|
@@ -14,61 +14,153 @@
|
|
|
|
|
|
#include <asm/sched_clock.h>
|
|
|
|
|
|
+struct clock_data {
|
|
|
+ u64 epoch_ns;
|
|
|
+ u32 epoch_cyc;
|
|
|
+ u32 epoch_cyc_copy;
|
|
|
+ u32 mult;
|
|
|
+ u32 shift;
|
|
|
+};
|
|
|
+
|
|
|
static void sched_clock_poll(unsigned long wrap_ticks);
|
|
|
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
|
|
|
-static void (*sched_clock_update_fn)(void);
|
|
|
+
|
|
|
+static struct clock_data cd = {
|
|
|
+ .mult = NSEC_PER_SEC / HZ,
|
|
|
+};
|
|
|
+
|
|
|
+static u32 __read_mostly sched_clock_mask = 0xffffffff;
|
|
|
+
|
|
|
+static u32 notrace jiffy_sched_clock_read(void)
|
|
|
+{
|
|
|
+ return (u32)(jiffies - INITIAL_JIFFIES);
|
|
|
+}
|
|
|
+
|
|
|
+static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
|
|
+
|
|
|
+static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
|
|
+{
|
|
|
+ return (cyc * mult) >> shift;
|
|
|
+}
|
|
|
+
|
|
|
+static unsigned long long cyc_to_sched_clock(u32 cyc, u32 mask)
|
|
|
+{
|
|
|
+ u64 epoch_ns;
|
|
|
+ u32 epoch_cyc;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Load the epoch_cyc and epoch_ns atomically. We do this by
|
|
|
+ * ensuring that we always write epoch_cyc, epoch_ns and
|
|
|
+ * epoch_cyc_copy in strict order, and read them in strict order.
|
|
|
+ * If epoch_cyc and epoch_cyc_copy are not equal, then we're in
|
|
|
+ * the middle of an update, and we should repeat the load.
|
|
|
+ */
|
|
|
+ do {
|
|
|
+ epoch_cyc = cd.epoch_cyc;
|
|
|
+ smp_rmb();
|
|
|
+ epoch_ns = cd.epoch_ns;
|
|
|
+ smp_rmb();
|
|
|
+ } while (epoch_cyc != cd.epoch_cyc_copy);
|
|
|
+
|
|
|
+ return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, cd.mult, cd.shift);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Atomically update the sched_clock epoch.
|
|
|
+ */
|
|
|
+static void notrace update_sched_clock(void)
|
|
|
+{
|
|
|
+ unsigned long flags;
|
|
|
+ u32 cyc;
|
|
|
+ u64 ns;
|
|
|
+
|
|
|
+ cyc = read_sched_clock();
|
|
|
+ ns = cd.epoch_ns +
|
|
|
+ cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
|
|
+ cd.mult, cd.shift);
|
|
|
+ /*
|
|
|
+ * Write epoch_cyc and epoch_ns in a way that the update is
|
|
|
+ * detectable in cyc_to_fixed_sched_clock().
|
|
|
+ */
|
|
|
+ raw_local_irq_save(flags);
|
|
|
+ cd.epoch_cyc = cyc;
|
|
|
+ smp_wmb();
|
|
|
+ cd.epoch_ns = ns;
|
|
|
+ smp_wmb();
|
|
|
+ cd.epoch_cyc_copy = cyc;
|
|
|
+ raw_local_irq_restore(flags);
|
|
|
+}
|
|
|
|
|
|
static void sched_clock_poll(unsigned long wrap_ticks)
|
|
|
{
|
|
|
mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
|
|
|
- sched_clock_update_fn();
|
|
|
+ update_sched_clock();
|
|
|
}
|
|
|
|
|
|
-void __init init_sched_clock(struct clock_data *cd, void (*update)(void),
|
|
|
- unsigned int clock_bits, unsigned long rate)
|
|
|
+void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
|
|
{
|
|
|
unsigned long r, w;
|
|
|
u64 res, wrap;
|
|
|
char r_unit;
|
|
|
|
|
|
- sched_clock_update_fn = update;
|
|
|
+ BUG_ON(bits > 32);
|
|
|
+ WARN_ON(!irqs_disabled());
|
|
|
+ WARN_ON(read_sched_clock != jiffy_sched_clock_read);
|
|
|
+ read_sched_clock = read;
|
|
|
+ sched_clock_mask = (1 << bits) - 1;
|
|
|
|
|
|
/* calculate the mult/shift to convert counter ticks to ns. */
|
|
|
- clocks_calc_mult_shift(&cd->mult, &cd->shift, rate, NSEC_PER_SEC, 0);
|
|
|
+ clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
|
|
|
|
|
|
r = rate;
|
|
|
if (r >= 4000000) {
|
|
|
r /= 1000000;
|
|
|
r_unit = 'M';
|
|
|
- } else {
|
|
|
+ } else if (r >= 1000) {
|
|
|
r /= 1000;
|
|
|
r_unit = 'k';
|
|
|
- }
|
|
|
+ } else
|
|
|
+ r_unit = ' ';
|
|
|
|
|
|
/* calculate how many ns until we wrap */
|
|
|
- wrap = cyc_to_ns((1ULL << clock_bits) - 1, cd->mult, cd->shift);
|
|
|
+ wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
|
|
|
do_div(wrap, NSEC_PER_MSEC);
|
|
|
w = wrap;
|
|
|
|
|
|
/* calculate the ns resolution of this counter */
|
|
|
- res = cyc_to_ns(1ULL, cd->mult, cd->shift);
|
|
|
+ res = cyc_to_ns(1ULL, cd.mult, cd.shift);
|
|
|
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
|
|
|
- clock_bits, r, r_unit, res, w);
|
|
|
+ bits, r, r_unit, res, w);
|
|
|
|
|
|
/*
|
|
|
* Start the timer to keep sched_clock() properly updated and
|
|
|
* sets the initial epoch.
|
|
|
*/
|
|
|
sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
|
|
|
- update();
|
|
|
+ update_sched_clock();
|
|
|
|
|
|
/*
|
|
|
* Ensure that sched_clock() starts off at 0ns
|
|
|
*/
|
|
|
- cd->epoch_ns = 0;
|
|
|
+ cd.epoch_ns = 0;
|
|
|
+
|
|
|
+ pr_debug("Registered %pF as sched_clock source\n", read);
|
|
|
+}
|
|
|
+
|
|
|
+unsigned long long notrace sched_clock(void)
|
|
|
+{
|
|
|
+ u32 cyc = read_sched_clock();
|
|
|
+ return cyc_to_sched_clock(cyc, sched_clock_mask);
|
|
|
}
|
|
|
|
|
|
void __init sched_clock_postinit(void)
|
|
|
{
|
|
|
+ /*
|
|
|
+ * If no sched_clock function has been provided at that point,
|
|
|
+ * make it the final one one.
|
|
|
+ */
|
|
|
+ if (read_sched_clock == jiffy_sched_clock_read)
|
|
|
+ setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
|
|
|
+
|
|
|
sched_clock_poll(sched_clock_timer.data);
|
|
|
}
|