU
|
|
|
- * state - all we need to do is to conditionally restore the register
|
|
|
- * state itself.
|
|
|
- */
|
|
|
-static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
|
|
|
-{
|
|
|
- if (fpu.preload) {
|
|
|
- if (unlikely(restore_fpu_checking(new)))
|
|
|
- __thread_fpu_end(new);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Signal frame handlers...
|
|
|
- */
|
|
|
-extern int save_i387_xstate(void __user *buf);
|
|
|
-extern int restore_i387_xstate(void __user *buf);
|
|
|
-
|
|
|
-static inline void __clear_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- if (__thread_has_fpu(tsk)) {
|
|
|
- /* Ignore delayed exceptions from user space */
|
|
|
- asm volatile("1: fwait\n"
|
|
|
- "2:\n"
|
|
|
- _ASM_EXTABLE(1b, 2b));
|
|
|
- __thread_fpu_end(tsk);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Were we in an interrupt that interrupted kernel mode?
|
|
|
- *
|
|
|
- * We can do a kernel_fpu_begin/end() pair *ONLY* if that
|
|
|
- * pair does nothing at all: the thread must not have fpu (so
|
|
|
- * that we don't try to save the FPU state), and TS must
|
|
|
- * be set (so that the clts/stts pair does nothing that is
|
|
|
- * visible in the interrupted kernel thread).
|
|
|
- */
|
|
|
-static inline bool interrupted_kernel_fpu_idle(void)
|
|
|
-{
|
|
|
- return !__thread_has_fpu(current) &&
|
|
|
- (read_cr0() & X86_CR0_TS);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Were we in user mode (or vm86 mode) when we were
|
|
|
- * interrupted?
|
|
|
- *
|
|
|
- * Doing kernel_fpu_begin/end() is ok if we are running
|
|
|
- * in an interrupt context from user mode - we'll just
|
|
|
- * save the FPU state as required.
|
|
|
- */
|
|
|
-static inline bool interrupted_user_mode(void)
|
|
|
-{
|
|
|
- struct pt_regs *regs = get_irq_regs();
|
|
|
- return regs && user_mode_vm(regs);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Can we use the FPU in kernel mode with the
|
|
|
- * whole "kernel_fpu_begin/end()" sequence?
|
|
|
- *
|
|
|
- * It's always ok in process context (ie "not interrupt")
|
|
|
- * but it is sometimes ok even from an irq.
|
|
|
- */
|
|
|
-static inline bool irq_fpu_usable(void)
|
|
|
-{
|
|
|
- return !in_interrupt() ||
|
|
|
- interrupted_user_mode() ||
|
|
|
- interrupted_kernel_fpu_idle();
|
|
|
-}
|
|
|
-
|
|
|
-static inline void kernel_fpu_begin(void)
|
|
|
-{
|
|
|
- struct task_struct *me = current;
|
|
|
-
|
|
|
- WARN_ON_ONCE(!irq_fpu_usable());
|
|
|
- preempt_disable();
|
|
|
- if (__thread_has_fpu(me)) {
|
|
|
- __save_init_fpu(me);
|
|
|
- __thread_clear_has_fpu(me);
|
|
|
- /* We do 'stts()' in kernel_fpu_end() */
|
|
|
- } else {
|
|
|
- percpu_write(fpu_owner_task, NULL);
|
|
|
- clts();
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static inline void kernel_fpu_end(void)
|
|
|
-{
|
|
|
- stts();
|
|
|
- preempt_enable();
|
|
|
-}
|
|
|
+extern bool irq_fpu_usable(void);
|
|
|
+extern void kernel_fpu_begin(void);
|
|
|
+extern void kernel_fpu_end(void);
|
|
|
|
|
|
/*
|
|
|
* Some instructions like VIA's padlock instructions generate a spurious
|
|
@@ -524,126 +67,13 @@ static inline void irq_ts_restore(int TS_state)
|
|
|
* we can just assume we have FPU access - typically
|
|
|
* to save the FP state - we'll just take a #NM
|
|
|
* fault and get the FPU access back.
|
|
|
- *
|
|
|
- * The actual user_fpu_begin/end() functions
|
|
|
- * need to be preemption-safe, though.
|
|
|
- *
|
|
|
- * NOTE! user_fpu_end() must be used only after you
|
|
|
- * have saved the FP state, and user_fpu_begin() must
|
|
|
- * be used only immediately before restoring it.
|
|
|
- * These functions do not do any save/restore on
|
|
|
- * their own.
|
|
|
*/
|
|
|
static inline int user_has_fpu(void)
|
|
|
{
|
|
|
- return __thread_has_fpu(current);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void user_fpu_end(void)
|
|
|
-{
|
|
|
- preempt_disable();
|
|
|
- __thread_fpu_end(current);
|
|
|
- preempt_enable();
|
|
|
-}
|
|
|
-
|
|
|
-static inline void user_fpu_begin(void)
|
|
|
-{
|
|
|
- preempt_disable();
|
|
|
- if (!user_has_fpu())
|
|
|
- __thread_fpu_begin(current);
|
|
|
- preempt_enable();
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * These disable preemption on their own and are safe
|
|
|
- */
|
|
|
-static inline void save_init_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- WARN_ON_ONCE(!__thread_has_fpu(tsk));
|
|
|
- preempt_disable();
|
|
|
- __save_init_fpu(tsk);
|
|
|
- __thread_fpu_end(tsk);
|
|
|
- preempt_enable();
|
|
|
-}
|
|
|
-
|
|
|
-static inline void unlazy_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- preempt_disable();
|
|
|
- if (__thread_has_fpu(tsk)) {
|
|
|
- __save_init_fpu(tsk);
|
|
|
- __thread_fpu_end(tsk);
|
|
|
- } else
|
|
|
- tsk->fpu_counter = 0;
|
|
|
- preempt_enable();
|
|
|
-}
|
|
|
-
|
|
|
-static inline void clear_fpu(struct task_struct *tsk)
|
|
|
-{
|
|
|
- preempt_disable();
|
|
|
- __clear_fpu(tsk);
|
|
|
- preempt_enable();
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * i387 state interaction
|
|
|
- */
|
|
|
-static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
|
|
|
-{
|
|
|
- if (cpu_has_fxsr) {
|
|
|
- return tsk->thread.fpu.state->fxsave.cwd;
|
|
|
- } else {
|
|
|
- return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static inline unsigned short get_fpu_swd(struct task_struct *tsk)
|
|
|
-{
|
|
|
- if (cpu_has_fxsr) {
|
|
|
- return tsk->thread.fpu.state->fxsave.swd;
|
|
|
- } else {
|
|
|
- return (unsigned short)tsk->thread.fpu.state->fsave.swd;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
|
|
|
-{
|
|
|
- if (cpu_has_xmm) {
|
|
|
- return tsk->thread.fpu.state->fxsave.mxcsr;
|
|
|
- } else {
|
|
|
- return MXCSR_DEFAULT;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static bool fpu_allocated(struct fpu *fpu)
|
|
|
-{
|
|
|
- return fpu->state != NULL;
|
|
|
-}
|
|
|
-
|
|
|
-static inline int fpu_alloc(struct fpu *fpu)
|
|
|
-{
|
|
|
- if (fpu_allocated(fpu))
|
|
|
- return 0;
|
|
|
- fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
|
|
- if (!fpu->state)
|
|
|
- return -ENOMEM;
|
|
|
- WARN_ON((unsigned long)fpu->state & 15);
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static inline void fpu_free(struct fpu *fpu)
|
|
|
-{
|
|
|
- if (fpu->state) {
|
|
|
- kmem_cache_free(task_xstate_cachep, fpu->state);
|
|
|
- fpu->state = NULL;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static inline void fpu_copy(struct fpu *dst, struct fpu *src)
|
|
|
-{
|
|
|
- memcpy(dst->state, src->state, xstate_size);
|
|
|
+ return current->thread.fpu.has_fpu;
|
|
|
}
|
|
|
|
|
|
-extern void fpu_finit(struct fpu *fpu);
|
|
|
+extern void unlazy_fpu(struct task_struct *tsk);
|
|
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|