|
@@ -0,0 +1,805 @@
|
|
|
+/*
|
|
|
+ * Copyright (C) 2011 Red Hat, Inc.
|
|
|
+ *
|
|
|
+ * This file is released under the GPL.
|
|
|
+ */
|
|
|
+
|
|
|
+#include "dm-btree-internal.h"
|
|
|
+#include "dm-space-map.h"
|
|
|
+#include "dm-transaction-manager.h"
|
|
|
+
|
|
|
+#include <linux/module.h>
|
|
|
+#include <linux/device-mapper.h>
|
|
|
+
|
|
|
+#define DM_MSG_PREFIX "btree"
|
|
|
+
|
|
|
+/*----------------------------------------------------------------
|
|
|
+ * Array manipulation
|
|
|
+ *--------------------------------------------------------------*/
|
|
|
+static void memcpy_disk(void *dest, const void *src, size_t len)
|
|
|
+ __dm_written_to_disk(src)
|
|
|
+{
|
|
|
+ memcpy(dest, src, len);
|
|
|
+ __dm_unbless_for_disk(src);
|
|
|
+}
|
|
|
+
|
|
|
+static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
|
|
|
+ unsigned index, void *elt)
|
|
|
+ __dm_written_to_disk(elt)
|
|
|
+{
|
|
|
+ if (index < nr_elts)
|
|
|
+ memmove(base + (elt_size * (index + 1)),
|
|
|
+ base + (elt_size * index),
|
|
|
+ (nr_elts - index) * elt_size);
|
|
|
+
|
|
|
+ memcpy_disk(base + (elt_size * index), elt, elt_size);
|
|
|
+}
|
|
|
+
|
|
|
+/*----------------------------------------------------------------*/
|
|
|
+
|
|
|
+/* makes the assumption that no two keys are the same. */
|
|
|
+static int bsearch(struct node *n, uint64_t key, int want_hi)
|
|
|
+{
|
|
|
+ int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
|
|
|
+
|
|
|
+ while (hi - lo > 1) {
|
|
|
+ int mid = lo + ((hi - lo) / 2);
|
|
|
+ uint64_t mid_key = le64_to_cpu(n->keys[mid]);
|
|
|
+
|
|
|
+ if (mid_key == key)
|
|
|
+ return mid;
|
|
|
+
|
|
|
+ if (mid_key < key)
|
|
|
+ lo = mid;
|
|
|
+ else
|
|
|
+ hi = mid;
|
|
|
+ }
|
|
|
+
|
|
|
+ return want_hi ? hi : lo;
|
|
|
+}
|
|
|
+
|
|
|
+int lower_bound(struct node *n, uint64_t key)
|
|
|
+{
|
|
|
+ return bsearch(n, key, 0);
|
|
|
+}
|
|
|
+
|
|
|
+void inc_children(struct dm_transaction_manager *tm, struct node *n,
|
|
|
+ struct dm_btree_value_type *vt)
|
|
|
+{
|
|
|
+ unsigned i;
|
|
|
+ uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
|
|
|
+
|
|
|
+ if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
|
|
|
+ for (i = 0; i < nr_entries; i++)
|
|
|
+ dm_tm_inc(tm, value64(n, i));
|
|
|
+ else if (vt->inc)
|
|
|
+ for (i = 0; i < nr_entries; i++)
|
|
|
+ vt->inc(vt->context,
|
|
|
+ value_ptr(n, i, vt->size));
|
|
|
+}
|
|
|
+
|
|
|
+static int insert_at(size_t value_size, struct node *node, unsigned index,
|
|
|
+ uint64_t key, void *value)
|
|
|
+ __dm_written_to_disk(value)
|
|
|
+{
|
|
|
+ uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
|
|
|
+ __le64 key_le = cpu_to_le64(key);
|
|
|
+
|
|
|
+ if (index > nr_entries ||
|
|
|
+ index >= le32_to_cpu(node->header.max_entries)) {
|
|
|
+ DMERR("too many entries in btree node for insert");
|
|
|
+ __dm_unbless_for_disk(value);
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ __dm_bless_for_disk(&key_le);
|
|
|
+
|
|
|
+ array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
|
|
|
+ array_insert(value_base(node), value_size, nr_entries, index, value);
|
|
|
+ node->header.nr_entries = cpu_to_le32(nr_entries + 1);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*----------------------------------------------------------------*/
|
|
|
+
|
|
|
+/*
|
|
|
+ * We want 3n entries (for some n). This works more nicely for repeated
|
|
|
+ * insert remove loops than (2n + 1).
|
|
|
+ */
|
|
|
+static uint32_t calc_max_entries(size_t value_size, size_t block_size)
|
|
|
+{
|
|
|
+ uint32_t total, n;
|
|
|
+ size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
|
|
|
+
|
|
|
+ block_size -= sizeof(struct node_header);
|
|
|
+ total = block_size / elt_size;
|
|
|
+ n = total / 3; /* rounds down */
|
|
|
+
|
|
|
+ return 3 * n;
|
|
|
+}
|
|
|
+
|
|
|
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ struct dm_block *b;
|
|
|
+ struct node *n;
|
|
|
+ size_t block_size;
|
|
|
+ uint32_t max_entries;
|
|
|
+
|
|
|
+ r = new_block(info, &b);
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
|
|
|
+ max_entries = calc_max_entries(info->value_type.size, block_size);
|
|
|
+
|
|
|
+ n = dm_block_data(b);
|
|
|
+ memset(n, 0, block_size);
|
|
|
+ n->header.flags = cpu_to_le32(LEAF_NODE);
|
|
|
+ n->header.nr_entries = cpu_to_le32(0);
|
|
|
+ n->header.max_entries = cpu_to_le32(max_entries);
|
|
|
+ n->header.value_size = cpu_to_le32(info->value_type.size);
|
|
|
+
|
|
|
+ *root = dm_block_location(b);
|
|
|
+ return unlock_block(info, b);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(dm_btree_empty);
|
|
|
+
|
|
|
+/*----------------------------------------------------------------*/
|
|
|
+
|
|
|
+/*
|
|
|
+ * Deletion uses a recursive algorithm, since we have limited stack space
|
|
|
+ * we explicitly manage our own stack on the heap.
|
|
|
+ */
|
|
|
+#define MAX_SPINE_DEPTH 64
|
|
|
+struct frame {
|
|
|
+ struct dm_block *b;
|
|
|
+ struct node *n;
|
|
|
+ unsigned level;
|
|
|
+ unsigned nr_children;
|
|
|
+ unsigned current_child;
|
|
|
+};
|
|
|
+
|
|
|
+struct del_stack {
|
|
|
+ struct dm_transaction_manager *tm;
|
|
|
+ int top;
|
|
|
+ struct frame spine[MAX_SPINE_DEPTH];
|
|
|
+};
|
|
|
+
|
|
|
+static int top_frame(struct del_stack *s, struct frame **f)
|
|
|
+{
|
|
|
+ if (s->top < 0) {
|
|
|
+ DMERR("btree deletion stack empty");
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ *f = s->spine + s->top;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int unprocessed_frames(struct del_stack *s)
|
|
|
+{
|
|
|
+ return s->top >= 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ uint32_t ref_count;
|
|
|
+
|
|
|
+ if (s->top >= MAX_SPINE_DEPTH - 1) {
|
|
|
+ DMERR("btree deletion stack out of memory");
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ r = dm_tm_ref(s->tm, b, &ref_count);
|
|
|
+ if (r)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ if (ref_count > 1)
|
|
|
+ /*
|
|
|
+ * This is a shared node, so we can just decrement it's
|
|
|
+ * reference counter and leave the children.
|
|
|
+ */
|
|
|
+ dm_tm_dec(s->tm, b);
|
|
|
+
|
|
|
+ else {
|
|
|
+ struct frame *f = s->spine + ++s->top;
|
|
|
+
|
|
|
+ r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
|
|
|
+ if (r) {
|
|
|
+ s->top--;
|
|
|
+ return r;
|
|
|
+ }
|
|
|
+
|
|
|
+ f->n = dm_block_data(f->b);
|
|
|
+ f->level = level;
|
|
|
+ f->nr_children = le32_to_cpu(f->n->header.nr_entries);
|
|
|
+ f->current_child = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void pop_frame(struct del_stack *s)
|
|
|
+{
|
|
|
+ struct frame *f = s->spine + s->top--;
|
|
|
+
|
|
|
+ dm_tm_dec(s->tm, dm_block_location(f->b));
|
|
|
+ dm_tm_unlock(s->tm, f->b);
|
|
|
+}
|
|
|
+
|
|
|
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ struct del_stack *s;
|
|
|
+
|
|
|
+ s = kmalloc(sizeof(*s), GFP_KERNEL);
|
|
|
+ if (!s)
|
|
|
+ return -ENOMEM;
|
|
|
+ s->tm = info->tm;
|
|
|
+ s->top = -1;
|
|
|
+
|
|
|
+ r = push_frame(s, root, 1);
|
|
|
+ if (r)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ while (unprocessed_frames(s)) {
|
|
|
+ uint32_t flags;
|
|
|
+ struct frame *f;
|
|
|
+ dm_block_t b;
|
|
|
+
|
|
|
+ r = top_frame(s, &f);
|
|
|
+ if (r)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ if (f->current_child >= f->nr_children) {
|
|
|
+ pop_frame(s);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ flags = le32_to_cpu(f->n->header.flags);
|
|
|
+ if (flags & INTERNAL_NODE) {
|
|
|
+ b = value64(f->n, f->current_child);
|
|
|
+ f->current_child++;
|
|
|
+ r = push_frame(s, b, f->level);
|
|
|
+ if (r)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ } else if (f->level != (info->levels - 1)) {
|
|
|
+ b = value64(f->n, f->current_child);
|
|
|
+ f->current_child++;
|
|
|
+ r = push_frame(s, b, f->level + 1);
|
|
|
+ if (r)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ } else {
|
|
|
+ if (info->value_type.dec) {
|
|
|
+ unsigned i;
|
|
|
+
|
|
|
+ for (i = 0; i < f->nr_children; i++)
|
|
|
+ info->value_type.dec(info->value_type.context,
|
|
|
+ value_ptr(f->n, i, info->value_type.size));
|
|
|
+ }
|
|
|
+ f->current_child = f->nr_children;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+out:
|
|
|
+ kfree(s);
|
|
|
+ return r;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(dm_btree_del);
|
|
|
+
|
|
|
+/*----------------------------------------------------------------*/
|
|
|
+
|
|
|
+static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
|
|
|
+ int (*search_fn)(struct node *, uint64_t),
|
|
|
+ uint64_t *result_key, void *v, size_t value_size)
|
|
|
+{
|
|
|
+ int i, r;
|
|
|
+ uint32_t flags, nr_entries;
|
|
|
+
|
|
|
+ do {
|
|
|
+ r = ro_step(s, block);
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ i = search_fn(ro_node(s), key);
|
|
|
+
|
|
|
+ flags = le32_to_cpu(ro_node(s)->header.flags);
|
|
|
+ nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
|
|
|
+ if (i < 0 || i >= nr_entries)
|
|
|
+ return -ENODATA;
|
|
|
+
|
|
|
+ if (flags & INTERNAL_NODE)
|
|
|
+ block = value64(ro_node(s), i);
|
|
|
+
|
|
|
+ } while (!(flags & LEAF_NODE));
|
|
|
+
|
|
|
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
|
|
|
+ memcpy(v, value_ptr(ro_node(s), i, value_size), value_size);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
|
|
|
+ uint64_t *keys, void *value_le)
|
|
|
+{
|
|
|
+ unsigned level, last_level = info->levels - 1;
|
|
|
+ int r = -ENODATA;
|
|
|
+ uint64_t rkey;
|
|
|
+ __le64 internal_value_le;
|
|
|
+ struct ro_spine spine;
|
|
|
+
|
|
|
+ init_ro_spine(&spine, info);
|
|
|
+ for (level = 0; level < info->levels; level++) {
|
|
|
+ size_t size;
|
|
|
+ void *value_p;
|
|
|
+
|
|
|
+ if (level == last_level) {
|
|
|
+ value_p = value_le;
|
|
|
+ size = info->value_type.size;
|
|
|
+
|
|
|
+ } else {
|
|
|
+ value_p = &internal_value_le;
|
|
|
+ size = sizeof(uint64_t);
|
|
|
+ }
|
|
|
+
|
|
|
+ r = btree_lookup_raw(&spine, root, keys[level],
|
|
|
+ lower_bound, &rkey,
|
|
|
+ value_p, size);
|
|
|
+
|
|
|
+ if (!r) {
|
|
|
+ if (rkey != keys[level]) {
|
|
|
+ exit_ro_spine(&spine);
|
|
|
+ return -ENODATA;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ exit_ro_spine(&spine);
|
|
|
+ return r;
|
|
|
+ }
|
|
|
+
|
|
|
+ root = le64_to_cpu(internal_value_le);
|
|
|
+ }
|
|
|
+ exit_ro_spine(&spine);
|
|
|
+
|
|
|
+ return r;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(dm_btree_lookup);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Splits a node by creating a sibling node and shifting half the nodes
|
|
|
+ * contents across. Assumes there is a parent node, and it has room for
|
|
|
+ * another child.
|
|
|
+ *
|
|
|
+ * Before:
|
|
|
+ * +--------+
|
|
|
+ * | Parent |
|
|
|
+ * +--------+
|
|
|
+ * |
|
|
|
+ * v
|
|
|
+ * +----------+
|
|
|
+ * | A ++++++ |
|
|
|
+ * +----------+
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * After:
|
|
|
+ * +--------+
|
|
|
+ * | Parent |
|
|
|
+ * +--------+
|
|
|
+ * | |
|
|
|
+ * v +------+
|
|
|
+ * +---------+ |
|
|
|
+ * | A* +++ | v
|
|
|
+ * +---------+ +-------+
|
|
|
+ * | B +++ |
|
|
|
+ * +-------+
|
|
|
+ *
|
|
|
+ * Where A* is a shadow of A.
|
|
|
+ */
|
|
|
+static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
|
|
|
+ unsigned parent_index, uint64_t key)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ size_t size;
|
|
|
+ unsigned nr_left, nr_right;
|
|
|
+ struct dm_block *left, *right, *parent;
|
|
|
+ struct node *ln, *rn, *pn;
|
|
|
+ __le64 location;
|
|
|
+
|
|
|
+ left = shadow_current(s);
|
|
|
+
|
|
|
+ r = new_block(s->info, &right);
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ ln = dm_block_data(left);
|
|
|
+ rn = dm_block_data(right);
|
|
|
+
|
|
|
+ nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
|
|
|
+ nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
|
|
|
+
|
|
|
+ ln->header.nr_entries = cpu_to_le32(nr_left);
|
|
|
+
|
|
|
+ rn->header.flags = ln->header.flags;
|
|
|
+ rn->header.nr_entries = cpu_to_le32(nr_right);
|
|
|
+ rn->header.max_entries = ln->header.max_entries;
|
|
|
+ rn->header.value_size = ln->header.value_size;
|
|
|
+ memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
|
|
|
+
|
|
|
+ size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
|
|
|
+ sizeof(uint64_t) : s->info->value_type.size;
|
|
|
+ memcpy(value_ptr(rn, 0, size), value_ptr(ln, nr_left, size),
|
|
|
+ size * nr_right);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Patch up the parent
|
|
|
+ */
|
|
|
+ parent = shadow_parent(s);
|
|
|
+
|
|
|
+ pn = dm_block_data(parent);
|
|
|
+ location = cpu_to_le64(dm_block_location(left));
|
|
|
+ __dm_bless_for_disk(&location);
|
|
|
+ memcpy_disk(value_ptr(pn, parent_index, sizeof(__le64)),
|
|
|
+ &location, sizeof(__le64));
|
|
|
+
|
|
|
+ location = cpu_to_le64(dm_block_location(right));
|
|
|
+ __dm_bless_for_disk(&location);
|
|
|
+
|
|
|
+ r = insert_at(sizeof(__le64), pn, parent_index + 1,
|
|
|
+ le64_to_cpu(rn->keys[0]), &location);
|
|
|
+ if (r)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ if (key < le64_to_cpu(rn->keys[0])) {
|
|
|
+ unlock_block(s->info, right);
|
|
|
+ s->nodes[1] = left;
|
|
|
+ } else {
|
|
|
+ unlock_block(s->info, left);
|
|
|
+ s->nodes[1] = right;
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Splits a node by creating two new children beneath the given node.
|
|
|
+ *
|
|
|
+ * Before:
|
|
|
+ * +----------+
|
|
|
+ * | A ++++++ |
|
|
|
+ * +----------+
|
|
|
+ *
|
|
|
+ *
|
|
|
+ * After:
|
|
|
+ * +------------+
|
|
|
+ * | A (shadow) |
|
|
|
+ * +------------+
|
|
|
+ * | |
|
|
|
+ * +------+ +----+
|
|
|
+ * | |
|
|
|
+ * v v
|
|
|
+ * +-------+ +-------+
|
|
|
+ * | B +++ | | C +++ |
|
|
|
+ * +-------+ +-------+
|
|
|
+ */
|
|
|
+static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
|
|
|
+{
|
|
|
+ int r;
|
|
|
+ size_t size;
|
|
|
+ unsigned nr_left, nr_right;
|
|
|
+ struct dm_block *left, *right, *new_parent;
|
|
|
+ struct node *pn, *ln, *rn;
|
|
|
+ __le64 val;
|
|
|
+
|
|
|
+ new_parent = shadow_current(s);
|
|
|
+
|
|
|
+ r = new_block(s->info, &left);
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ r = new_block(s->info, &right);
|
|
|
+ if (r < 0) {
|
|
|
+ /* FIXME: put left */
|
|
|
+ return r;
|
|
|
+ }
|
|
|
+
|
|
|
+ pn = dm_block_data(new_parent);
|
|
|
+ ln = dm_block_data(left);
|
|
|
+ rn = dm_block_data(right);
|
|
|
+
|
|
|
+ nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
|
|
|
+ nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
|
|
|
+
|
|
|
+ ln->header.flags = pn->header.flags;
|
|
|
+ ln->header.nr_entries = cpu_to_le32(nr_left);
|
|
|
+ ln->header.max_entries = pn->header.max_entries;
|
|
|
+ ln->header.value_size = pn->header.value_size;
|
|
|
+
|
|
|
+ rn->header.flags = pn->header.flags;
|
|
|
+ rn->header.nr_entries = cpu_to_le32(nr_right);
|
|
|
+ rn->header.max_entries = pn->header.max_entries;
|
|
|
+ rn->header.value_size = pn->header.value_size;
|
|
|
+
|
|
|
+ memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
|
|
|
+ memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
|
|
|
+
|
|
|
+ size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
|
|
|
+ sizeof(__le64) : s->info->value_type.size;
|
|
|
+ memcpy(value_ptr(ln, 0, size), value_ptr(pn, 0, size), nr_left * size);
|
|
|
+ memcpy(value_ptr(rn, 0, size), value_ptr(pn, nr_left, size),
|
|
|
+ nr_right * size);
|
|
|
+
|
|
|
+ /* new_parent should just point to l and r now */
|
|
|
+ pn->header.flags = cpu_to_le32(INTERNAL_NODE);
|
|
|
+ pn->header.nr_entries = cpu_to_le32(2);
|
|
|
+ pn->header.max_entries = cpu_to_le32(
|
|
|
+ calc_max_entries(sizeof(__le64),
|
|
|
+ dm_bm_block_size(
|
|
|
+ dm_tm_get_bm(s->info->tm))));
|
|
|
+ pn->header.value_size = cpu_to_le32(sizeof(__le64));
|
|
|
+
|
|
|
+ val = cpu_to_le64(dm_block_location(left));
|
|
|
+ __dm_bless_for_disk(&val);
|
|
|
+ pn->keys[0] = ln->keys[0];
|
|
|
+ memcpy_disk(value_ptr(pn, 0, sizeof(__le64)), &val, sizeof(__le64));
|
|
|
+
|
|
|
+ val = cpu_to_le64(dm_block_location(right));
|
|
|
+ __dm_bless_for_disk(&val);
|
|
|
+ pn->keys[1] = rn->keys[0];
|
|
|
+ memcpy_disk(value_ptr(pn, 1, sizeof(__le64)), &val, sizeof(__le64));
|
|
|
+
|
|
|
+ /*
|
|
|
+ * rejig the spine. This is ugly, since it knows too
|
|
|
+ * much about the spine
|
|
|
+ */
|
|
|
+ if (s->nodes[0] != new_parent) {
|
|
|
+ unlock_block(s->info, s->nodes[0]);
|
|
|
+ s->nodes[0] = new_parent;
|
|
|
+ }
|
|
|
+ if (key < le64_to_cpu(rn->keys[0])) {
|
|
|
+ unlock_block(s->info, right);
|
|
|
+ s->nodes[1] = left;
|
|
|
+ } else {
|
|
|
+ unlock_block(s->info, left);
|
|
|
+ s->nodes[1] = right;
|
|
|
+ }
|
|
|
+ s->count = 2;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
|
|
|
+ struct dm_btree_value_type *vt,
|
|
|
+ uint64_t key, unsigned *index)
|
|
|
+{
|
|
|
+ int r, i = *index, top = 1;
|
|
|
+ struct node *node;
|
|
|
+
|
|
|
+ for (;;) {
|
|
|
+ r = shadow_step(s, root, vt);
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ node = dm_block_data(shadow_current(s));
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We have to patch up the parent node, ugly, but I don't
|
|
|
+ * see a way to do this automatically as part of the spine
|
|
|
+ * op.
|
|
|
+ */
|
|
|
+ if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
|
|
|
+ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
|
|
|
+
|
|
|
+ __dm_bless_for_disk(&location);
|
|
|
+ memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(uint64_t)),
|
|
|
+ &location, sizeof(__le64));
|
|
|
+ }
|
|
|
+
|
|
|
+ node = dm_block_data(shadow_current(s));
|
|
|
+
|
|
|
+ if (node->header.nr_entries == node->header.max_entries) {
|
|
|
+ if (top)
|
|
|
+ r = btree_split_beneath(s, key);
|
|
|
+ else
|
|
|
+ r = btree_split_sibling(s, root, i, key);
|
|
|
+
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+ }
|
|
|
+
|
|
|
+ node = dm_block_data(shadow_current(s));
|
|
|
+
|
|
|
+ i = lower_bound(node, key);
|
|
|
+
|
|
|
+ if (le32_to_cpu(node->header.flags) & LEAF_NODE)
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (i < 0) {
|
|
|
+ /* change the bounds on the lowest key */
|
|
|
+ node->keys[0] = cpu_to_le64(key);
|
|
|
+ i = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ root = value64(node, i);
|
|
|
+ top = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (i < 0 || le64_to_cpu(node->keys[i]) != key)
|
|
|
+ i++;
|
|
|
+
|
|
|
+ *index = i;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int insert(struct dm_btree_info *info, dm_block_t root,
|
|
|
+ uint64_t *keys, void *value, dm_block_t *new_root,
|
|
|
+ int *inserted)
|
|
|
+ __dm_written_to_disk(value)
|
|
|
+{
|
|
|
+ int r, need_insert;
|
|
|
+ unsigned level, index = -1, last_level = info->levels - 1;
|
|
|
+ dm_block_t block = root;
|
|
|
+ struct shadow_spine spine;
|
|
|
+ struct node *n;
|
|
|
+ struct dm_btree_value_type le64_type;
|
|
|
+
|
|
|
+ le64_type.context = NULL;
|
|
|
+ le64_type.size = sizeof(__le64);
|
|
|
+ le64_type.inc = NULL;
|
|
|
+ le64_type.dec = NULL;
|
|
|
+ le64_type.equal = NULL;
|
|
|
+
|
|
|
+ init_shadow_spine(&spine, info);
|
|
|
+
|
|
|
+ for (level = 0; level < (info->levels - 1); level++) {
|
|
|
+ r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
|
|
|
+ if (r < 0)
|
|
|
+ goto bad;
|
|
|
+
|
|
|
+ n = dm_block_data(shadow_current(&spine));
|
|
|
+ need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
|
|
|
+ (le64_to_cpu(n->keys[index]) != keys[level]));
|
|
|
+
|
|
|
+ if (need_insert) {
|
|
|
+ dm_block_t new_tree;
|
|
|
+ __le64 new_le;
|
|
|
+
|
|
|
+ r = dm_btree_empty(info, &new_tree);
|
|
|
+ if (r < 0)
|
|
|
+ goto bad;
|
|
|
+
|
|
|
+ new_le = cpu_to_le64(new_tree);
|
|
|
+ __dm_bless_for_disk(&new_le);
|
|
|
+
|
|
|
+ r = insert_at(sizeof(uint64_t), n, index,
|
|
|
+ keys[level], &new_le);
|
|
|
+ if (r)
|
|
|
+ goto bad;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (level < last_level)
|
|
|
+ block = value64(n, index);
|
|
|
+ }
|
|
|
+
|
|
|
+ r = btree_insert_raw(&spine, block, &info->value_type,
|
|
|
+ keys[level], &index);
|
|
|
+ if (r < 0)
|
|
|
+ goto bad;
|
|
|
+
|
|
|
+ n = dm_block_data(shadow_current(&spine));
|
|
|
+ need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
|
|
|
+ (le64_to_cpu(n->keys[index]) != keys[level]));
|
|
|
+
|
|
|
+ if (need_insert) {
|
|
|
+ if (inserted)
|
|
|
+ *inserted = 1;
|
|
|
+
|
|
|
+ r = insert_at(info->value_type.size, n, index,
|
|
|
+ keys[level], value);
|
|
|
+ if (r)
|
|
|
+ goto bad_unblessed;
|
|
|
+ } else {
|
|
|
+ if (inserted)
|
|
|
+ *inserted = 0;
|
|
|
+
|
|
|
+ if (info->value_type.dec &&
|
|
|
+ (!info->value_type.equal ||
|
|
|
+ !info->value_type.equal(
|
|
|
+ info->value_type.context,
|
|
|
+ value_ptr(n, index, info->value_type.size),
|
|
|
+ value))) {
|
|
|
+ info->value_type.dec(info->value_type.context,
|
|
|
+ value_ptr(n, index, info->value_type.size));
|
|
|
+ }
|
|
|
+ memcpy_disk(value_ptr(n, index, info->value_type.size),
|
|
|
+ value, info->value_type.size);
|
|
|
+ }
|
|
|
+
|
|
|
+ *new_root = shadow_root(&spine);
|
|
|
+ exit_shadow_spine(&spine);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+
|
|
|
+bad:
|
|
|
+ __dm_unbless_for_disk(value);
|
|
|
+bad_unblessed:
|
|
|
+ exit_shadow_spine(&spine);
|
|
|
+ return r;
|
|
|
+}
|
|
|
+
|
|
|
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
|
|
|
+ uint64_t *keys, void *value, dm_block_t *new_root)
|
|
|
+ __dm_written_to_disk(value)
|
|
|
+{
|
|
|
+ return insert(info, root, keys, value, new_root, NULL);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(dm_btree_insert);
|
|
|
+
|
|
|
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
|
|
|
+ uint64_t *keys, void *value, dm_block_t *new_root,
|
|
|
+ int *inserted)
|
|
|
+ __dm_written_to_disk(value)
|
|
|
+{
|
|
|
+ return insert(info, root, keys, value, new_root, inserted);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
|
|
|
+
|
|
|
+/*----------------------------------------------------------------*/
|
|
|
+
|
|
|
+static int find_highest_key(struct ro_spine *s, dm_block_t block,
|
|
|
+ uint64_t *result_key, dm_block_t *next_block)
|
|
|
+{
|
|
|
+ int i, r;
|
|
|
+ uint32_t flags;
|
|
|
+
|
|
|
+ do {
|
|
|
+ r = ro_step(s, block);
|
|
|
+ if (r < 0)
|
|
|
+ return r;
|
|
|
+
|
|
|
+ flags = le32_to_cpu(ro_node(s)->header.flags);
|
|
|
+ i = le32_to_cpu(ro_node(s)->header.nr_entries);
|
|
|
+ if (!i)
|
|
|
+ return -ENODATA;
|
|
|
+ else
|
|
|
+ i--;
|
|
|
+
|
|
|
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
|
|
|
+ if (next_block || flags & INTERNAL_NODE)
|
|
|
+ block = value64(ro_node(s), i);
|
|
|
+
|
|
|
+ } while (flags & INTERNAL_NODE);
|
|
|
+
|
|
|
+ if (next_block)
|
|
|
+ *next_block = block;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
|
|
|
+ uint64_t *result_keys)
|
|
|
+{
|
|
|
+ int r = 0, count = 0, level;
|
|
|
+ struct ro_spine spine;
|
|
|
+
|
|
|
+ init_ro_spine(&spine, info);
|
|
|
+ for (level = 0; level < info->levels; level++) {
|
|
|
+ r = find_highest_key(&spine, root, result_keys + level,
|
|
|
+ level == info->levels - 1 ? NULL : &root);
|
|
|
+ if (r == -ENODATA) {
|
|
|
+ r = 0;
|
|
|
+ break;
|
|
|
+
|
|
|
+ } else if (r)
|
|
|
+ break;
|
|
|
+
|
|
|
+ count++;
|
|
|
+ }
|
|
|
+ exit_ro_spine(&spine);
|
|
|
+
|
|
|
+ return r ? r : count;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
|