Browse Source

Merge commit 'v2.6.38-rc1' into kbuild/packaging

Michal Marek 14 years ago
parent
commit
2d8ad87195
100 changed files with 5699 additions and 1070 deletions
  1. 12 7
      .gitignore
  2. 1 0
      .mailmap
  3. 6 8
      CREDITS
  4. 8 4
      Documentation/00-INDEX
  5. 0 9
      Documentation/ABI/obsolete/dv1394
  6. 22 0
      Documentation/ABI/obsolete/proc-pid-oom_adj
  7. 31 0
      Documentation/ABI/obsolete/sysfs-bus-usb
  8. 29 0
      Documentation/ABI/obsolete/sysfs-class-rfkill
  9. 14 0
      Documentation/ABI/removed/dv1394
  10. 15 0
      Documentation/ABI/removed/raw1394
  11. 0 16
      Documentation/ABI/removed/raw1394_legacy_isochronous
  12. 16 0
      Documentation/ABI/removed/video1394
  13. 67 0
      Documentation/ABI/stable/sysfs-class-rfkill
  14. 7 0
      Documentation/ABI/stable/sysfs-devices-node
  15. 4 0
      Documentation/ABI/stable/thermal-notification
  16. 20 0
      Documentation/ABI/testing/debugfs-ec
  17. 0 71
      Documentation/ABI/testing/debugfs-kmemtrace
  18. 6 6
      Documentation/ABI/testing/ima_policy
  19. 99 0
      Documentation/ABI/testing/sysfs-ata
  20. 14 0
      Documentation/ABI/testing/sysfs-block
  21. 99 0
      Documentation/ABI/testing/sysfs-block-zram
  22. 21 0
      Documentation/ABI/testing/sysfs-bus-i2c-devices-hm6352
  23. 27 0
      Documentation/ABI/testing/sysfs-bus-pci
  24. 83 0
      Documentation/ABI/testing/sysfs-bus-rbd
  25. 11 28
      Documentation/ABI/testing/sysfs-bus-usb
  26. 9 0
      Documentation/ABI/testing/sysfs-class-led
  27. 14 0
      Documentation/ABI/testing/sysfs-class-net-batman-adv
  28. 69 0
      Documentation/ABI/testing/sysfs-class-net-mesh
  29. 20 0
      Documentation/ABI/testing/sysfs-class-power
  30. 4 4
      Documentation/ABI/testing/sysfs-devices-memory
  31. 7 0
      Documentation/ABI/testing/sysfs-devices-node
  32. 21 0
      Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget
  33. 167 0
      Documentation/ABI/testing/sysfs-devices-power
  34. 1 1
      Documentation/ABI/testing/sysfs-devices-system-cpu
  35. 22 0
      Documentation/ABI/testing/sysfs-devices-system-ibm-rtl
  36. 43 0
      Documentation/ABI/testing/sysfs-driver-hid-picolcd
  37. 29 0
      Documentation/ABI/testing/sysfs-driver-hid-prodikeys
  38. 98 0
      Documentation/ABI/testing/sysfs-driver-hid-roccat-kone
  39. 108 0
      Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus
  40. 98 0
      Documentation/ABI/testing/sysfs-driver-hid-roccat-pyra
  41. 15 0
      Documentation/ABI/testing/sysfs-firmware-sfi
  42. 31 0
      Documentation/ABI/testing/sysfs-i2c-bmp085
  43. 12 0
      Documentation/ABI/testing/sysfs-module
  44. 21 7
      Documentation/ABI/testing/sysfs-platform-asus-laptop
  45. 5 5
      Documentation/ABI/testing/sysfs-platform-eeepc-laptop
  46. 10 0
      Documentation/ABI/testing/sysfs-platform-eeepc-wmi
  47. 6 0
      Documentation/ABI/testing/sysfs-platform-ideapad-laptop
  48. 57 0
      Documentation/ABI/testing/sysfs-power
  49. 19 0
      Documentation/ABI/testing/sysfs-tty
  50. 10 0
      Documentation/ABI/testing/sysfs-wacom
  51. 7 7
      Documentation/Changes
  52. 781 0
      Documentation/DMA-API-HOWTO.txt
  53. 36 92
      Documentation/DMA-API.txt
  54. 574 0
      Documentation/DocBook/80211.tmpl
  55. 5 5
      Documentation/DocBook/Makefile
  56. 11 2
      Documentation/DocBook/device-drivers.tmpl
  57. 1 1
      Documentation/DocBook/deviceiobook.tmpl
  58. 840 0
      Documentation/DocBook/drm.tmpl
  59. 16 3
      Documentation/DocBook/dvb/dvbapi.xml
  60. 1 0
      Documentation/DocBook/dvb/frontend.h.xml
  61. 8 2
      Documentation/DocBook/dvb/frontend.xml
  62. 52 32
      Documentation/DocBook/genericirq.tmpl
  63. 8 3
      Documentation/DocBook/kernel-api.tmpl
  64. 15 12
      Documentation/DocBook/kernel-locking.tmpl
  65. 623 180
      Documentation/DocBook/kgdb.tmpl
  66. 29 36
      Documentation/DocBook/libata.tmpl
  67. 0 338
      Documentation/DocBook/mac80211.tmpl
  68. 18 0
      Documentation/DocBook/media-entities.tmpl
  69. 4 4
      Documentation/DocBook/media.tmpl
  70. 5 5
      Documentation/DocBook/mtdnand.tmpl
  71. 1 1
      Documentation/DocBook/scsi.tmpl
  72. 6 6
      Documentation/DocBook/sh.tmpl
  73. 1 0
      Documentation/DocBook/stylesheet.xsl
  74. 18 0
      Documentation/DocBook/tracepoint.tmpl
  75. 3 3
      Documentation/DocBook/uio-howto.tmpl
  76. 1 1
      Documentation/DocBook/v4l/common.xml
  77. 88 67
      Documentation/DocBook/v4l/compat.xml
  78. 42 6
      Documentation/DocBook/v4l/controls.xml
  79. 31 0
      Documentation/DocBook/v4l/dev-event.xml
  80. 51 17
      Documentation/DocBook/v4l/dev-rds.xml
  81. 13 16
      Documentation/DocBook/v4l/dev-teletext.xml
  82. 1 1
      Documentation/DocBook/v4l/fdl-appendix.xml
  83. 2 3
      Documentation/DocBook/v4l/func-ioctl.xml
  84. 16 5
      Documentation/DocBook/v4l/io.xml
  85. 251 0
      Documentation/DocBook/v4l/lirc_device_interface.xml
  86. 78 0
      Documentation/DocBook/v4l/pixfmt-packed-rgb.xml
  87. 90 0
      Documentation/DocBook/v4l/pixfmt-srggb10.xml
  88. 67 0
      Documentation/DocBook/v4l/pixfmt-srggb8.xml
  89. 79 0
      Documentation/DocBook/v4l/pixfmt-y10.xml
  90. 41 7
      Documentation/DocBook/v4l/pixfmt.xml
  91. 2 0
      Documentation/DocBook/v4l/remote_controllers.xml
  92. 13 2
      Documentation/DocBook/v4l/v4l2.xml
  93. 87 19
      Documentation/DocBook/v4l/videodev2.h.xml
  94. 131 0
      Documentation/DocBook/v4l/vidioc-dqevent.xml
  95. 1 1
      Documentation/DocBook/v4l/vidioc-enuminput.xml
  96. 1 2
      Documentation/DocBook/v4l/vidioc-g-dv-preset.xml
  97. 1 2
      Documentation/DocBook/v4l/vidioc-g-dv-timings.xml
  98. 1 1
      Documentation/DocBook/v4l/vidioc-g-parm.xml
  99. 35 19
      Documentation/DocBook/v4l/vidioc-qbuf.xml
  100. 5 3
      Documentation/DocBook/v4l/vidioc-query-dv-preset.xml

+ 12 - 7
.gitignore

@@ -35,13 +35,18 @@ modules.builtin
 #
 # Top-level generic files
 #
-tags
-TAGS
-vmlinux
-vmlinuz
-System.map
-Module.markers
-Module.symvers
+/tags
+/TAGS
+/linux
+/vmlinux
+/vmlinuz
+/System.map
+/Module.markers
+/Module.symvers
+
+#
+# git files that we don't want to ignore even it they are dot-files
+#
 !.gitignore
 !.mailmap
 

+ 1 - 0
.mailmap

@@ -105,3 +105,4 @@ Uwe Kleine-König <ukleinek@informatik.uni-freiburg.de>
 Uwe Kleine-König <ukl@pengutronix.de>
 Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
 Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
+Takashi YOSHII <takashi.yoshii.zj@renesas.com>

+ 6 - 8
CREDITS

@@ -2365,8 +2365,6 @@ E: acme@redhat.com
 W: http://oops.ghostprotocols.net:81/blog/
 P: 1024D/9224DF01 D5DF E3BB E3C8 BCBB F8AD  841A B6AB 4681 9224 DF01
 D: IPX, LLC, DCCP, cyc2x, wl3501_cs, net/ hacks
-S: R. Brasílio Itiberê, 4270/1010 - Água Verde
-S: 80240-060 - Curitiba - Paraná
 S: Brazil
 
 N: Karsten Merker
@@ -2813,8 +2811,8 @@ D: CDROM driver "sonycd535" (Sony CDU-535/531)
 N: Stelian Pop
 E: stelian@popies.net
 P: 1024D/EDBB6147 7B36 0E07 04BC 11DC A7A0  D3F7 7185 9E7A EDBB 6147
-D: sonypi, meye drivers, mct_u232 usb serial hacks
-S: Paris, France
+D: random kernel hacks
+S: Paimpont, France
 
 N: Pete Popov
 E: pete_popov@yahoo.com
@@ -3554,12 +3552,12 @@ E: cvance@nai.com
 D: portions of the Linux Security Module (LSM) framework and security modules
 
 N: Petr Vandrovec
-E: vandrove@vc.cvut.cz
+E: petr@vandrovec.name
 D: Small contributions to ncpfs
 D: Matrox framebuffer driver
-S: Chudenicka 8
-S: 10200 Prague 10, Hostivar
-S: Czech Republic
+S: 21513 Conradia Ct
+S: Cupertino, CA 95014
+S: USA
 
 N: Thibaut Varene
 E: T-Bone@parisc-linux.org

+ 8 - 4
Documentation/00-INDEX

@@ -32,8 +32,6 @@ DocBook/
 	- directory with DocBook templates etc. for kernel documentation.
 HOWTO
 	- the process and procedures of how to do Linux kernel development.
-IO-mapping.txt
-	- how to access I/O mapped memory from within device drivers.
 IPMI.txt
 	- info on Linux Intelligent Platform Management Interface (IPMI) Driver.
 IRQ-affinity.txt
@@ -84,6 +82,8 @@ blockdev/
 	- info on block devices & drivers
 btmrvl.txt
 	- info on Marvell Bluetooth driver usage.
+bus-virt-phys-mapping.txt
+	- how to access I/O mapped memory from within device drivers.
 cachetlb.txt
 	- describes the cache/TLB flushing interfaces Linux uses.
 cdrom/
@@ -130,8 +130,6 @@ edac.txt
 	- information on EDAC - Error Detection And Correction
 eisa.txt
 	- info on EISA bus support.
-exception.txt
-	- how Linux v2.2 handles exceptions without verify_area etc.
 fault-injection/
 	- dir with docs about the fault injection capabilities infrastructure.
 fb/
@@ -168,6 +166,8 @@ initrd.txt
 	- how to use the RAM disk as an initial/temporary root filesystem.
 input/
 	- info on Linux input device support.
+io-mapping.txt
+	- description of io_mapping functions in linux/io-mapping.h
 io_ordering.txt
 	- info on ordering I/O writes to memory-mapped addresses.
 ioctl/
@@ -232,6 +232,8 @@ memory.txt
 	- info on typical Linux memory problems.
 mips/
 	- directory with info about Linux on MIPS architecture.
+mmc/
+	- directory with info about the MMC subsystem
 mono.txt
 	- how to execute Mono-based .NET binaries with the help of BINFMT_MISC.
 mutex-design.txt
@@ -250,6 +252,8 @@ numastat.txt
 	- info on how to read Numa policy hit/miss statistics in sysfs.
 oops-tracing.txt
 	- how to decode those nasty internal kernel error dump messages.
+padata.txt
+	- An introduction to the "padata" parallel execution API
 parisc/
 	- directory with info on using Linux on PA-RISC architecture.
 parport.txt

+ 0 - 9
Documentation/ABI/obsolete/dv1394

@@ -1,9 +0,0 @@
-What:		dv1394 (a.k.a. "OHCI-DV I/O support" for FireWire)
-Contact:	linux1394-devel@lists.sourceforge.net
-Description:
-	New application development should use raw1394 + userspace libraries
-	instead, notably libiec61883 which is functionally equivalent.
-
-Users:
-	ffmpeg/libavformat (used by a variety of media players)
-	dvgrab v1.x (replaced by dvgrab2 on top of raw1394 and resp. libraries)

+ 22 - 0
Documentation/ABI/obsolete/proc-pid-oom_adj

@@ -0,0 +1,22 @@
+What:	/proc/<pid>/oom_adj
+When:	August 2012
+Why:	/proc/<pid>/oom_adj allows userspace to influence the oom killer's
+	badness heuristic used to determine which task to kill when the kernel
+	is out of memory.
+
+	The badness heuristic has since been rewritten since the introduction of
+	this tunable such that its meaning is deprecated.  The value was
+	implemented as a bitshift on a score generated by the badness()
+	function that did not have any precise units of measure.  With the
+	rewrite, the score is given as a proportion of available memory to the
+	task allocating pages, so using a bitshift which grows the score
+	exponentially is, thus, impossible to tune with fine granularity.
+
+	A much more powerful interface, /proc/<pid>/oom_score_adj, was
+	introduced with the oom killer rewrite that allows users to increase or
+	decrease the badness() score linearly.  This interface will replace
+	/proc/<pid>/oom_adj.
+
+	A warning will be emitted to the kernel log if an application uses this
+	deprecated interface.  After it is printed once, future warnings will be
+	suppressed until the kernel is rebooted.

+ 31 - 0
Documentation/ABI/obsolete/sysfs-bus-usb

@@ -0,0 +1,31 @@
+What:		/sys/bus/usb/devices/.../power/level
+Date:		March 2007
+KernelVersion:	2.6.21
+Contact:	Alan Stern <stern@rowland.harvard.edu>
+Description:
+		Each USB device directory will contain a file named
+		power/level.  This file holds a power-level setting for
+		the device, either "on" or "auto".
+
+		"on" means that the device is not allowed to autosuspend,
+		although normal suspends for system sleep will still
+		be honored.  "auto" means the device will autosuspend
+		and autoresume in the usual manner, according to the
+		capabilities of its driver.
+
+		During normal use, devices should be left in the "auto"
+		level.  The "on" level is meant for administrative uses.
+		If you want to suspend a device immediately but leave it
+		free to wake up in response to I/O requests, you should
+		write "0" to power/autosuspend.
+
+		Device not capable of proper suspend and resume should be
+		left in the "on" level.  Although the USB spec requires
+		devices to support suspend/resume, many of them do not.
+		In fact so many don't that by default, the USB core
+		initializes all non-hub devices in the "on" level.  Some
+		drivers may change this setting when they are bound.
+
+		This file is deprecated and will be removed after 2010.
+		Use the power/control file instead; it does exactly the
+		same thing.

+ 29 - 0
Documentation/ABI/obsolete/sysfs-class-rfkill

@@ -0,0 +1,29 @@
+rfkill - radio frequency (RF) connector kill switch support
+
+For details to this subsystem look at Documentation/rfkill.txt.
+
+What:		/sys/class/rfkill/rfkill[0-9]+/state
+Date:		09-Jul-2007
+KernelVersion	v2.6.22
+Contact:	linux-wireless@vger.kernel.org
+Description: 	Current state of the transmitter.
+		This file is deprecated and sheduled to be removed in 2014,
+		because its not possible to express the 'soft and hard block'
+		state of the rfkill driver.
+Values: 	A numeric value.
+		0: RFKILL_STATE_SOFT_BLOCKED
+			transmitter is turned off by software
+		1: RFKILL_STATE_UNBLOCKED
+			transmitter is (potentially) active
+		2: RFKILL_STATE_HARD_BLOCKED
+			transmitter is forced off by something outside of
+			the driver's control.
+
+What:		/sys/class/rfkill/rfkill[0-9]+/claim
+Date:		09-Jul-2007
+KernelVersion	v2.6.22
+Contact:	linux-wireless@vger.kernel.org
+Description:	This file is deprecated because there no longer is a way to
+		claim just control over a single rfkill instance.
+		This file is scheduled to be removed in 2012.
+Values: 	0: Kernel handles events

+ 14 - 0
Documentation/ABI/removed/dv1394

@@ -0,0 +1,14 @@
+What:		dv1394 (a.k.a. "OHCI-DV I/O support" for FireWire)
+Date:		May 2010 (scheduled), finally removed in kernel v2.6.37
+Contact:	linux1394-devel@lists.sourceforge.net
+Description:
+	/dev/dv1394/* were character device files, one for each FireWire
+	controller and for NTSC and PAL respectively, from which DV data
+	could be received by read() or transmitted by write().  A few
+	ioctl()s allowed limited control.
+	This special-purpose interface has been superseded by libraw1394 +
+	libiec61883 which are functionally equivalent, support HDV, and
+	transparently work on top of the newer firewire kernel drivers.
+
+Users:
+	ffmpeg/libavformat (if configured for DV1394)

+ 15 - 0
Documentation/ABI/removed/raw1394

@@ -0,0 +1,15 @@
+What:		raw1394 (a.k.a. "Raw IEEE1394 I/O support" for FireWire)
+Date:		May 2010 (scheduled), finally removed in kernel v2.6.37
+Contact:	linux1394-devel@lists.sourceforge.net
+Description:
+	/dev/raw1394 was a character device file that allowed low-level
+	access to FireWire buses.  Its major drawbacks were its inability
+	to implement sensible device security policies, and its low level
+	of abstraction that required userspace clients do duplicate much
+	of the kernel's ieee1394 core functionality.
+	Replaced by /dev/fw*, i.e. the <linux/firewire-cdev.h> ABI of
+	firewire-core.
+
+Users:
+	libraw1394 (works with firewire-cdev too, transparent to library ABI
+	users)

+ 0 - 16
Documentation/ABI/removed/raw1394_legacy_isochronous

@@ -1,16 +0,0 @@
-What:		legacy isochronous ABI of raw1394 (1st generation iso ABI)
-Date:		June 2007 (scheduled), removed in kernel v2.6.23
-Contact:	linux1394-devel@lists.sourceforge.net
-Description:
-	The two request types RAW1394_REQ_ISO_SEND, RAW1394_REQ_ISO_LISTEN have
-	been deprecated for quite some time.  They are very inefficient as they
-	come with high interrupt load and several layers of callbacks for each
-	packet.  Because of these deficiencies, the video1394 and dv1394 drivers
-	and the 3rd-generation isochronous ABI in raw1394 (rawiso) were created.
-
-Users:
-	libraw1394 users via the long deprecated API raw1394_iso_write,
-	raw1394_start_iso_write, raw1394_start_iso_rcv, raw1394_stop_iso_rcv
-
-	libdc1394, which optionally uses these old libraw1394 calls
-	alternatively to the more efficient video1394 ABI

+ 16 - 0
Documentation/ABI/removed/video1394

@@ -0,0 +1,16 @@
+What:		video1394 (a.k.a. "OHCI-1394 Video support" for FireWire)
+Date:		May 2010 (scheduled), finally removed in kernel v2.6.37
+Contact:	linux1394-devel@lists.sourceforge.net
+Description:
+	/dev/video1394/* were character device files, one for each FireWire
+	controller, which were used for isochronous I/O.  It was added as an
+	alternative to raw1394's isochronous I/O functionality which had
+	performance issues in its first generation.  Any video1394 user had
+	to use raw1394 + libraw1394 too because video1394 did not provide
+	asynchronous I/O for device discovery and configuration.
+	Replaced by /dev/fw*, i.e. the <linux/firewire-cdev.h> ABI of
+	firewire-core.
+
+Users:
+	libdc1394 (works with firewire-cdev too, transparent to library ABI
+	users)

+ 67 - 0
Documentation/ABI/stable/sysfs-class-rfkill

@@ -0,0 +1,67 @@
+rfkill - radio frequency (RF) connector kill switch support
+
+For details to this subsystem look at Documentation/rfkill.txt.
+
+For the deprecated /sys/class/rfkill/*/state and
+/sys/class/rfkill/*/claim knobs of this interface look in
+Documentation/ABI/obsolete/sysfs-class-rfkill.
+
+What: 		/sys/class/rfkill
+Date:		09-Jul-2007
+KernelVersion:	v2.6.22
+Contact:	linux-wireless@vger.kernel.org,
+Description: 	The rfkill class subsystem folder.
+		Each registered rfkill driver is represented by an rfkillX
+		subfolder (X being an integer > 0).
+
+
+What:		/sys/class/rfkill/rfkill[0-9]+/name
+Date:		09-Jul-2007
+KernelVersion	v2.6.22
+Contact:	linux-wireless@vger.kernel.org
+Description: 	Name assigned by driver to this key (interface or driver name).
+Values: 	arbitrary string.
+
+
+What: 		/sys/class/rfkill/rfkill[0-9]+/type
+Date:		09-Jul-2007
+KernelVersion	v2.6.22
+Contact:	linux-wireless@vger.kernel.org
+Description: 	Driver type string ("wlan", "bluetooth", etc).
+Values: 	See include/linux/rfkill.h.
+
+
+What:		/sys/class/rfkill/rfkill[0-9]+/persistent
+Date:		09-Jul-2007
+KernelVersion	v2.6.22
+Contact:	linux-wireless@vger.kernel.org
+Description: 	Whether the soft blocked state is initialised from non-volatile
+		storage at startup.
+Values: 	A numeric value.
+		0: false
+		1: true
+
+
+What:		/sys/class/rfkill/rfkill[0-9]+/hard
+Date:		12-March-2010
+KernelVersion	v2.6.34
+Contact:	linux-wireless@vger.kernel.org
+Description: 	Current hardblock state. This file is read only.
+Values: 	A numeric value.
+		0: inactive
+			The transmitter is (potentially) active.
+		1: active
+			The transmitter is forced off by something outside of
+			the driver's control.
+
+
+What:		/sys/class/rfkill/rfkill[0-9]+/soft
+Date:		12-March-2010
+KernelVersion	v2.6.34
+Contact:	linux-wireless@vger.kernel.org
+Description:	Current softblock state. This file is read and write.
+Values: 	A numeric value.
+		0: inactive
+			The transmitter is (potentially) active.
+		1: active
+			The transmitter is turned off by software.

+ 7 - 0
Documentation/ABI/stable/sysfs-devices-node

@@ -0,0 +1,7 @@
+What:		/sys/devices/system/node/nodeX
+Date:		October 2002
+Contact:	Linux Memory Management list <linux-mm@kvack.org>
+Description:
+		When CONFIG_NUMA is enabled, this is a directory containing
+		information on node X such as what CPUs are local to the
+		node.

+ 4 - 0
Documentation/ABI/stable/thermal-notification

@@ -0,0 +1,4 @@
+What:		A notification mechanism for thermal related events
+Description:
+	This interface enables notification for thermal related events.
+	The notification is in the form of a netlink event.

+ 20 - 0
Documentation/ABI/testing/debugfs-ec

@@ -0,0 +1,20 @@
+What:		/sys/kernel/debug/ec/*/{gpe,use_global_lock,io}
+Date:		July 2010
+Contact:	Thomas Renninger <trenn@suse.de>
+Description:
+
+General information like which GPE is assigned to the EC and whether
+the global lock should get used.
+Knowing the EC GPE one can watch the amount of HW events related to
+the EC here (XY -> GPE number from /sys/kernel/debug/ec/*/gpe):
+/sys/firmware/acpi/interrupts/gpeXY
+
+The io file is binary and a userspace tool located here:
+ftp://ftp.suse.com/pub/people/trenn/sources/ec/
+should get used to read out the 256 Embedded Controller registers
+or writing to them.
+
+CAUTION: Do not write to the Embedded Controller if you don't know
+what you are doing! Rebooting afterwards also is a good idea.
+This can influence the way your machine is cooled and fans may
+not get switched on again after you did a wrong write.

+ 0 - 71
Documentation/ABI/testing/debugfs-kmemtrace

@@ -1,71 +0,0 @@
-What:		/sys/kernel/debug/kmemtrace/
-Date:		July 2008
-Contact:	Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
-Description:
-
-In kmemtrace-enabled kernels, the following files are created:
-
-/sys/kernel/debug/kmemtrace/
-	cpu<n>		(0400)	Per-CPU tracing data, see below. (binary)
-	total_overruns	(0400)	Total number of bytes which were dropped from
-				cpu<n> files because of full buffer condition,
-				non-binary. (text)
-	abi_version	(0400)	Kernel's kmemtrace ABI version. (text)
-
-Each per-CPU file should be read according to the relay interface. That is,
-the reader should set affinity to that specific CPU and, as currently done by
-the userspace application (though there are other methods), use poll() with
-an infinite timeout before every read(). Otherwise, erroneous data may be
-read. The binary data has the following _core_ format:
-
-	Event ID	(1 byte)	Unsigned integer, one of:
-		0 - represents an allocation (KMEMTRACE_EVENT_ALLOC)
-		1 - represents a freeing of previously allocated memory
-		    (KMEMTRACE_EVENT_FREE)
-	Type ID		(1 byte)	Unsigned integer, one of:
-		0 - this is a kmalloc() / kfree()
-		1 - this is a kmem_cache_alloc() / kmem_cache_free()
-		2 - this is a __get_free_pages() et al.
-	Event size	(2 bytes)	Unsigned integer representing the
-					size of this event. Used to extend
-					kmemtrace. Discard the bytes you
-					don't know about.
-	Sequence number	(4 bytes)	Signed integer used to reorder data
-					logged on SMP machines. Wraparound
-					must be taken into account, although
-					it is unlikely.
-	Caller address	(8 bytes)	Return address to the caller.
-	Pointer to mem	(8 bytes)	Pointer to target memory area. Can be
-					NULL, but not all such calls might be
-					recorded.
-
-In case of KMEMTRACE_EVENT_ALLOC events, the next fields follow:
-
-	Requested bytes	(8 bytes)	Total number of requested bytes,
-					unsigned, must not be zero.
-	Allocated bytes (8 bytes)	Total number of actually allocated
-					bytes, unsigned, must not be lower
-					than requested bytes.
-	Requested flags	(4 bytes)	GFP flags supplied by the caller.
-	Target CPU	(4 bytes)	Signed integer, valid for event id 1.
-					If equal to -1, target CPU is the same
-					as origin CPU, but the reverse might
-					not be true.
-
-The data is made available in the same endianness the machine has.
-
-Other event ids and type ids may be defined and added. Other fields may be
-added by increasing event size, but see below for details.
-Every modification to the ABI, including new id definitions, are followed
-by bumping the ABI version by one.
-
-Adding new data to the packet (features) is done at the end of the mandatory
-data:
-	Feature size	(2 byte)
-	Feature ID	(1 byte)
-	Feature data	(Feature size - 3 bytes)
-
-
-Users:
-	kmemtrace-user - git://repo.or.cz/kmemtrace-user.git
-

+ 6 - 6
Documentation/ABI/testing/ima_policy

@@ -20,7 +20,7 @@ Description:
 			lsm:	[[subj_user=] [subj_role=] [subj_type=]
 				 [obj_user=] [obj_role=] [obj_type=]]
 
-		base: 	func:= [BPRM_CHECK][FILE_MMAP][INODE_PERMISSION]
+		base: 	func:= [BPRM_CHECK][FILE_MMAP][FILE_CHECK]
 			mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
 			fsmagic:= hex value
 			uid:= decimal value
@@ -40,11 +40,11 @@ Description:
 
 			measure func=BPRM_CHECK
 			measure func=FILE_MMAP mask=MAY_EXEC
-			measure func=INODE_PERM mask=MAY_READ uid=0
+			measure func=FILE_CHECK mask=MAY_READ uid=0
 
 		The default policy measures all executables in bprm_check,
 		all files mmapped executable in file_mmap, and all files
-		open for read by root in inode_permission.
+		open for read by root in do_filp_open.
 
 		Examples of LSM specific definitions:
 
@@ -54,8 +54,8 @@ Description:
 
 			dont_measure obj_type=var_log_t
 			dont_measure obj_type=auditd_log_t
-			measure subj_user=system_u func=INODE_PERM mask=MAY_READ
-			measure subj_role=system_r func=INODE_PERM mask=MAY_READ
+			measure subj_user=system_u func=FILE_CHECK mask=MAY_READ
+			measure subj_role=system_r func=FILE_CHECK mask=MAY_READ
 
 		Smack:
-			measure subj_user=_ func=INODE_PERM mask=MAY_READ
+			measure subj_user=_ func=FILE_CHECK mask=MAY_READ

+ 99 - 0
Documentation/ABI/testing/sysfs-ata

@@ -0,0 +1,99 @@
+What:		/sys/class/ata_...
+Date:		August 2008
+Contact:	Gwendal Grignou<gwendal@google.com>
+Description:
+
+Provide a place in sysfs for storing the ATA topology of the system.  This allows
+retrieving various information about ATA objects.
+
+Files under /sys/class/ata_port
+-------------------------------
+
+	For each port, a directory ataX is created where X is the ata_port_id of
+	the port. The device parent is the ata host device.
+
+idle_irq (read)
+
+	Number of IRQ received by the port while idle [some ata HBA only].
+
+nr_pmp_links (read)
+
+	If a SATA Port Multiplier (PM) is connected, number of link behind it.
+
+Files under /sys/class/ata_link
+-------------------------------
+
+	Behind each port, there is a ata_link. If there is a SATA PM in the
+	topology, 15 ata_link objects are created.
+
+	If a link is behind a port, the directory name is linkX, where X is
+	ata_port_id of the port.
+	If a link is behind a PM, its name is linkX.Y where X is ata_port_id
+	of the parent port and Y the PM port.
+
+hw_sata_spd_limit
+
+	Maximum speed supported by the connected SATA device.
+
+sata_spd_limit
+
+	Maximum speed imposed by libata.
+
+sata_spd
+
+	Current speed of the link [1.5, 3Gps,...].
+
+Files under /sys/class/ata_device
+---------------------------------
+
+	Behind each link, up to two ata device are created.
+	The name of the directory is devX[.Y].Z where:
+	- X is ata_port_id of the port where the device is connected,
+	- Y the port of the PM if any, and
+	- Z the device id: for PATA, there is usually 2 devices [0,1],
+	only 1 for SATA.
+
+class
+	Device class. Can be "ata" for disk, "atapi" for packet device,
+	"pmp" for PM, or "none" if no device was found behind the link.
+
+dma_mode
+
+	Transfer modes supported by the device when in DMA mode.
+	Mostly used by PATA device.
+
+pio_mode
+
+	Transfer modes supported by the device when in PIO mode.
+	Mostly used by PATA device.
+
+xfer_mode
+
+	Current transfer mode.
+
+id
+
+	Cached result of IDENTIFY command, as described in ATA8 7.16 and 7.17.
+	Only valid if the device is not a PM.
+
+gscr
+
+	Cached result of the dump of PM GSCR register.
+	Valid registers are:
+	0: 	SATA_PMP_GSCR_PROD_ID,
+	1: 	SATA_PMP_GSCR_REV,
+	2: 	SATA_PMP_GSCR_PORT_INFO,
+	32:	SATA_PMP_GSCR_ERROR,
+	33:	SATA_PMP_GSCR_ERROR_EN,
+	64:	SATA_PMP_GSCR_FEAT,
+	96:	SATA_PMP_GSCR_FEAT_EN,
+	130:	SATA_PMP_GSCR_SII_GPIO
+	Only valid if the device is a PM.
+
+spdn_cnt
+
+	Number of time libata decided to lower the speed of link due to errors.
+
+ering
+
+	Formatted output of the error ring of the device.

+ 14 - 0
Documentation/ABI/testing/sysfs-block

@@ -128,3 +128,17 @@ Description:
 		preferred request size for workloads where sustained
 		throughput is desired.  If no optimal I/O size is
 		reported this file contains 0.
+
+What:		/sys/block/<disk>/queue/nomerges
+Date:		January 2010
+Contact:
+Description:
+		Standard I/O elevator operations include attempts to
+		merge contiguous I/Os. For known random I/O loads these
+		attempts will always fail and result in extra cycles
+		being spent in the kernel. This allows one to turn off
+		this behavior on one of two ways: When set to 1, complex
+		merge checks are disabled, but the simple one-shot merges
+		with the previous I/O request are enabled. When set to 2,
+		all merge tries are disabled. The default value is 0 -
+		which enables all types of merge tries.

+ 99 - 0
Documentation/ABI/testing/sysfs-block-zram

@@ -0,0 +1,99 @@
+What:		/sys/block/zram<id>/disksize
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The disksize file is read-write and specifies the disk size
+		which represents the limit on the *uncompressed* worth of data
+		that can be stored in this disk.
+
+What:		/sys/block/zram<id>/initstate
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The disksize file is read-only and shows the initialization
+		state of the device.
+
+What:		/sys/block/zram<id>/reset
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The disksize file is write-only and allows resetting the
+		device. The reset operation frees all the memory assocaited
+		with this device.
+
+What:		/sys/block/zram<id>/num_reads
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The num_reads file is read-only and specifies the number of
+		reads (failed or successful) done on this device.
+
+What:		/sys/block/zram<id>/num_writes
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The num_writes file is read-only and specifies the number of
+		writes (failed or successful) done on this device.
+
+What:		/sys/block/zram<id>/invalid_io
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The invalid_io file is read-only and specifies the number of
+		non-page-size-aligned I/O requests issued to this device.
+
+What:		/sys/block/zram<id>/notify_free
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The notify_free file is read-only and specifies the number of
+		swap slot free notifications received by this device. These
+		notifications are send to a swap block device when a swap slot
+		is freed. This statistic is applicable only when this disk is
+		being used as a swap disk.
+
+What:		/sys/block/zram<id>/discard
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The discard file is read-only and specifies the number of
+		discard requests received by this device. These requests
+		provide information to block device regarding blocks which are
+		no longer used by filesystem.
+
+What:		/sys/block/zram<id>/zero_pages
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The zero_pages file is read-only and specifies number of zero
+		filled pages written to this disk. No memory is allocated for
+		such pages.
+
+What:		/sys/block/zram<id>/orig_data_size
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The orig_data_size file is read-only and specifies uncompressed
+		size of data stored in this disk. This excludes zero-filled
+		pages (zero_pages) since no memory is allocated for them.
+		Unit: bytes
+
+What:		/sys/block/zram<id>/compr_data_size
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The compr_data_size file is read-only and specifies compressed
+		size of data stored in this disk. So, compression ratio can be
+		calculated using orig_data_size and this statistic.
+		Unit: bytes
+
+What:		/sys/block/zram<id>/mem_used_total
+Date:		August 2010
+Contact:	Nitin Gupta <ngupta@vflare.org>
+Description:
+		The mem_used_total file is read-only and specifies the amount
+		of memory, including allocator fragmentation and metadata
+		overhead, allocated for this disk. So, allocator space
+		efficiency can be calculated using compr_data_size and this
+		statistic.
+		Unit: bytes

+ 21 - 0
Documentation/ABI/testing/sysfs-bus-i2c-devices-hm6352

@@ -0,0 +1,21 @@
+Where:		/sys/bus/i2c/devices/.../heading0_input
+Date:		April 2010
+Kernel Version: 2.6.36?
+Contact:	alan.cox@intel.com
+Description:	Reports the current heading from the compass as a floating
+		point value in degrees.
+
+Where:		/sys/bus/i2c/devices/.../power_state
+Date:		April 2010
+Kernel Version: 2.6.36?
+Contact:	alan.cox@intel.com
+Description:	Sets the power state of the device. 0 sets the device into
+		sleep mode, 1 wakes it up.
+
+Where:		/sys/bus/i2c/devices/.../calibration
+Date:		April 2010
+Kernel Version: 2.6.36?
+Contact:	alan.cox@intel.com
+Description:	Sets the calibration on or off (1 = on, 0 = off). See the
+		chip data sheet.
+

+ 27 - 0
Documentation/ABI/testing/sysfs-bus-pci

@@ -139,3 +139,30 @@ Contact:	linux-pci@vger.kernel.org
 Description:
 		This symbolic link points to the PCI hotplug controller driver
 		module that manages the hotplug slot.
+
+What:		/sys/bus/pci/devices/.../label
+Date:		July 2010
+Contact:	Narendra K <narendra_k@dell.com>, linux-bugs@dell.com
+Description:
+		Reading this attribute will provide the firmware
+		given name(SMBIOS type 41 string) of the PCI device.
+		The attribute will be created only if the firmware
+		has given a name to the PCI device.
+Users:
+		Userspace applications interested in knowing the
+		firmware assigned name of the PCI device.
+
+What:		/sys/bus/pci/devices/.../index
+Date:		July 2010
+Contact:	Narendra K <narendra_k@dell.com>, linux-bugs@dell.com
+Description:
+		Reading this attribute will provide the firmware
+		given instance(SMBIOS type 41 device type instance)
+		of the PCI device. The attribute will be created
+		only if the firmware has given a device type instance
+		to the PCI device.
+Users:
+		Userspace applications interested in knowing the
+		firmware assigned device type instance of the PCI
+		device that can help in understanding the firmware
+		intended order of the PCI device.

+ 83 - 0
Documentation/ABI/testing/sysfs-bus-rbd

@@ -0,0 +1,83 @@
+What:		/sys/bus/rbd/
+Date:		November 2010
+Contact:	Yehuda Sadeh <yehuda@hq.newdream.net>,
+		Sage Weil <sage@newdream.net>
+Description:
+
+Being used for adding and removing rbd block devices.
+
+Usage: <mon ip addr> <options> <pool name> <rbd image name> [snap name]
+
+ $ echo "192.168.0.1 name=admin rbd foo" > /sys/bus/rbd/add
+
+The snapshot name can be "-" or omitted to map the image read/write. A <dev-id>
+will be assigned for any registered block device. If snapshot is used, it will
+be mapped read-only.
+
+Removal of a device:
+
+  $ echo <dev-id> > /sys/bus/rbd/remove
+
+Entries under /sys/bus/rbd/devices/<dev-id>/
+--------------------------------------------
+
+client_id
+
+	The ceph unique client id that was assigned for this specific session.
+
+major
+
+	The block device major number.
+
+name
+
+	The name of the rbd image.
+
+pool
+
+	The pool where this rbd image resides. The pool-name pair is unique
+	per rados system.
+
+size
+
+	The size (in bytes) of the mapped block device.
+
+refresh
+
+	Writing to this file will reread the image header data and set
+	all relevant datastructures accordingly.
+
+current_snap
+
+	The current snapshot for which the device is mapped.
+
+create_snap
+
+	Create a snapshot:
+
+	 $ echo <snap-name> > /sys/bus/rbd/devices/<dev-id>/snap_create
+
+rollback_snap
+
+	Rolls back data to the specified snapshot. This goes over the entire
+	list of rados blocks and sends a rollback command to each.
+
+	 $ echo <snap-name> > /sys/bus/rbd/devices/<dev-id>/snap_rollback
+
+snap_*
+
+	A directory per each snapshot
+
+
+Entries under /sys/bus/rbd/devices/<dev-id>/snap_<snap-name>
+-------------------------------------------------------------
+
+id
+
+	The rados internal snapshot id assigned for this snapshot
+
+size
+
+	The size of the image when this snapshot was taken.
+
+

+ 11 - 28
Documentation/ABI/testing/sysfs-bus-usb

@@ -14,34 +14,6 @@ Description:
 		The autosuspend delay for newly-created devices is set to
 		the value of the usbcore.autosuspend module parameter.
 
-What:		/sys/bus/usb/devices/.../power/level
-Date:		March 2007
-KernelVersion:	2.6.21
-Contact:	Alan Stern <stern@rowland.harvard.edu>
-Description:
-		Each USB device directory will contain a file named
-		power/level.  This file holds a power-level setting for
-		the device, either "on" or "auto".
-
-		"on" means that the device is not allowed to autosuspend,
-		although normal suspends for system sleep will still
-		be honored.  "auto" means the device will autosuspend
-		and autoresume in the usual manner, according to the
-		capabilities of its driver.
-
-		During normal use, devices should be left in the "auto"
-		level.  The "on" level is meant for administrative uses.
-		If you want to suspend a device immediately but leave it
-		free to wake up in response to I/O requests, you should
-		write "0" to power/autosuspend.
-
-		Device not capable of proper suspend and resume should be
-		left in the "on" level.  Although the USB spec requires
-		devices to support suspend/resume, many of them do not.
-		In fact so many don't that by default, the USB core
-		initializes all non-hub devices in the "on" level.  Some
-		drivers may change this setting when they are bound.
-
 What:		/sys/bus/usb/devices/.../power/persist
 Date:		May 2007
 KernelVersion:	2.6.23
@@ -159,3 +131,14 @@ Description:
 		device.  This is useful to ensure auto probing won't
 		match the driver to the device.  For example:
 		# echo "046d c315" > /sys/bus/usb/drivers/foo/remove_id
+
+What:		/sys/bus/usb/device/.../avoid_reset_quirk
+Date:		December 2009
+Contact:	Oliver Neukum <oliver@neukum.org>
+Description:
+		Writing 1 to this file tells the kernel that this
+		device will morph into another mode when it is reset.
+		Drivers will not use reset for error handling for
+		such devices.
+Users:
+		usb_modeswitch

+ 9 - 0
Documentation/ABI/testing/sysfs-class-led

@@ -26,3 +26,12 @@ Description:
 		scheduler is chosen. Trigger specific parameters can appear in
 		/sys/class/leds/<led> once a given trigger is selected.
 
+What:		/sys/class/leds/<led>/inverted
+Date:		January 2011
+KernelVersion:	2.6.38
+Contact:	Richard Purdie <rpurdie@rpsys.net>
+Description:
+		Invert the LED on/off state. This parameter is specific to
+		gpio and backlight triggers. In case of the backlight trigger,
+		it is usefull when driving a LED which is intended to indicate
+		a device in a standby like state.

+ 14 - 0
Documentation/ABI/testing/sysfs-class-net-batman-adv

@@ -0,0 +1,14 @@
+
+What:           /sys/class/net/<iface>/batman-adv/mesh_iface
+Date:           May 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                The /sys/class/net/<iface>/batman-adv/mesh_iface file
+                displays the batman mesh interface this <iface>
+                currently is associated with.
+
+What:           /sys/class/net/<iface>/batman-adv/iface_status
+Date:           May 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Indicates the status of <iface> as it is seen by batman.

+ 69 - 0
Documentation/ABI/testing/sysfs-class-net-mesh

@@ -0,0 +1,69 @@
+
+What:           /sys/class/net/<mesh_iface>/mesh/aggregated_ogms
+Date:           May 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Indicates whether the batman protocol messages of the
+                mesh <mesh_iface> shall be aggregated or not.
+
+What:           /sys/class/net/<mesh_iface>/mesh/bonding
+Date:           June 2010
+Contact:        Simon Wunderlich <siwu@hrz.tu-chemnitz.de>
+Description:
+                Indicates whether the data traffic going through the
+                mesh will be sent using multiple interfaces at the
+                same time (if available).
+
+What:           /sys/class/net/<mesh_iface>/mesh/fragmentation
+Date:           October 2010
+Contact:        Andreas Langer <an.langer@gmx.de>
+Description:
+                Indicates whether the data traffic going through the
+                mesh will be fragmented or silently discarded if the
+                packet size exceeds the outgoing interface MTU.
+
+What:           /sys/class/net/<mesh_iface>/mesh/gw_bandwidth
+Date:           October 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Defines the bandwidth which is propagated by this
+                node if gw_mode was set to 'server'.
+
+What:           /sys/class/net/<mesh_iface>/mesh/gw_mode
+Date:           October 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Defines the state of the gateway features. Can be
+                either 'off', 'client' or 'server'.
+
+What:           /sys/class/net/<mesh_iface>/mesh/gw_sel_class
+Date:           October 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Defines the selection criteria this node will use
+                to choose a gateway if gw_mode was set to 'client'.
+
+What:           /sys/class/net/<mesh_iface>/mesh/orig_interval
+Date:           May 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Defines the interval in milliseconds in which batman
+                sends its protocol messages.
+
+What:           /sys/class/net/<mesh_iface>/mesh/hop_penalty
+Date:           Oct 2010
+Contact:        Linus Lüssing <linus.luessing@web.de>
+Description:
+		Defines the penalty which will be applied to an
+		originator message's tq-field on every hop.
+
+What:           /sys/class/net/<mesh_iface>/mesh/vis_mode
+Date:           May 2010
+Contact:        Marek Lindner <lindner_marek@yahoo.de>
+Description:
+                Each batman node only maintains information about its
+                own local neighborhood, therefore generating graphs
+                showing the topology of the entire mesh is not easily
+                feasible without having a central instance to collect
+                the local topologies from all nodes. This file allows
+                to activate the collecting (server) mode.

+ 20 - 0
Documentation/ABI/testing/sysfs-class-power

@@ -0,0 +1,20 @@
+What:		/sys/class/power/ds2760-battery.*/charge_now
+Date:		May 2010
+KernelVersion:	2.6.35
+Contact:	Daniel Mack <daniel@caiaq.de>
+Description:
+		This file is writeable and can be used to set the current
+		coloumb counter value inside the battery monitor chip. This
+		is needed for unavoidable corrections of aging batteries.
+		A userspace daemon can monitor the battery charging logic
+		and once the counter drops out of considerable bounds, take
+		appropriate action.
+
+What:		/sys/class/power/ds2760-battery.*/charge_full
+Date:		May 2010
+KernelVersion:	2.6.35
+Contact:	Daniel Mack <daniel@caiaq.de>
+Description:
+		This file is writeable and can be used to set the assumed
+		battery 'full level'. As batteries age, this value has to be
+		amended over time.

+ 4 - 4
Documentation/ABI/testing/sysfs-devices-memory

@@ -7,7 +7,7 @@ Description:
 		added or removed dynamically to represent hot-add/remove
 		operations.
 Users:		hotplug memory add/remove tools
-		https://w3.opensource.ibm.com/projects/powerpc-utils/
+		http://www.ibm.com/developerworks/wikis/display/LinuxP/powerpc-utils
 
 What:		/sys/devices/system/memory/memoryX/removable
 Date:		June 2008
@@ -19,7 +19,7 @@ Description:
 		identify removable sections of the memory before attempting
 		potentially expensive hot-remove memory operation
 Users:		hotplug memory remove tools
-		https://w3.opensource.ibm.com/projects/powerpc-utils/
+		http://www.ibm.com/developerworks/wikis/display/LinuxP/powerpc-utils	
 
 What:		/sys/devices/system/memory/memoryX/phys_device
 Date:		September 2008
@@ -43,7 +43,7 @@ Date:		September 2008
 Contact:	Badari Pulavarty <pbadari@us.ibm.com>
 Description:
 		The file /sys/devices/system/memory/memoryX/state
-		is read-write.  When read, it's contents show the
+		is read-write.  When read, its contents show the
 		online/offline state of the memory section.  When written,
 		root can toggle the the online/offline state of a removable
 		memory section (see removable file description above)
@@ -58,7 +58,7 @@ Description:
 		by root to offline that section.
 		# echo offline > /sys/devices/system/memory/memory22/state
 Users:		hotplug memory remove tools
-		https://w3.opensource.ibm.com/projects/powerpc-utils/
+		http://www.ibm.com/developerworks/wikis/display/LinuxP/powerpc-utils
 
 
 What:		/sys/devices/system/memoryX/nodeY

+ 7 - 0
Documentation/ABI/testing/sysfs-devices-node

@@ -0,0 +1,7 @@
+What:		/sys/devices/system/node/nodeX/compact
+Date:		February 2010
+Contact:	Mel Gorman <mel@csn.ul.ie>
+Description:
+		When this file is written to, all memory within that node
+		will be compacted. When it completes, memory will be freed
+		into blocks which have as many contiguous pages as possible

+ 21 - 0
Documentation/ABI/testing/sysfs-devices-platform-_UDC_-gadget

@@ -0,0 +1,21 @@
+What:		/sys/devices/platform/_UDC_/gadget/suspended
+Date:		April 2010
+Contact:	Fabien Chouteau <fabien.chouteau@barco.com>
+Description:
+		Show the suspend state of an USB composite gadget.
+		1 -> suspended
+		0 -> resumed
+
+		(_UDC_ is the name of the USB Device Controller driver)
+
+What:           /sys/devices/platform/_UDC_/gadget/gadget-lunX/nofua
+Date:           July 2010
+Contact:        Andy Shevchenko <andy.shevchenko@gmail.com>
+Description:
+		Show or set the reaction on the FUA (Force Unit Access) bit in
+		the SCSI WRITE(10,12) commands when a gadget in USB Mass
+		Storage mode.
+
+		Possible values are:
+			1 -> ignore the FUA flag
+			0 -> obey the FUA flag

+ 167 - 0
Documentation/ABI/testing/sysfs-devices-power

@@ -0,0 +1,167 @@
+What:		/sys/devices/.../power/
+Date:		January 2009
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../power directory contains attributes
+		allowing the user space to check and modify some power
+		management related properties of given device.
+
+What:		/sys/devices/.../power/wakeup
+Date:		January 2009
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../power/wakeup attribute allows the user
+		space to check if the device is enabled to wake up the system
+		from sleep states, such as the memory sleep state (suspend to
+		RAM) and hibernation (suspend to disk), and to enable or disable
+		it to do that as desired.
+
+		Some devices support "wakeup" events, which are hardware signals
+		used to activate the system from a sleep state.  Such devices
+		have one of the following two values for the sysfs power/wakeup
+		file:
+
+		+ "enabled\n" to issue the events;
+		+ "disabled\n" not to do so;
+
+		In that cases the user space can change the setting represented
+		by the contents of this file by writing either "enabled", or
+		"disabled" to it.
+
+		For the devices that are not capable of generating system wakeup
+		events this file contains "\n".  In that cases the user space
+		cannot modify the contents of this file and the device cannot be
+		enabled to wake up the system.
+
+What:		/sys/devices/.../power/control
+Date:		January 2009
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../power/control attribute allows the user
+		space to control the run-time power management of the device.
+
+		All devices have one of the following two values for the
+		power/control file:
+
+		+ "auto\n" to allow the device to be power managed at run time;
+		+ "on\n" to prevent the device from being power managed;
+
+		The default for all devices is "auto", which means that they may
+		be subject to automatic power management, depending on their
+		drivers.  Changing this attribute to "on" prevents the driver
+		from power managing the device at run time.  Doing that while
+		the device is suspended causes it to be woken up.
+
+What:		/sys/devices/.../power/async
+Date:		January 2009
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../async attribute allows the user space to
+		enable or diasble the device's suspend and resume callbacks to
+		be executed asynchronously (ie. in separate threads, in parallel
+		with the main suspend/resume thread) during system-wide power
+		transitions (eg. suspend to RAM, hibernation).
+
+		All devices have one of the following two values for the
+		power/async file:
+
+		+ "enabled\n" to permit the asynchronous suspend/resume;
+		+ "disabled\n" to forbid it;
+
+		The value of this attribute may be changed by writing either
+		"enabled", or "disabled" to it.
+
+		It generally is unsafe to permit the asynchronous suspend/resume
+		of a device unless it is certain that all of the PM dependencies
+		of the device are known to the PM core.  However, for some
+		devices this attribute is set to "enabled" by bus type code or
+		device drivers and in that cases it should be safe to leave the
+		default value.
+
+What:		/sys/devices/.../power/wakeup_count
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_count attribute contains the number
+		of signaled wakeup events associated with the device.  This
+		attribute is read-only.  If the device is not enabled to wake up
+		the system from sleep states, this attribute is empty.
+
+What:		/sys/devices/.../power/wakeup_active_count
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_active_count attribute contains the
+		number of times the processing of wakeup events associated with
+		the device was completed (at the kernel level).  This attribute
+		is read-only.  If the device is not enabled to wake up the
+		system from sleep states, this attribute is empty.
+
+What:		/sys/devices/.../power/wakeup_hit_count
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_hit_count attribute contains the
+		number of times the processing of a wakeup event associated with
+		the device might prevent the system from entering a sleep state.
+		This attribute is read-only.  If the device is not enabled to
+		wake up the system from sleep states, this attribute is empty.
+
+What:		/sys/devices/.../power/wakeup_active
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_active attribute contains either 1,
+		or 0, depending on whether or not a wakeup event associated with
+		the device is being processed (1).  This attribute is read-only.
+		If the device is not enabled to wake up the system from sleep
+		states, this attribute is empty.
+
+What:		/sys/devices/.../power/wakeup_total_time_ms
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_total_time_ms attribute contains
+		the total time of processing wakeup events associated with the
+		device, in milliseconds.  This attribute is read-only.  If the
+		device is not enabled to wake up the system from sleep states,
+		this attribute is empty.
+
+What:		/sys/devices/.../power/wakeup_max_time_ms
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_max_time_ms attribute contains
+		the maximum time of processing a single wakeup event associated
+		with the device, in milliseconds.  This attribute is read-only.
+		If the device is not enabled to wake up the system from sleep
+		states, this attribute is empty.
+
+What:		/sys/devices/.../power/wakeup_last_time_ms
+Date:		September 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/devices/.../wakeup_last_time_ms attribute contains
+		the value of the monotonic clock corresponding to the time of
+		signaling the last wakeup event associated with the device, in
+		milliseconds.  This attribute is read-only.  If the device is
+		not enabled to wake up the system from sleep states, this
+		attribute is empty.
+
+What:		/sys/devices/.../power/autosuspend_delay_ms
+Date:		September 2010
+Contact:	Alan Stern <stern@rowland.harvard.edu>
+Description:
+		The /sys/devices/.../power/autosuspend_delay_ms attribute
+		contains the autosuspend delay value (in milliseconds).  Some
+		drivers do not want their device to suspend as soon as it
+		becomes idle at run time; they want the device to remain
+		inactive for a certain minimum period of time first.  That
+		period is called the autosuspend delay.  Negative values will
+		prevent the device from being suspended at run time (similar
+		to writing "on" to the power/control attribute).  Values >=
+		1000 will cause the autosuspend timer expiration to be rounded
+		up to the nearest second.
+
+		Not all drivers support this attribute.  If it isn't supported,
+		attempts to read or write it will yield I/O errors.

+ 1 - 1
Documentation/ABI/testing/sysfs-devices-system-cpu

@@ -197,7 +197,7 @@ Description:	These files exist in every cpu's cache index directories.
 		Currently, only AMD Family 10h Processors support cache index
 		disable, and only for their L3 caches.  See the BIOS and
 		Kernel Developer's Guide at
-		http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/31116-Public-GH-BKDG_3.20_2-4-09.pdf
+		http://support.amd.com/us/Embedded_TechDocs/31116-Public-GH-BKDG_3-28_5-28-09.pdf	
 		for formatting information and other details on the
 		cache index disable.
 Users:    joachim.deguara@amd.com

+ 22 - 0
Documentation/ABI/testing/sysfs-devices-system-ibm-rtl

@@ -0,0 +1,22 @@
+What:           state
+Date:           Sep 2010
+KernelVersion:  2.6.37
+Contact:        Vernon Mauery <vernux@us.ibm.com>
+Description:    The state file allows a means by which to change in and
+                out of Premium Real-Time Mode (PRTM), as well as the
+                ability to query the current state.
+                    0 => PRTM off
+                    1 => PRTM enabled
+Users:          The ibm-prtm userspace daemon uses this interface.
+
+
+What:           version
+Date:           Sep 2010
+KernelVersion:  2.6.37
+Contact:        Vernon Mauery <vernux@us.ibm.com>
+Description:    The version file provides a means by which to query
+                the RTL table version that lives in the Extended
+                BIOS Data Area (EBDA).
+Users:          The ibm-prtm userspace daemon uses this interface.
+
+

+ 43 - 0
Documentation/ABI/testing/sysfs-driver-hid-picolcd

@@ -0,0 +1,43 @@
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/operation_mode
+Date:		March 2010
+Contact:	Bruno Prémont <bonbons@linux-vserver.org>
+Description:	Make it possible to switch the PicoLCD device between LCD
+		(firmware) and bootloader (flasher) operation modes.
+
+		Reading: returns list of available modes, the active mode being
+		enclosed in brackets ('[' and ']')
+
+		Writing: causes operation mode switch. Permitted values are
+		the non-active mode names listed when read.
+
+		Note: when switching mode the current PicoLCD HID device gets
+		disconnected and reconnects after above delay (see attribute
+		operation_mode_delay for its value).
+
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/operation_mode_delay
+Date:		April 2010
+Contact:	Bruno Prémont <bonbons@linux-vserver.org>
+Description:	Delay PicoLCD waits before restarting in new mode when
+		operation_mode has changed.
+
+		Reading/Writing: It is expressed in ms and permitted range is
+		0..30000ms.
+
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/fb_update_rate
+Date:		March 2010
+Contact:	Bruno Prémont <bonbons@linux-vserver.org>
+Description:	Make it possible to adjust defio refresh rate.
+
+		Reading: returns list of available refresh rates (expressed in Hz),
+		the active refresh rate being enclosed in brackets ('[' and ']')
+
+		Writing: accepts new refresh rate expressed in integer Hz
+		within permitted rates.
+
+		Note: As device can barely do 2 complete refreshes a second
+		it only makes sense to adjust this value if only one or two
+		tiles get changed and it's not appropriate to expect the application
+		to flush it's tiny changes explicitely at higher than default rate.
+

+ 29 - 0
Documentation/ABI/testing/sysfs-driver-hid-prodikeys

@@ -0,0 +1,29 @@
+What:		/sys/bus/hid/drivers/prodikeys/.../channel
+Date:		April 2010
+KernelVersion:	2.6.34
+Contact:	Don Prince <dhprince.devel@yahoo.co.uk>
+Description:
+		Allows control (via software) the midi channel to which
+		that the pc-midi keyboard will output.midi data.
+		Range: 0..15
+		Type:  Read/write
+What:		/sys/bus/hid/drivers/prodikeys/.../sustain
+Date:		April 2010
+KernelVersion:	2.6.34
+Contact:	Don Prince <dhprince.devel@yahoo.co.uk>
+Description:
+		Allows control (via software) the sustain duration of a
+		note held by the pc-midi driver.
+		0 means sustain mode is disabled.
+		Range: 0..5000 (milliseconds)
+		Type:  Read/write
+What:		/sys/bus/hid/drivers/prodikeys/.../octave
+Date:		April 2010
+KernelVersion:	2.6.34
+Contact:	Don Prince <dhprince.devel@yahoo.co.uk>
+Description:
+		Controls the octave shift modifier in the pc-midi driver.
+		The octave can be shifted via software up/down 2 octaves.
+		0 means the no ocatve shift.
+		Range: -2..2 (minus 2 to plus 2)
+		Type: Read/Write

+ 98 - 0
Documentation/ABI/testing/sysfs-driver-hid-roccat-kone

@@ -0,0 +1,98 @@
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/actual_dpi
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	It is possible to switch the dpi setting of the mouse with the
+		press of a button.
+		When read, this file returns the raw number of the actual dpi
+		setting reported by the mouse. This number has to be further
+		processed to receive the real dpi value.
+
+		VALUE DPI
+		1     800
+		2     1200
+		3     1600
+		4     2000
+		5     2400
+		6     3200
+
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/actual_profile
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the number of the actual profile.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/firmware_version
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the raw integer version number of the
+		firmware reported by the mouse. Using the integer value eases
+		further usage in other programs. To receive the real version
+		number the decimal point has to be shifted 2 positions to the
+		left. E.g. a returned value of 138 means 1.38
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/profile[1-5]
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+                press of a button. A profile holds informations like button
+                mappings, sensitivity, the colors of the 5 leds and light
+                effects.
+                When read, these files return the respective profile. The
+                returned data is 975 bytes in size.
+		When written, this file lets one write the respective profile
+		data back to the mouse. The data has to be 975 bytes long.
+		The mouse will reject invalid data, whereas the profile number
+		stored in the profile doesn't need to fit the number of the
+		store.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/settings
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the settings stored in the mouse.
+		The size of the data is 36 bytes and holds information like the
+		startup_profile, tcu state and calibration_data.
+		When written, this file lets write settings back to the mouse.
+		The data has to be 36 bytes long. The mouse will reject invalid
+		data.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/startup_profile
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The integer value of this attribute ranges from 1 to 5.
+                When read, this attribute returns the number of the profile
+                that's active when the mouse is powered on.
+		When written, this file sets the number of the startup profile
+		and the mouse activates this profile immediately.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/tcu
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse has a "Tracking Control Unit" which lets the user
+		calibrate the laser power to fit the mousepad surface.
+		When read, this file returns the current state of the TCU,
+		where 0 means off and 1 means on.
+		Writing 0 in this file will switch the TCU off.
+		Writing 1 in this file will start the calibration which takes
+		around 6 seconds to complete and activates the TCU.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/kone/roccatkone<minor>/weight
+Date:		March 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can be equipped with one of four supplied weights
+		ranging from 5 to 20 grams which are recognized by the mouse
+		and its value can be read out. When read, this file returns the
+		raw value returned by the mouse which eases further processing
+		in other software.
+		The values map to the weights as follows:
+
+		VALUE WEIGHT
+		0     none
+		1     5g
+		2     10g
+		3     15g
+		4     20g
+
+		This file is readonly.

+ 108 - 0
Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus

@@ -0,0 +1,108 @@
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/actual_profile
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the number of the actual profile in
+		range 0-4.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/firmware_version
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the raw integer version number of the
+		firmware reported by the mouse. Using the integer value eases
+		further usage in other programs. To receive the real version
+		number the decimal point has to be shifted 2 positions to the
+		left. E.g. a returned value of 121 means 1.21
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/macro
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store a macro with max 500 key/button strokes
+		internally.
+		When written, this file lets one set the sequence for a specific
+		button for a specific profile. Button and profile numbers are
+		included in written data. The data has to be 2082 bytes long.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile_buttons
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_buttons holds informations about button layout.
+		When written, this file lets one write the respective profile
+		buttons back to the mouse. The data has to be 77 bytes long.
+		The mouse will reject invalid data.
+		Which profile to write is determined by the profile number
+		contained in the data.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile[1-5]_buttons
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_buttons holds informations about button layout.
+		When read, these files return the respective profile buttons.
+		The returned data is 77 bytes in size.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile_settings
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_settings holds informations like resolution, sensitivity
+		and light effects.
+		When written, this file lets one write the respective profile
+		settings back to the mouse. The data has to be 43 bytes long.
+		The mouse will reject invalid data.
+		Which profile to write is determined by the profile number
+		contained in the data.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/profile[1-5]_settings
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_settings holds informations like resolution, sensitivity
+		and light effects.
+		When read, these files return the respective profile settings.
+		The returned data is 43 bytes in size.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/sensor
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse has a tracking- and a distance-control-unit. These
+		can be activated/deactivated and the lift-off distance can be
+		set. The data has to be 6 bytes long.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/startup_profile
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The integer value of this attribute ranges from 0-4.
+                When read, this attribute returns the number of the profile
+                that's active when the mouse is powered on.
+		When written, this file sets the number of the startup profile
+		and the mouse activates this profile immediately.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/tcu
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When written a calibration process for the tracking control unit
+		can be initiated/cancelled.
+		The data has to be 3 bytes long.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/tcu_image
+Date:		October 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read the mouse returns a 30x30 pixel image of the
+		sampled underground. This works only in the course of a
+		calibration process initiated with tcu.
+		The returned data is 1028 bytes in size.
+		This file is readonly.

+ 98 - 0
Documentation/ABI/testing/sysfs-driver-hid-roccat-pyra

@@ -0,0 +1,98 @@
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/actual_cpi
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	It is possible to switch the cpi setting of the mouse with the
+		press of a button.
+		When read, this file returns the raw number of the actual cpi
+		setting reported by the mouse. This number has to be further
+		processed to receive the real dpi value.
+
+		VALUE DPI
+		1     400
+		2     800
+		4     1600
+
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/actual_profile
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the number of the actual profile in
+		range 0-4.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/firmware_version
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the raw integer version number of the
+		firmware reported by the mouse. Using the integer value eases
+		further usage in other programs. To receive the real version
+		number the decimal point has to be shifted 2 positions to the
+		left. E.g. a returned value of 138 means 1.38
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile_settings
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_settings holds informations like resolution, sensitivity
+		and light effects.
+		When written, this file lets one write the respective profile
+		settings back to the mouse. The data has to be 13 bytes long.
+		The mouse will reject invalid data.
+		Which profile to write is determined by the profile number
+		contained in the data.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile[1-5]_settings
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_settings holds informations like resolution, sensitivity
+		and light effects.
+		When read, these files return the respective profile settings.
+		The returned data is 13 bytes in size.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile_buttons
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_buttons holds informations about button layout.
+		When written, this file lets one write the respective profile
+		buttons back to the mouse. The data has to be 19 bytes long.
+		The mouse will reject invalid data.
+		Which profile to write is determined by the profile number
+		contained in the data.
+		This file is writeonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/profile[1-5]_buttons
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The mouse can store 5 profiles which can be switched by the
+		press of a button. A profile is split in settings and buttons.
+		profile_buttons holds informations about button layout.
+		When read, these files return the respective profile buttons.
+		The returned data is 19 bytes in size.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/startup_profile
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	The integer value of this attribute ranges from 0-4.
+                When read, this attribute returns the number of the profile
+                that's active when the mouse is powered on.
+		This file is readonly.
+
+What:		/sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/pyra/roccatpyra<minor>/settings
+Date:		August 2010
+Contact:	Stefan Achatz <erazor_de@users.sourceforge.net>
+Description:	When read, this file returns the settings stored in the mouse.
+		The size of the data is 3 bytes and holds information on the
+		startup_profile.
+		When written, this file lets write settings back to the mouse.
+		The data has to be 3 bytes long. The mouse will reject invalid
+		data.

+ 15 - 0
Documentation/ABI/testing/sysfs-firmware-sfi

@@ -0,0 +1,15 @@
+What:		/sys/firmware/sfi/tables/
+Date:		May 2010
+Contact:	Len Brown <lenb@kernel.org>
+Description:
+		SFI defines a number of small static memory tables
+		so the kernel can get platform information from firmware.
+
+		The tables are defined in the latest SFI specification:
+		http://simplefirmware.org/documentation
+
+		While the tables are used by the kernel, user-space
+		can observe them this way:
+
+		# cd /sys/firmware/sfi/tables
+		# cat $TABLENAME > $TABLENAME.bin

+ 31 - 0
Documentation/ABI/testing/sysfs-i2c-bmp085

@@ -0,0 +1,31 @@
+What:		/sys/bus/i2c/devices/<busnum>-<devaddr>/pressure0_input
+Date:		June 2010
+Contact:	Christoph Mair <christoph.mair@gmail.com>
+Description:	Start a pressure measurement and read the result. Values
+		represent the ambient air pressure in pascal (0.01 millibar).
+
+		Reading: returns the current air pressure.
+
+
+What:		/sys/bus/i2c/devices/<busnum>-<devaddr>/temp0_input
+Date:		June 2010
+Contact:	Christoph Mair <christoph.mair@gmail.com>
+Description:	Measure the ambient temperature. The returned value represents
+		the ambient temperature in units of 0.1 degree celsius.
+
+		Reading: returns the current temperature.
+
+
+What:		/sys/bus/i2c/devices/<busnum>-<devaddr>/oversampling
+Date:		June 2010
+Contact:	Christoph Mair <christoph.mair@gmail.com>
+Description:	Tell the bmp085 to use more samples to calculate a pressure
+		value. When writing to this file the chip will use 2^x samples
+		to calculate the next pressure value with x being the value
+		written. Using this feature will decrease RMS noise and
+		increase the measurement time.
+
+		Reading: returns the current oversampling setting.
+
+		Writing: sets a new oversampling setting.
+		Accepted values: 0..3.

+ 12 - 0
Documentation/ABI/testing/sysfs-module

@@ -0,0 +1,12 @@
+What:		/sys/module/pch_phub/drivers/.../pch_mac
+Date:		August 2010
+KernelVersion:	2.6.35
+Contact:	masa-korg@dsn.okisemi.com
+Description:	Write/read GbE MAC address.
+
+What:		/sys/module/pch_phub/drivers/.../pch_firmware
+Date:		August 2010
+KernelVersion:	2.6.35
+Contact:	masa-korg@dsn.okisemi.com
+Description:	Write/read Option ROM data.
+

+ 21 - 7
Documentation/ABI/testing/sysfs-platform-asus-laptop

@@ -1,4 +1,4 @@
-What:		/sys/devices/platform/asus-laptop/display
+What:		/sys/devices/platform/asus_laptop/display
 Date:		January 2007
 KernelVersion:	2.6.20
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
@@ -13,7 +13,7 @@ Description:
 		Ex: - 0 (0000b) means no display
 		    - 3 (0011b) CRT+LCD.
 
-What:		/sys/devices/platform/asus-laptop/gps
+What:		/sys/devices/platform/asus_laptop/gps
 Date:		January 2007
 KernelVersion:	2.6.20
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
@@ -21,7 +21,7 @@ Description:
 		Control the gps device. 1 means on, 0 means off.
 Users:		Lapsus
 
-What:		/sys/devices/platform/asus-laptop/ledd
+What:		/sys/devices/platform/asus_laptop/ledd
 Date:		January 2007
 KernelVersion:	2.6.20
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
@@ -29,11 +29,11 @@ Description:
 		Some models like the W1N have a LED display that can be
 		used to display several informations.
 		To control the LED display, use the following :
-		    echo 0x0T000DDD > /sys/devices/platform/asus-laptop/
+		    echo 0x0T000DDD > /sys/devices/platform/asus_laptop/
 		where T control the 3 letters display, and DDD the 3 digits display.
 		The DDD table can be found in Documentation/laptops/asus-laptop.txt
 
-What:		/sys/devices/platform/asus-laptop/bluetooth
+What:		/sys/devices/platform/asus_laptop/bluetooth
 Date:		January 2007
 KernelVersion:	2.6.20
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
@@ -42,11 +42,25 @@ Description:
 		This may control the led, the device or both.
 Users:		Lapsus
 
-What:		/sys/devices/platform/asus-laptop/wlan
+What:		/sys/devices/platform/asus_laptop/wlan
 Date:		January 2007
 KernelVersion:	2.6.20
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
 Description:
-		Control the bluetooth device. 1 means on, 0 means off.
+		Control the wlan device. 1 means on, 0 means off.
 		This may control the led, the device or both.
 Users:		Lapsus
+
+What:		/sys/devices/platform/asus_laptop/wimax
+Date:		October 2010
+KernelVersion:	2.6.37
+Contact:	"Corentin Chary" <corentincj@iksaif.net>
+Description:
+		Control the wimax device. 1 means on, 0 means off.
+
+What:		/sys/devices/platform/asus_laptop/wwan
+Date:		October 2010
+KernelVersion:	2.6.37
+Contact:	"Corentin Chary" <corentincj@iksaif.net>
+Description:
+		Control the wwan (3G) device. 1 means on, 0 means off.

+ 5 - 5
Documentation/ABI/testing/sysfs-platform-eeepc-laptop

@@ -1,4 +1,4 @@
-What:		/sys/devices/platform/eeepc-laptop/disp
+What:		/sys/devices/platform/eeepc/disp
 Date:		May 2008
 KernelVersion:	2.6.26
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
@@ -9,21 +9,21 @@ Description:
 		- 3 = LCD+CRT
 		If you run X11, you should use xrandr instead.
 
-What:		/sys/devices/platform/eeepc-laptop/camera
+What:		/sys/devices/platform/eeepc/camera
 Date:		May 2008
 KernelVersion:	2.6.26
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
 Description:
 		Control the camera. 1 means on, 0 means off.
 
-What:		/sys/devices/platform/eeepc-laptop/cardr
+What:		/sys/devices/platform/eeepc/cardr
 Date:		May 2008
 KernelVersion:	2.6.26
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
 Description:
 		Control the card reader. 1 means on, 0 means off.
 
-What:		/sys/devices/platform/eeepc-laptop/cpufv
+What:		/sys/devices/platform/eeepc/cpufv
 Date:		Jun 2009
 KernelVersion:	2.6.31
 Contact:	"Corentin Chary" <corentincj@iksaif.net>
@@ -42,7 +42,7 @@ Description:
 		    `------------ Availables modes
 		For example, 0x301 means: mode 1 selected, 3 available modes.
 
-What:		/sys/devices/platform/eeepc-laptop/available_cpufv
+What:		/sys/devices/platform/eeepc/available_cpufv
 Date:		Jun 2009
 KernelVersion:	2.6.31
 Contact:	"Corentin Chary" <corentincj@iksaif.net>

+ 10 - 0
Documentation/ABI/testing/sysfs-platform-eeepc-wmi

@@ -0,0 +1,10 @@
+What:		/sys/devices/platform/eeepc-wmi/cpufv
+Date:		Oct 2010
+KernelVersion:	2.6.37
+Contact:	"Corentin Chary" <corentincj@iksaif.net>
+Description:
+		Change CPU clock configuration (write-only).
+		There are three available clock configuration:
+		    * 0 -> Super Performance Mode
+		    * 1 -> High Performance Mode
+		    * 2 -> Power Saving Mode

+ 6 - 0
Documentation/ABI/testing/sysfs-platform-ideapad-laptop

@@ -0,0 +1,6 @@
+What:		/sys/devices/platform/ideapad/camera_power
+Date:		Dec 2010
+KernelVersion:	2.6.37
+Contact:	"Ike Panhc <ike.pan@canonical.com>"
+Description:
+		Control the power of camera module. 1 means on, 0 means off.

+ 57 - 0
Documentation/ABI/testing/sysfs-power

@@ -99,5 +99,62 @@ Description:
 
 		dmesg -s 1000000 | grep 'hash matches'
 
+		If you do not get any matches (or they appear to be false
+		positives), it is possible that the last PM event point
+		referred to a device created by a loadable kernel module.  In
+		this case cat /sys/power/pm_trace_dev_match (see below) after
+		your system is started up and the kernel modules are loaded.
+
 		CAUTION: Using it will cause your machine's real-time (CMOS)
 		clock to be set to a random invalid time after a resume.
+
+What;		/sys/power/pm_trace_dev_match
+Date:		October 2010
+Contact:	James Hogan <james@albanarts.com>
+Description:
+		The /sys/power/pm_trace_dev_match file contains the name of the
+		device associated with the last PM event point saved in the RTC
+		across reboots when pm_trace has been used.  More precisely it
+		contains the list of current devices (including those
+		registered by loadable kernel modules since boot) which match
+		the device hash in the RTC at boot, with a newline after each
+		one.
+
+		The advantage of this file over the hash matches printed to the
+		kernel log (see /sys/power/pm_trace), is that it includes
+		devices created after boot by loadable kernel modules.
+
+		Due to the small hash size necessary to fit in the RTC, it is
+		possible that more than one device matches the hash, in which
+		case further investigation is required to determine which
+		device is causing the problem.  Note that genuine RTC clock
+		values (such as when pm_trace has not been used), can still
+		match a device and output it's name here.
+
+What:		/sys/power/pm_async
+Date:		January 2009
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/power/pm_async file controls the switch allowing the
+		user space to enable or disable asynchronous suspend and resume
+		of devices.  If enabled, this feature will cause some device
+		drivers' suspend and resume callbacks to be executed in parallel
+		with each other and with the main suspend thread.  It is enabled
+		if this file contains "1", which is the default.  It may be
+		disabled by writing "0" to this file, in which case all devices
+		will be suspended and resumed synchronously.
+
+What:		/sys/power/wakeup_count
+Date:		July 2010
+Contact:	Rafael J. Wysocki <rjw@sisk.pl>
+Description:
+		The /sys/power/wakeup_count file allows user space to put the
+		system into a sleep state while taking into account the
+		concurrent arrival of wakeup events.  Reading from it returns
+		the current number of registered wakeup events and it blocks if
+		some wakeup events are being processed at the time the file is
+		read from.  Writing to it will only succeed if the current
+		number of wakeup events is equal to the written value and, if
+		successful, will make the kernel abort a subsequent transition
+		to a sleep state if any wakeup events are reported after the
+		write has returned.

+ 19 - 0
Documentation/ABI/testing/sysfs-tty

@@ -0,0 +1,19 @@
+What:		/sys/class/tty/console/active
+Date:		Nov 2010
+Contact:	Kay Sievers <kay.sievers@vrfy.org>
+Description:
+		 Shows the list of currently configured
+		 console devices, like 'tty1 ttyS0'.
+		 The last entry in the file is the active
+		 device connected to /dev/console.
+		 The file supports poll() to detect virtual
+		 console switches.
+
+What:		/sys/class/tty/tty0/active
+Date:		Nov 2010
+Contact:	Kay Sievers <kay.sievers@vrfy.org>
+Description:
+		 Shows the currently active virtual console
+		 device, like 'tty1'.
+		 The file supports poll() to detect virtual
+		 console switches.

+ 10 - 0
Documentation/ABI/testing/sysfs-wacom

@@ -0,0 +1,10 @@
+What:		/sys/class/hidraw/hidraw*/device/speed
+Date:		April 2010
+Kernel Version:	2.6.35
+Contact:	linux-bluetooth@vger.kernel.org
+Description:
+		The /sys/class/hidraw/hidraw*/device/speed file controls
+		reporting speed of wacom bluetooth tablet. Reading from
+		this file returns 1 if tablet reports in high speed mode
+		or 0 otherwise. Writing to this file one of these values
+		switches reporting speed.

+ 7 - 7
Documentation/Changes

@@ -49,7 +49,7 @@ o  oprofile               0.9                     # oprofiled --version
 o  udev                   081                     # udevinfo -V
 o  grub                   0.93                    # grub --version
 o  mcelog		  0.6
-o  iptables               1.4.1                   # iptables -V
+o  iptables               1.4.2                   # iptables -V
 
 
 Kernel compilation
@@ -331,7 +331,7 @@ o  <ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/modules/>
 
 Mkinitrd
 --------
-o  <ftp://rawhide.redhat.com/pub/rawhide/SRPMS/SRPMS/>
+o  <https://code.launchpad.net/initrd-tools/main>
 
 E2fsprogs
 ---------
@@ -343,11 +343,11 @@ o  <http://jfs.sourceforge.net/>
 
 Reiserfsprogs
 -------------
-o  <http://www.namesys.com/pub/reiserfsprogs/reiserfsprogs-3.6.3.tar.gz>
+o  <http://www.kernel.org/pub/linux/utils/fs/reiserfs/>
 
 Xfsprogs
 --------
-o  <ftp://oss.sgi.com/projects/xfs/download/>
+o  <ftp://oss.sgi.com/projects/xfs/>
 
 Pcmciautils
 -----------
@@ -387,18 +387,18 @@ o <http://sourceforge.net/projects/fuse>
 
 mcelog
 ------
-o <ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/mcelog/>
+o <ftp://ftp.kernel.org/pub/linux/utils/cpu/mce/>
 
 Networking
 **********
 
 PPP
 ---
-o  <ftp://ftp.samba.org/pub/ppp/ppp-2.4.0.tar.gz>
+o  <ftp://ftp.samba.org/pub/ppp/>
 
 Isdn4k-utils
 ------------
-o  <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/isdn4k-utils.v3.1pre1.tar.gz>
+o  <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
 
 NFS-utils
 ---------

+ 781 - 0
Documentation/DMA-API-HOWTO.txt

@@ -0,0 +1,781 @@
+		     Dynamic DMA mapping Guide
+		     =========================
+
+		 David S. Miller <davem@redhat.com>
+		 Richard Henderson <rth@cygnus.com>
+		  Jakub Jelinek <jakub@redhat.com>
+
+This is a guide to device driver writers on how to use the DMA API
+with example pseudo-code.  For a concise description of the API, see
+DMA-API.txt.
+
+Most of the 64bit platforms have special hardware that translates bus
+addresses (DMA addresses) into physical addresses.  This is similar to
+how page tables and/or a TLB translates virtual addresses to physical
+addresses on a CPU.  This is needed so that e.g. PCI devices can
+access with a Single Address Cycle (32bit DMA address) any page in the
+64bit physical address space.  Previously in Linux those 64bit
+platforms had to set artificial limits on the maximum RAM size in the
+system, so that the virt_to_bus() static scheme works (the DMA address
+translation tables were simply filled on bootup to map each bus
+address to the physical page __pa(bus_to_virt())).
+
+So that Linux can use the dynamic DMA mapping, it needs some help from the
+drivers, namely it has to take into account that DMA addresses should be
+mapped only for the time they are actually used and unmapped after the DMA
+transfer.
+
+The following API will work of course even on platforms where no such
+hardware exists.
+
+Note that the DMA API works with any bus independent of the underlying
+microprocessor architecture. You should use the DMA API rather than
+the bus specific DMA API (e.g. pci_dma_*).
+
+First of all, you should make sure
+
+#include <linux/dma-mapping.h>
+
+is in your driver. This file will obtain for you the definition of the
+dma_addr_t (which can hold any valid DMA address for the platform)
+type which should be used everywhere you hold a DMA (bus) address
+returned from the DMA mapping functions.
+
+			 What memory is DMA'able?
+
+The first piece of information you must know is what kernel memory can
+be used with the DMA mapping facilities.  There has been an unwritten
+set of rules regarding this, and this text is an attempt to finally
+write them down.
+
+If you acquired your memory via the page allocator
+(i.e. __get_free_page*()) or the generic memory allocators
+(i.e. kmalloc() or kmem_cache_alloc()) then you may DMA to/from
+that memory using the addresses returned from those routines.
+
+This means specifically that you may _not_ use the memory/addresses
+returned from vmalloc() for DMA.  It is possible to DMA to the
+_underlying_ memory mapped into a vmalloc() area, but this requires
+walking page tables to get the physical addresses, and then
+translating each of those pages back to a kernel address using
+something like __va().  [ EDIT: Update this when we integrate
+Gerd Knorr's generic code which does this. ]
+
+This rule also means that you may use neither kernel image addresses
+(items in data/text/bss segments), nor module image addresses, nor
+stack addresses for DMA.  These could all be mapped somewhere entirely
+different than the rest of physical memory.  Even if those classes of
+memory could physically work with DMA, you'd need to ensure the I/O
+buffers were cacheline-aligned.  Without that, you'd see cacheline
+sharing problems (data corruption) on CPUs with DMA-incoherent caches.
+(The CPU could write to one word, DMA would write to a different one
+in the same cache line, and one of them could be overwritten.)
+
+Also, this means that you cannot take the return of a kmap()
+call and DMA to/from that.  This is similar to vmalloc().
+
+What about block I/O and networking buffers?  The block I/O and
+networking subsystems make sure that the buffers they use are valid
+for you to DMA from/to.
+
+			DMA addressing limitations
+
+Does your device have any DMA addressing limitations?  For example, is
+your device only capable of driving the low order 24-bits of address?
+If so, you need to inform the kernel of this fact.
+
+By default, the kernel assumes that your device can address the full
+32-bits.  For a 64-bit capable device, this needs to be increased.
+And for a device with limitations, as discussed in the previous
+paragraph, it needs to be decreased.
+
+Special note about PCI: PCI-X specification requires PCI-X devices to
+support 64-bit addressing (DAC) for all transactions.  And at least
+one platform (SGI SN2) requires 64-bit consistent allocations to
+operate correctly when the IO bus is in PCI-X mode.
+
+For correct operation, you must interrogate the kernel in your device
+probe routine to see if the DMA controller on the machine can properly
+support the DMA addressing limitation your device has.  It is good
+style to do this even if your device holds the default setting,
+because this shows that you did think about these issues wrt. your
+device.
+
+The query is performed via a call to dma_set_mask():
+
+	int dma_set_mask(struct device *dev, u64 mask);
+
+The query for consistent allocations is performed via a call to
+dma_set_coherent_mask():
+
+	int dma_set_coherent_mask(struct device *dev, u64 mask);
+
+Here, dev is a pointer to the device struct of your device, and mask
+is a bit mask describing which bits of an address your device
+supports.  It returns zero if your card can perform DMA properly on
+the machine given the address mask you provided.  In general, the
+device struct of your device is embedded in the bus specific device
+struct of your device.  For example, a pointer to the device struct of
+your PCI device is pdev->dev (pdev is a pointer to the PCI device
+struct of your device).
+
+If it returns non-zero, your device cannot perform DMA properly on
+this platform, and attempting to do so will result in undefined
+behavior.  You must either use a different mask, or not use DMA.
+
+This means that in the failure case, you have three options:
+
+1) Use another DMA mask, if possible (see below).
+2) Use some non-DMA mode for data transfer, if possible.
+3) Ignore this device and do not initialize it.
+
+It is recommended that your driver print a kernel KERN_WARNING message
+when you end up performing either #2 or #3.  In this manner, if a user
+of your driver reports that performance is bad or that the device is not
+even detected, you can ask them for the kernel messages to find out
+exactly why.
+
+The standard 32-bit addressing device would do something like this:
+
+	if (dma_set_mask(dev, DMA_BIT_MASK(32))) {
+		printk(KERN_WARNING
+		       "mydev: No suitable DMA available.\n");
+		goto ignore_this_device;
+	}
+
+Another common scenario is a 64-bit capable device.  The approach here
+is to try for 64-bit addressing, but back down to a 32-bit mask that
+should not fail.  The kernel may fail the 64-bit mask not because the
+platform is not capable of 64-bit addressing.  Rather, it may fail in
+this case simply because 32-bit addressing is done more efficiently
+than 64-bit addressing.  For example, Sparc64 PCI SAC addressing is
+more efficient than DAC addressing.
+
+Here is how you would handle a 64-bit capable device which can drive
+all 64-bits when accessing streaming DMA:
+
+	int using_dac;
+
+	if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
+		using_dac = 1;
+	} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
+		using_dac = 0;
+	} else {
+		printk(KERN_WARNING
+		       "mydev: No suitable DMA available.\n");
+		goto ignore_this_device;
+	}
+
+If a card is capable of using 64-bit consistent allocations as well,
+the case would look like this:
+
+	int using_dac, consistent_using_dac;
+
+	if (!dma_set_mask(dev, DMA_BIT_MASK(64))) {
+		using_dac = 1;
+	   	consistent_using_dac = 1;
+		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
+	} else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) {
+		using_dac = 0;
+		consistent_using_dac = 0;
+		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
+	} else {
+		printk(KERN_WARNING
+		       "mydev: No suitable DMA available.\n");
+		goto ignore_this_device;
+	}
+
+dma_set_coherent_mask() will always be able to set the same or a
+smaller mask as dma_set_mask(). However for the rare case that a
+device driver only uses consistent allocations, one would have to
+check the return value from dma_set_coherent_mask().
+
+Finally, if your device can only drive the low 24-bits of
+address you might do something like:
+
+	if (dma_set_mask(dev, DMA_BIT_MASK(24))) {
+		printk(KERN_WARNING
+		       "mydev: 24-bit DMA addressing not available.\n");
+		goto ignore_this_device;
+	}
+
+When dma_set_mask() is successful, and returns zero, the kernel saves
+away this mask you have provided.  The kernel will use this
+information later when you make DMA mappings.
+
+There is a case which we are aware of at this time, which is worth
+mentioning in this documentation.  If your device supports multiple
+functions (for example a sound card provides playback and record
+functions) and the various different functions have _different_
+DMA addressing limitations, you may wish to probe each mask and
+only provide the functionality which the machine can handle.  It
+is important that the last call to dma_set_mask() be for the
+most specific mask.
+
+Here is pseudo-code showing how this might be done:
+
+	#define PLAYBACK_ADDRESS_BITS	DMA_BIT_MASK(32)
+	#define RECORD_ADDRESS_BITS	DMA_BIT_MASK(24)
+
+	struct my_sound_card *card;
+	struct device *dev;
+
+	...
+	if (!dma_set_mask(dev, PLAYBACK_ADDRESS_BITS)) {
+		card->playback_enabled = 1;
+	} else {
+		card->playback_enabled = 0;
+		printk(KERN_WARNING "%s: Playback disabled due to DMA limitations.\n",
+		       card->name);
+	}
+	if (!dma_set_mask(dev, RECORD_ADDRESS_BITS)) {
+		card->record_enabled = 1;
+	} else {
+		card->record_enabled = 0;
+		printk(KERN_WARNING "%s: Record disabled due to DMA limitations.\n",
+		       card->name);
+	}
+
+A sound card was used as an example here because this genre of PCI
+devices seems to be littered with ISA chips given a PCI front end,
+and thus retaining the 16MB DMA addressing limitations of ISA.
+
+			Types of DMA mappings
+
+There are two types of DMA mappings:
+
+- Consistent DMA mappings which are usually mapped at driver
+  initialization, unmapped at the end and for which the hardware should
+  guarantee that the device and the CPU can access the data
+  in parallel and will see updates made by each other without any
+  explicit software flushing.
+
+  Think of "consistent" as "synchronous" or "coherent".
+
+  The current default is to return consistent memory in the low 32
+  bits of the bus space.  However, for future compatibility you should
+  set the consistent mask even if this default is fine for your
+  driver.
+
+  Good examples of what to use consistent mappings for are:
+
+	- Network card DMA ring descriptors.
+	- SCSI adapter mailbox command data structures.
+	- Device firmware microcode executed out of
+	  main memory.
+
+  The invariant these examples all require is that any CPU store
+  to memory is immediately visible to the device, and vice
+  versa.  Consistent mappings guarantee this.
+
+  IMPORTANT: Consistent DMA memory does not preclude the usage of
+             proper memory barriers.  The CPU may reorder stores to
+	     consistent memory just as it may normal memory.  Example:
+	     if it is important for the device to see the first word
+	     of a descriptor updated before the second, you must do
+	     something like:
+
+		desc->word0 = address;
+		wmb();
+		desc->word1 = DESC_VALID;
+
+             in order to get correct behavior on all platforms.
+
+	     Also, on some platforms your driver may need to flush CPU write
+	     buffers in much the same way as it needs to flush write buffers
+	     found in PCI bridges (such as by reading a register's value
+	     after writing it).
+
+- Streaming DMA mappings which are usually mapped for one DMA
+  transfer, unmapped right after it (unless you use dma_sync_* below)
+  and for which hardware can optimize for sequential accesses.
+
+  This of "streaming" as "asynchronous" or "outside the coherency
+  domain".
+
+  Good examples of what to use streaming mappings for are:
+
+	- Networking buffers transmitted/received by a device.
+	- Filesystem buffers written/read by a SCSI device.
+
+  The interfaces for using this type of mapping were designed in
+  such a way that an implementation can make whatever performance
+  optimizations the hardware allows.  To this end, when using
+  such mappings you must be explicit about what you want to happen.
+
+Neither type of DMA mapping has alignment restrictions that come from
+the underlying bus, although some devices may have such restrictions.
+Also, systems with caches that aren't DMA-coherent will work better
+when the underlying buffers don't share cache lines with other data.
+
+
+		 Using Consistent DMA mappings.
+
+To allocate and map large (PAGE_SIZE or so) consistent DMA regions,
+you should do:
+
+	dma_addr_t dma_handle;
+
+	cpu_addr = dma_alloc_coherent(dev, size, &dma_handle, gfp);
+
+where device is a struct device *. This may be called in interrupt
+context with the GFP_ATOMIC flag.
+
+Size is the length of the region you want to allocate, in bytes.
+
+This routine will allocate RAM for that region, so it acts similarly to
+__get_free_pages (but takes size instead of a page order).  If your
+driver needs regions sized smaller than a page, you may prefer using
+the dma_pool interface, described below.
+
+The consistent DMA mapping interfaces, for non-NULL dev, will by
+default return a DMA address which is 32-bit addressable.  Even if the
+device indicates (via DMA mask) that it may address the upper 32-bits,
+consistent allocation will only return > 32-bit addresses for DMA if
+the consistent DMA mask has been explicitly changed via
+dma_set_coherent_mask().  This is true of the dma_pool interface as
+well.
+
+dma_alloc_coherent returns two values: the virtual address which you
+can use to access it from the CPU and dma_handle which you pass to the
+card.
+
+The cpu return address and the DMA bus master address are both
+guaranteed to be aligned to the smallest PAGE_SIZE order which
+is greater than or equal to the requested size.  This invariant
+exists (for example) to guarantee that if you allocate a chunk
+which is smaller than or equal to 64 kilobytes, the extent of the
+buffer you receive will not cross a 64K boundary.
+
+To unmap and free such a DMA region, you call:
+
+	dma_free_coherent(dev, size, cpu_addr, dma_handle);
+
+where dev, size are the same as in the above call and cpu_addr and
+dma_handle are the values dma_alloc_coherent returned to you.
+This function may not be called in interrupt context.
+
+If your driver needs lots of smaller memory regions, you can write
+custom code to subdivide pages returned by dma_alloc_coherent,
+or you can use the dma_pool API to do that.  A dma_pool is like
+a kmem_cache, but it uses dma_alloc_coherent not __get_free_pages.
+Also, it understands common hardware constraints for alignment,
+like queue heads needing to be aligned on N byte boundaries.
+
+Create a dma_pool like this:
+
+	struct dma_pool *pool;
+
+	pool = dma_pool_create(name, dev, size, align, alloc);
+
+The "name" is for diagnostics (like a kmem_cache name); dev and size
+are as above.  The device's hardware alignment requirement for this
+type of data is "align" (which is expressed in bytes, and must be a
+power of two).  If your device has no boundary crossing restrictions,
+pass 0 for alloc; passing 4096 says memory allocated from this pool
+must not cross 4KByte boundaries (but at that time it may be better to
+go for dma_alloc_coherent directly instead).
+
+Allocate memory from a dma pool like this:
+
+	cpu_addr = dma_pool_alloc(pool, flags, &dma_handle);
+
+flags are SLAB_KERNEL if blocking is permitted (not in_interrupt nor
+holding SMP locks), SLAB_ATOMIC otherwise.  Like dma_alloc_coherent,
+this returns two values, cpu_addr and dma_handle.
+
+Free memory that was allocated from a dma_pool like this:
+
+	dma_pool_free(pool, cpu_addr, dma_handle);
+
+where pool is what you passed to dma_pool_alloc, and cpu_addr and
+dma_handle are the values dma_pool_alloc returned. This function
+may be called in interrupt context.
+
+Destroy a dma_pool by calling:
+
+	dma_pool_destroy(pool);
+
+Make sure you've called dma_pool_free for all memory allocated
+from a pool before you destroy the pool. This function may not
+be called in interrupt context.
+
+			DMA Direction
+
+The interfaces described in subsequent portions of this document
+take a DMA direction argument, which is an integer and takes on
+one of the following values:
+
+ DMA_BIDIRECTIONAL
+ DMA_TO_DEVICE
+ DMA_FROM_DEVICE
+ DMA_NONE
+
+One should provide the exact DMA direction if you know it.
+
+DMA_TO_DEVICE means "from main memory to the device"
+DMA_FROM_DEVICE means "from the device to main memory"
+It is the direction in which the data moves during the DMA
+transfer.
+
+You are _strongly_ encouraged to specify this as precisely
+as you possibly can.
+
+If you absolutely cannot know the direction of the DMA transfer,
+specify DMA_BIDIRECTIONAL.  It means that the DMA can go in
+either direction.  The platform guarantees that you may legally
+specify this, and that it will work, but this may be at the
+cost of performance for example.
+
+The value DMA_NONE is to be used for debugging.  One can
+hold this in a data structure before you come to know the
+precise direction, and this will help catch cases where your
+direction tracking logic has failed to set things up properly.
+
+Another advantage of specifying this value precisely (outside of
+potential platform-specific optimizations of such) is for debugging.
+Some platforms actually have a write permission boolean which DMA
+mappings can be marked with, much like page protections in the user
+program address space.  Such platforms can and do report errors in the
+kernel logs when the DMA controller hardware detects violation of the
+permission setting.
+
+Only streaming mappings specify a direction, consistent mappings
+implicitly have a direction attribute setting of
+DMA_BIDIRECTIONAL.
+
+The SCSI subsystem tells you the direction to use in the
+'sc_data_direction' member of the SCSI command your driver is
+working on.
+
+For Networking drivers, it's a rather simple affair.  For transmit
+packets, map/unmap them with the DMA_TO_DEVICE direction
+specifier.  For receive packets, just the opposite, map/unmap them
+with the DMA_FROM_DEVICE direction specifier.
+
+		  Using Streaming DMA mappings
+
+The streaming DMA mapping routines can be called from interrupt
+context.  There are two versions of each map/unmap, one which will
+map/unmap a single memory region, and one which will map/unmap a
+scatterlist.
+
+To map a single region, you do:
+
+	struct device *dev = &my_dev->dev;
+	dma_addr_t dma_handle;
+	void *addr = buffer->ptr;
+	size_t size = buffer->len;
+
+	dma_handle = dma_map_single(dev, addr, size, direction);
+
+and to unmap it:
+
+	dma_unmap_single(dev, dma_handle, size, direction);
+
+You should call dma_unmap_single when the DMA activity is finished, e.g.
+from the interrupt which told you that the DMA transfer is done.
+
+Using cpu pointers like this for single mappings has a disadvantage,
+you cannot reference HIGHMEM memory in this way.  Thus, there is a
+map/unmap interface pair akin to dma_{map,unmap}_single.  These
+interfaces deal with page/offset pairs instead of cpu pointers.
+Specifically:
+
+	struct device *dev = &my_dev->dev;
+	dma_addr_t dma_handle;
+	struct page *page = buffer->page;
+	unsigned long offset = buffer->offset;
+	size_t size = buffer->len;
+
+	dma_handle = dma_map_page(dev, page, offset, size, direction);
+
+	...
+
+	dma_unmap_page(dev, dma_handle, size, direction);
+
+Here, "offset" means byte offset within the given page.
+
+With scatterlists, you map a region gathered from several regions by:
+
+	int i, count = dma_map_sg(dev, sglist, nents, direction);
+	struct scatterlist *sg;
+
+	for_each_sg(sglist, sg, count, i) {
+		hw_address[i] = sg_dma_address(sg);
+		hw_len[i] = sg_dma_len(sg);
+	}
+
+where nents is the number of entries in the sglist.
+
+The implementation is free to merge several consecutive sglist entries
+into one (e.g. if DMA mapping is done with PAGE_SIZE granularity, any
+consecutive sglist entries can be merged into one provided the first one
+ends and the second one starts on a page boundary - in fact this is a huge
+advantage for cards which either cannot do scatter-gather or have very
+limited number of scatter-gather entries) and returns the actual number
+of sg entries it mapped them to. On failure 0 is returned.
+
+Then you should loop count times (note: this can be less than nents times)
+and use sg_dma_address() and sg_dma_len() macros where you previously
+accessed sg->address and sg->length as shown above.
+
+To unmap a scatterlist, just call:
+
+	dma_unmap_sg(dev, sglist, nents, direction);
+
+Again, make sure DMA activity has already finished.
+
+PLEASE NOTE:  The 'nents' argument to the dma_unmap_sg call must be
+              the _same_ one you passed into the dma_map_sg call,
+	      it should _NOT_ be the 'count' value _returned_ from the
+              dma_map_sg call.
+
+Every dma_map_{single,sg} call should have its dma_unmap_{single,sg}
+counterpart, because the bus address space is a shared resource (although
+in some ports the mapping is per each BUS so less devices contend for the
+same bus address space) and you could render the machine unusable by eating
+all bus addresses.
+
+If you need to use the same streaming DMA region multiple times and touch
+the data in between the DMA transfers, the buffer needs to be synced
+properly in order for the cpu and device to see the most uptodate and
+correct copy of the DMA buffer.
+
+So, firstly, just map it with dma_map_{single,sg}, and after each DMA
+transfer call either:
+
+	dma_sync_single_for_cpu(dev, dma_handle, size, direction);
+
+or:
+
+	dma_sync_sg_for_cpu(dev, sglist, nents, direction);
+
+as appropriate.
+
+Then, if you wish to let the device get at the DMA area again,
+finish accessing the data with the cpu, and then before actually
+giving the buffer to the hardware call either:
+
+	dma_sync_single_for_device(dev, dma_handle, size, direction);
+
+or:
+
+	dma_sync_sg_for_device(dev, sglist, nents, direction);
+
+as appropriate.
+
+After the last DMA transfer call one of the DMA unmap routines
+dma_unmap_{single,sg}. If you don't touch the data from the first dma_map_*
+call till dma_unmap_*, then you don't have to call the dma_sync_*
+routines at all.
+
+Here is pseudo code which shows a situation in which you would need
+to use the dma_sync_*() interfaces.
+
+	my_card_setup_receive_buffer(struct my_card *cp, char *buffer, int len)
+	{
+		dma_addr_t mapping;
+
+		mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
+
+		cp->rx_buf = buffer;
+		cp->rx_len = len;
+		cp->rx_dma = mapping;
+
+		give_rx_buf_to_card(cp);
+	}
+
+	...
+
+	my_card_interrupt_handler(int irq, void *devid, struct pt_regs *regs)
+	{
+		struct my_card *cp = devid;
+
+		...
+		if (read_card_status(cp) == RX_BUF_TRANSFERRED) {
+			struct my_card_header *hp;
+
+			/* Examine the header to see if we wish
+			 * to accept the data.  But synchronize
+			 * the DMA transfer with the CPU first
+			 * so that we see updated contents.
+			 */
+			dma_sync_single_for_cpu(&cp->dev, cp->rx_dma,
+						cp->rx_len,
+						DMA_FROM_DEVICE);
+
+			/* Now it is safe to examine the buffer. */
+			hp = (struct my_card_header *) cp->rx_buf;
+			if (header_is_ok(hp)) {
+				dma_unmap_single(&cp->dev, cp->rx_dma, cp->rx_len,
+						 DMA_FROM_DEVICE);
+				pass_to_upper_layers(cp->rx_buf);
+				make_and_setup_new_rx_buf(cp);
+			} else {
+				/* Just sync the buffer and give it back
+				 * to the card.
+				 */
+				dma_sync_single_for_device(&cp->dev,
+							   cp->rx_dma,
+							   cp->rx_len,
+							   DMA_FROM_DEVICE);
+				give_rx_buf_to_card(cp);
+			}
+		}
+	}
+
+Drivers converted fully to this interface should not use virt_to_bus any
+longer, nor should they use bus_to_virt. Some drivers have to be changed a
+little bit, because there is no longer an equivalent to bus_to_virt in the
+dynamic DMA mapping scheme - you have to always store the DMA addresses
+returned by the dma_alloc_coherent, dma_pool_alloc, and dma_map_single
+calls (dma_map_sg stores them in the scatterlist itself if the platform
+supports dynamic DMA mapping in hardware) in your driver structures and/or
+in the card registers.
+
+All drivers should be using these interfaces with no exceptions.  It
+is planned to completely remove virt_to_bus() and bus_to_virt() as
+they are entirely deprecated.  Some ports already do not provide these
+as it is impossible to correctly support them.
+
+			Handling Errors
+
+DMA address space is limited on some architectures and an allocation
+failure can be determined by:
+
+- checking if dma_alloc_coherent returns NULL or dma_map_sg returns 0
+
+- checking the returned dma_addr_t of dma_map_single and dma_map_page
+  by using dma_mapping_error():
+
+	dma_addr_t dma_handle;
+
+	dma_handle = dma_map_single(dev, addr, size, direction);
+	if (dma_mapping_error(dev, dma_handle)) {
+		/*
+		 * reduce current DMA mapping usage,
+		 * delay and try again later or
+		 * reset driver.
+		 */
+	}
+
+Networking drivers must call dev_kfree_skb to free the socket buffer
+and return NETDEV_TX_OK if the DMA mapping fails on the transmit hook
+(ndo_start_xmit). This means that the socket buffer is just dropped in
+the failure case.
+
+SCSI drivers must return SCSI_MLQUEUE_HOST_BUSY if the DMA mapping
+fails in the queuecommand hook. This means that the SCSI subsystem
+passes the command to the driver again later.
+
+		Optimizing Unmap State Space Consumption
+
+On many platforms, dma_unmap_{single,page}() is simply a nop.
+Therefore, keeping track of the mapping address and length is a waste
+of space.  Instead of filling your drivers up with ifdefs and the like
+to "work around" this (which would defeat the whole purpose of a
+portable API) the following facilities are provided.
+
+Actually, instead of describing the macros one by one, we'll
+transform some example code.
+
+1) Use DEFINE_DMA_UNMAP_{ADDR,LEN} in state saving structures.
+   Example, before:
+
+	struct ring_state {
+		struct sk_buff *skb;
+		dma_addr_t mapping;
+		__u32 len;
+	};
+
+   after:
+
+	struct ring_state {
+		struct sk_buff *skb;
+		DEFINE_DMA_UNMAP_ADDR(mapping);
+		DEFINE_DMA_UNMAP_LEN(len);
+	};
+
+2) Use dma_unmap_{addr,len}_set to set these values.
+   Example, before:
+
+	ringp->mapping = FOO;
+	ringp->len = BAR;
+
+   after:
+
+	dma_unmap_addr_set(ringp, mapping, FOO);
+	dma_unmap_len_set(ringp, len, BAR);
+
+3) Use dma_unmap_{addr,len} to access these values.
+   Example, before:
+
+	dma_unmap_single(dev, ringp->mapping, ringp->len,
+			 DMA_FROM_DEVICE);
+
+   after:
+
+	dma_unmap_single(dev,
+			 dma_unmap_addr(ringp, mapping),
+			 dma_unmap_len(ringp, len),
+			 DMA_FROM_DEVICE);
+
+It really should be self-explanatory.  We treat the ADDR and LEN
+separately, because it is possible for an implementation to only
+need the address in order to perform the unmap operation.
+
+			Platform Issues
+
+If you are just writing drivers for Linux and do not maintain
+an architecture port for the kernel, you can safely skip down
+to "Closing".
+
+1) Struct scatterlist requirements.
+
+   Don't invent the architecture specific struct scatterlist; just use
+   <asm-generic/scatterlist.h>. You need to enable
+   CONFIG_NEED_SG_DMA_LENGTH if the architecture supports IOMMUs
+   (including software IOMMU).
+
+2) ARCH_DMA_MINALIGN
+
+   Architectures must ensure that kmalloc'ed buffer is
+   DMA-safe. Drivers and subsystems depend on it. If an architecture
+   isn't fully DMA-coherent (i.e. hardware doesn't ensure that data in
+   the CPU cache is identical to data in main memory),
+   ARCH_DMA_MINALIGN must be set so that the memory allocator
+   makes sure that kmalloc'ed buffer doesn't share a cache line with
+   the others. See arch/arm/include/asm/cache.h as an example.
+
+   Note that ARCH_DMA_MINALIGN is about DMA memory alignment
+   constraints. You don't need to worry about the architecture data
+   alignment constraints (e.g. the alignment constraints about 64-bit
+   objects).
+
+3) Supporting multiple types of IOMMUs
+
+   If your architecture needs to support multiple types of IOMMUs, you
+   can use include/linux/asm-generic/dma-mapping-common.h. It's a
+   library to support the DMA API with multiple types of IOMMUs. Lots
+   of architectures (x86, powerpc, sh, alpha, ia64, microblaze and
+   sparc) use it. Choose one to see how it can be used. If you need to
+   support multiple types of IOMMUs in a single system, the example of
+   x86 or powerpc helps.
+
+			   Closing
+
+This document, and the API itself, would not be in its current
+form without the feedback and suggestions from numerous individuals.
+We would like to specifically mention, in no particular order, the
+following people:
+
+	Russell King <rmk@arm.linux.org.uk>
+	Leo Dagum <dagum@barrel.engr.sgi.com>
+	Ralf Baechle <ralf@oss.sgi.com>
+	Grant Grundler <grundler@cup.hp.com>
+	Jay Estabrook <Jay.Estabrook@compaq.com>
+	Thomas Sailer <sailer@ife.ee.ethz.ch>
+	Andrea Arcangeli <andrea@suse.de>
+	Jens Axboe <jens.axboe@oracle.com>
+	David Mosberger-Tang <davidm@hpl.hp.com>

+ 36 - 92
Documentation/DMA-API.txt

@@ -4,20 +4,18 @@
         James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
 
 This document describes the DMA API.  For a more gentle introduction
-phrased in terms of the pci_ equivalents (and actual examples) see
-Documentation/PCI/PCI-DMA-mapping.txt.
+of the API (and actual examples) see
+Documentation/DMA-API-HOWTO.txt.
 
-This API is split into two pieces.  Part I describes the API and the
-corresponding pci_ API.  Part II describes the extensions to the API
-for supporting non-consistent memory machines.  Unless you know that
-your driver absolutely has to support non-consistent platforms (this
-is usually only legacy platforms) you should only use the API
-described in part I.
+This API is split into two pieces.  Part I describes the API.  Part II
+describes the extensions to the API for supporting non-consistent
+memory machines.  Unless you know that your driver absolutely has to
+support non-consistent platforms (this is usually only legacy
+platforms) you should only use the API described in part I.
 
-Part I - pci_ and dma_ Equivalent API 
+Part I - dma_ API
 -------------------------------------
 
-To get the pci_ API, you must #include <linux/pci.h>
 To get the dma_ API, you must #include <linux/dma-mapping.h>
 
 
@@ -27,9 +25,6 @@ Part Ia - Using large dma-coherent buffers
 void *
 dma_alloc_coherent(struct device *dev, size_t size,
 			     dma_addr_t *dma_handle, gfp_t flag)
-void *
-pci_alloc_consistent(struct pci_dev *dev, size_t size,
-			     dma_addr_t *dma_handle)
 
 Consistent memory is memory for which a write by either the device or
 the processor can immediately be read by the processor or device
@@ -53,15 +48,11 @@ The simplest way to do that is to use the dma_pool calls (see below).
 The flag parameter (dma_alloc_coherent only) allows the caller to
 specify the GFP_ flags (see kmalloc) for the allocation (the
 implementation may choose to ignore flags that affect the location of
-the returned memory, like GFP_DMA).  For pci_alloc_consistent, you
-must assume GFP_ATOMIC behaviour.
+the returned memory, like GFP_DMA).
 
 void
 dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
 			   dma_addr_t dma_handle)
-void
-pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr,
-			   dma_addr_t dma_handle)
 
 Free the region of consistent memory you previously allocated.  dev,
 size and dma_handle must all be the same as those passed into the
@@ -89,10 +80,6 @@ for alignment, like queue heads needing to be aligned on N-byte boundaries.
 	dma_pool_create(const char *name, struct device *dev,
 			size_t size, size_t align, size_t alloc);
 
-	struct pci_pool *
-	pci_pool_create(const char *name, struct pci_device *dev,
-			size_t size, size_t align, size_t alloc);
-
 The pool create() routines initialize a pool of dma-coherent buffers
 for use with a given device.  It must be called in a context which
 can sleep.
@@ -108,9 +95,6 @@ from this pool must not cross 4KByte boundaries.
 	void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,
 			dma_addr_t *dma_handle);
 
-	void *pci_pool_alloc(struct pci_pool *pool, gfp_t gfp_flags,
-			dma_addr_t *dma_handle);
-
 This allocates memory from the pool; the returned memory will meet the size
 and alignment requirements specified at creation time.  Pass GFP_ATOMIC to
 prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks),
@@ -122,9 +106,6 @@ pool's device.
 	void dma_pool_free(struct dma_pool *pool, void *vaddr,
 			dma_addr_t addr);
 
-	void pci_pool_free(struct pci_pool *pool, void *vaddr,
-			dma_addr_t addr);
-
 This puts memory back into the pool.  The pool is what was passed to
 the pool allocation routine; the cpu (vaddr) and dma addresses are what
 were returned when that routine allocated the memory being freed.
@@ -132,8 +113,6 @@ were returned when that routine allocated the memory being freed.
 
 	void dma_pool_destroy(struct dma_pool *pool);
 
-	void pci_pool_destroy(struct pci_pool *pool);
-
 The pool destroy() routines free the resources of the pool.  They must be
 called in a context which can sleep.  Make sure you've freed all allocated
 memory back to the pool before you destroy it.
@@ -144,8 +123,6 @@ Part Ic - DMA addressing limitations
 
 int
 dma_supported(struct device *dev, u64 mask)
-int
-pci_dma_supported(struct pci_dev *hwdev, u64 mask)
 
 Checks to see if the device can support DMA to the memory described by
 mask.
@@ -159,8 +136,14 @@ driver writers.
 
 int
 dma_set_mask(struct device *dev, u64 mask)
+
+Checks to see if the mask is possible and updates the device
+parameters if it is.
+
+Returns: 0 if successful and a negative error if not.
+
 int
-pci_set_dma_mask(struct pci_device *dev, u64 mask)
+dma_set_coherent_mask(struct device *dev, u64 mask)
 
 Checks to see if the mask is possible and updates the device
 parameters if it is.
@@ -187,9 +170,6 @@ Part Id - Streaming DMA mappings
 dma_addr_t
 dma_map_single(struct device *dev, void *cpu_addr, size_t size,
 		      enum dma_data_direction direction)
-dma_addr_t
-pci_map_single(struct pci_dev *hwdev, void *cpu_addr, size_t size,
-		      int direction)
 
 Maps a piece of processor virtual memory so it can be accessed by the
 device and returns the physical handle of the memory.
@@ -198,14 +178,10 @@ The direction for both api's may be converted freely by casting.
 However the dma_ API uses a strongly typed enumerator for its
 direction:
 
-DMA_NONE		= PCI_DMA_NONE		no direction (used for
-						debugging)
-DMA_TO_DEVICE		= PCI_DMA_TODEVICE	data is going from the
-						memory to the device
-DMA_FROM_DEVICE		= PCI_DMA_FROMDEVICE	data is coming from
-						the device to the
-						memory
-DMA_BIDIRECTIONAL	= PCI_DMA_BIDIRECTIONAL	direction isn't known
+DMA_NONE		no direction (used for debugging)
+DMA_TO_DEVICE		data is going from the memory to the device
+DMA_FROM_DEVICE		data is coming from the device to the memory
+DMA_BIDIRECTIONAL	direction isn't known
 
 Notes:  Not all memory regions in a machine can be mapped by this
 API.  Further, regions that appear to be physically contiguous in
@@ -268,9 +244,6 @@ cache lines are updated with data that the device may have changed).
 void
 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
 		 enum dma_data_direction direction)
-void
-pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr,
-		 size_t size, int direction)
 
 Unmaps the region previously mapped.  All the parameters passed in
 must be identical to those passed in (and returned) by the mapping
@@ -280,15 +253,9 @@ dma_addr_t
 dma_map_page(struct device *dev, struct page *page,
 		    unsigned long offset, size_t size,
 		    enum dma_data_direction direction)
-dma_addr_t
-pci_map_page(struct pci_dev *hwdev, struct page *page,
-		    unsigned long offset, size_t size, int direction)
 void
 dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
 	       enum dma_data_direction direction)
-void
-pci_unmap_page(struct pci_dev *hwdev, dma_addr_t dma_address,
-	       size_t size, int direction)
 
 API for mapping and unmapping for pages.  All the notes and warnings
 for the other mapping APIs apply here.  Also, although the <offset>
@@ -299,9 +266,6 @@ cache width is.
 int
 dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 
-int
-pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
-
 In some circumstances dma_map_single and dma_map_page will fail to create
 a mapping. A driver can check for these errors by testing the returned
 dma address with dma_mapping_error(). A non-zero return value means the mapping
@@ -311,9 +275,6 @@ reduce current DMA mapping usage or delay and try again later).
 	int
 	dma_map_sg(struct device *dev, struct scatterlist *sg,
 		int nents, enum dma_data_direction direction)
-	int
-	pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg,
-		int nents, int direction)
 
 Returns: the number of physical segments mapped (this may be shorter
 than <nents> passed in if some elements of the scatter/gather list are
@@ -353,9 +314,6 @@ accessed sg->address and sg->length as shown above.
 	void
 	dma_unmap_sg(struct device *dev, struct scatterlist *sg,
 		int nhwentries, enum dma_data_direction direction)
-	void
-	pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg,
-		int nents, int direction)
 
 Unmap the previously mapped scatter/gather list.  All the parameters
 must be the same as those and passed in to the scatter/gather mapping
@@ -365,21 +323,23 @@ Note: <nents> must be the number you passed in, *not* the number of
 physical entries returned.
 
 void
-dma_sync_single(struct device *dev, dma_addr_t dma_handle, size_t size,
-		enum dma_data_direction direction)
+dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
+			enum dma_data_direction direction)
 void
-pci_dma_sync_single(struct pci_dev *hwdev, dma_addr_t dma_handle,
-			   size_t size, int direction)
+dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size,
+			   enum dma_data_direction direction)
 void
-dma_sync_sg(struct device *dev, struct scatterlist *sg, int nelems,
-			  enum dma_data_direction direction)
+dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
+		    enum dma_data_direction direction)
 void
-pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg,
-		       int nelems, int direction)
+dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
+		       enum dma_data_direction direction)
 
-Synchronise a single contiguous or scatter/gather mapping.  All the
-parameters must be the same as those passed into the single mapping
-API.
+Synchronise a single contiguous or scatter/gather mapping for the cpu
+and device. With the sync_sg API, all the parameters must be the same
+as those passed into the single mapping API. With the sync_single API,
+you can use dma_handle and size parameters that aren't identical to
+those passed into the single mapping API to do a partial sync.
 
 Notes:  You must do this:
 
@@ -461,9 +421,9 @@ void whizco_dma_map_sg_attrs(struct device *dev, dma_addr_t dma_addr,
 Part II - Advanced dma_ usage
 -----------------------------
 
-Warning: These pieces of the DMA API have no PCI equivalent.  They
-should also not be used in the majority of cases, since they cater for
-unlikely corner cases that don't belong in usual drivers.
+Warning: These pieces of the DMA API should not be used in the
+majority of cases, since they cater for unlikely corner cases that
+don't belong in usual drivers.
 
 If you don't understand how cache line coherency works between a
 processor and an I/O device, you should not be using this part of the
@@ -495,12 +455,6 @@ Free memory allocated by the nonconsistent API.  All parameters must
 be identical to those passed in (and returned by
 dma_alloc_noncoherent()).
 
-int
-dma_is_consistent(struct device *dev, dma_addr_t dma_handle)
-
-Returns true if the device dev is performing consistent DMA on the memory
-area pointed to by the dma_handle.
-
 int
 dma_get_cache_alignment(void)
 
@@ -513,16 +467,6 @@ line, but it will guarantee that one or more cache lines fit exactly
 into the width returned by this call.  It will also always be a power
 of two for easy alignment.
 
-void
-dma_sync_single_range(struct device *dev, dma_addr_t dma_handle,
-		      unsigned long offset, size_t size,
-		      enum dma_data_direction direction)
-
-Does a partial sync, starting at offset and continuing for size.  You
-must be careful to observe the cache alignment and width when doing
-anything like this.  You must also be extra careful about accessing
-memory you intend to sync partially.
-
 void
 dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 	       enum dma_data_direction direction)

+ 574 - 0
Documentation/DocBook/80211.tmpl

@@ -0,0 +1,574 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE set PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+<set>
+  <setinfo>
+    <title>The 802.11 subsystems &ndash; for kernel developers</title>
+    <subtitle>
+      Explaining wireless 802.11 networking in the Linux kernel
+    </subtitle>
+
+    <copyright>
+      <year>2007-2009</year>
+      <holder>Johannes Berg</holder>
+    </copyright>
+
+    <authorgroup>
+      <author>
+        <firstname>Johannes</firstname>
+        <surname>Berg</surname>
+        <affiliation>
+          <address><email>johannes@sipsolutions.net</email></address>
+        </affiliation>
+      </author>
+    </authorgroup>
+
+    <legalnotice>
+      <para>
+        This documentation is free software; you can redistribute
+        it and/or modify it under the terms of the GNU General Public
+        License version 2 as published by the Free Software Foundation.
+      </para>
+      <para>
+        This documentation is distributed in the hope that it will be
+        useful, but WITHOUT ANY WARRANTY; without even the implied
+        warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+        See the GNU General Public License for more details.
+      </para>
+      <para>
+        You should have received a copy of the GNU General Public
+        License along with this documentation; if not, write to the Free
+        Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+        MA 02111-1307 USA
+      </para>
+      <para>
+        For more details see the file COPYING in the source
+        distribution of Linux.
+      </para>
+    </legalnotice>
+
+    <abstract>
+      <para>
+        These books attempt to give a description of the
+        various subsystems that play a role in 802.11 wireless
+        networking in Linux. Since these books are for kernel
+        developers they attempts to document the structures
+        and functions used in the kernel as well as giving a
+        higher-level overview.
+      </para>
+      <para>
+	The reader is expected to be familiar with the 802.11
+	standard as published by the IEEE in 802.11-2007 (or
+	possibly later versions). References to this standard
+	will be given as "802.11-2007 8.1.5".
+      </para>
+    </abstract>
+  </setinfo>
+  <book id="cfg80211-developers-guide">
+    <bookinfo>
+      <title>The cfg80211 subsystem</title>
+
+      <abstract>
+!Pinclude/net/cfg80211.h Introduction
+      </abstract>
+    </bookinfo>
+      <chapter>
+      <title>Device registration</title>
+!Pinclude/net/cfg80211.h Device registration
+!Finclude/net/cfg80211.h ieee80211_band
+!Finclude/net/cfg80211.h ieee80211_channel_flags
+!Finclude/net/cfg80211.h ieee80211_channel
+!Finclude/net/cfg80211.h ieee80211_rate_flags
+!Finclude/net/cfg80211.h ieee80211_rate
+!Finclude/net/cfg80211.h ieee80211_sta_ht_cap
+!Finclude/net/cfg80211.h ieee80211_supported_band
+!Finclude/net/cfg80211.h cfg80211_signal_type
+!Finclude/net/cfg80211.h wiphy_params_flags
+!Finclude/net/cfg80211.h wiphy_flags
+!Finclude/net/cfg80211.h wiphy
+!Finclude/net/cfg80211.h wireless_dev
+!Finclude/net/cfg80211.h wiphy_new
+!Finclude/net/cfg80211.h wiphy_register
+!Finclude/net/cfg80211.h wiphy_unregister
+!Finclude/net/cfg80211.h wiphy_free
+
+!Finclude/net/cfg80211.h wiphy_name
+!Finclude/net/cfg80211.h wiphy_dev
+!Finclude/net/cfg80211.h wiphy_priv
+!Finclude/net/cfg80211.h priv_to_wiphy
+!Finclude/net/cfg80211.h set_wiphy_dev
+!Finclude/net/cfg80211.h wdev_priv
+      </chapter>
+      <chapter>
+      <title>Actions and configuration</title>
+!Pinclude/net/cfg80211.h Actions and configuration
+!Finclude/net/cfg80211.h cfg80211_ops
+!Finclude/net/cfg80211.h vif_params
+!Finclude/net/cfg80211.h key_params
+!Finclude/net/cfg80211.h survey_info_flags
+!Finclude/net/cfg80211.h survey_info
+!Finclude/net/cfg80211.h beacon_parameters
+!Finclude/net/cfg80211.h plink_actions
+!Finclude/net/cfg80211.h station_parameters
+!Finclude/net/cfg80211.h station_info_flags
+!Finclude/net/cfg80211.h rate_info_flags
+!Finclude/net/cfg80211.h rate_info
+!Finclude/net/cfg80211.h station_info
+!Finclude/net/cfg80211.h monitor_flags
+!Finclude/net/cfg80211.h mpath_info_flags
+!Finclude/net/cfg80211.h mpath_info
+!Finclude/net/cfg80211.h bss_parameters
+!Finclude/net/cfg80211.h ieee80211_txq_params
+!Finclude/net/cfg80211.h cfg80211_crypto_settings
+!Finclude/net/cfg80211.h cfg80211_auth_request
+!Finclude/net/cfg80211.h cfg80211_assoc_request
+!Finclude/net/cfg80211.h cfg80211_deauth_request
+!Finclude/net/cfg80211.h cfg80211_disassoc_request
+!Finclude/net/cfg80211.h cfg80211_ibss_params
+!Finclude/net/cfg80211.h cfg80211_connect_params
+!Finclude/net/cfg80211.h cfg80211_pmksa
+!Finclude/net/cfg80211.h cfg80211_send_rx_auth
+!Finclude/net/cfg80211.h cfg80211_send_auth_timeout
+!Finclude/net/cfg80211.h __cfg80211_auth_canceled
+!Finclude/net/cfg80211.h cfg80211_send_rx_assoc
+!Finclude/net/cfg80211.h cfg80211_send_assoc_timeout
+!Finclude/net/cfg80211.h cfg80211_send_deauth
+!Finclude/net/cfg80211.h __cfg80211_send_deauth
+!Finclude/net/cfg80211.h cfg80211_send_disassoc
+!Finclude/net/cfg80211.h __cfg80211_send_disassoc
+!Finclude/net/cfg80211.h cfg80211_ibss_joined
+!Finclude/net/cfg80211.h cfg80211_connect_result
+!Finclude/net/cfg80211.h cfg80211_roamed
+!Finclude/net/cfg80211.h cfg80211_disconnected
+!Finclude/net/cfg80211.h cfg80211_ready_on_channel
+!Finclude/net/cfg80211.h cfg80211_remain_on_channel_expired
+!Finclude/net/cfg80211.h cfg80211_new_sta
+!Finclude/net/cfg80211.h cfg80211_rx_mgmt
+!Finclude/net/cfg80211.h cfg80211_mgmt_tx_status
+!Finclude/net/cfg80211.h cfg80211_cqm_rssi_notify
+!Finclude/net/cfg80211.h cfg80211_cqm_pktloss_notify
+!Finclude/net/cfg80211.h cfg80211_michael_mic_failure
+      </chapter>
+      <chapter>
+      <title>Scanning and BSS list handling</title>
+!Pinclude/net/cfg80211.h Scanning and BSS list handling
+!Finclude/net/cfg80211.h cfg80211_ssid
+!Finclude/net/cfg80211.h cfg80211_scan_request
+!Finclude/net/cfg80211.h cfg80211_scan_done
+!Finclude/net/cfg80211.h cfg80211_bss
+!Finclude/net/cfg80211.h cfg80211_inform_bss_frame
+!Finclude/net/cfg80211.h cfg80211_inform_bss
+!Finclude/net/cfg80211.h cfg80211_unlink_bss
+!Finclude/net/cfg80211.h cfg80211_find_ie
+!Finclude/net/cfg80211.h ieee80211_bss_get_ie
+      </chapter>
+      <chapter>
+      <title>Utility functions</title>
+!Pinclude/net/cfg80211.h Utility functions
+!Finclude/net/cfg80211.h ieee80211_channel_to_frequency
+!Finclude/net/cfg80211.h ieee80211_frequency_to_channel
+!Finclude/net/cfg80211.h ieee80211_get_channel
+!Finclude/net/cfg80211.h ieee80211_get_response_rate
+!Finclude/net/cfg80211.h ieee80211_hdrlen
+!Finclude/net/cfg80211.h ieee80211_get_hdrlen_from_skb
+!Finclude/net/cfg80211.h ieee80211_radiotap_iterator
+      </chapter>
+      <chapter>
+      <title>Data path helpers</title>
+!Pinclude/net/cfg80211.h Data path helpers
+!Finclude/net/cfg80211.h ieee80211_data_to_8023
+!Finclude/net/cfg80211.h ieee80211_data_from_8023
+!Finclude/net/cfg80211.h ieee80211_amsdu_to_8023s
+!Finclude/net/cfg80211.h cfg80211_classify8021d
+      </chapter>
+      <chapter>
+      <title>Regulatory enforcement infrastructure</title>
+!Pinclude/net/cfg80211.h Regulatory enforcement infrastructure
+!Finclude/net/cfg80211.h regulatory_hint
+!Finclude/net/cfg80211.h wiphy_apply_custom_regulatory
+!Finclude/net/cfg80211.h freq_reg_info
+      </chapter>
+      <chapter>
+      <title>RFkill integration</title>
+!Pinclude/net/cfg80211.h RFkill integration
+!Finclude/net/cfg80211.h wiphy_rfkill_set_hw_state
+!Finclude/net/cfg80211.h wiphy_rfkill_start_polling
+!Finclude/net/cfg80211.h wiphy_rfkill_stop_polling
+      </chapter>
+      <chapter>
+      <title>Test mode</title>
+!Pinclude/net/cfg80211.h Test mode
+!Finclude/net/cfg80211.h cfg80211_testmode_alloc_reply_skb
+!Finclude/net/cfg80211.h cfg80211_testmode_reply
+!Finclude/net/cfg80211.h cfg80211_testmode_alloc_event_skb
+!Finclude/net/cfg80211.h cfg80211_testmode_event
+      </chapter>
+  </book>
+  <book id="mac80211-developers-guide">
+    <bookinfo>
+      <title>The mac80211 subsystem</title>
+      <abstract>
+!Pinclude/net/mac80211.h Introduction
+!Pinclude/net/mac80211.h Warning
+      </abstract>
+    </bookinfo>
+
+    <toc></toc>
+
+  <!--
+  Generally, this document shall be ordered by increasing complexity.
+  It is important to note that readers should be able to read only
+  the first few sections to get a working driver and only advanced
+  usage should require reading the full document.
+  -->
+
+    <part>
+      <title>The basic mac80211 driver interface</title>
+      <partintro>
+        <para>
+          You should read and understand the information contained
+          within this part of the book while implementing a driver.
+          In some chapters, advanced usage is noted, that may be
+          skipped at first.
+        </para>
+        <para>
+          This part of the book only covers station and monitor mode
+          functionality, additional information required to implement
+          the other modes is covered in the second part of the book.
+        </para>
+      </partintro>
+
+      <chapter id="basics">
+        <title>Basic hardware handling</title>
+        <para>TBD</para>
+        <para>
+          This chapter shall contain information on getting a hw
+          struct allocated and registered with mac80211.
+        </para>
+        <para>
+          Since it is required to allocate rates/modes before registering
+          a hw struct, this chapter shall also contain information on setting
+          up the rate/mode structs.
+        </para>
+        <para>
+          Additionally, some discussion about the callbacks and
+          the general programming model should be in here, including
+          the definition of ieee80211_ops which will be referred to
+          a lot.
+        </para>
+        <para>
+          Finally, a discussion of hardware capabilities should be done
+          with references to other parts of the book.
+        </para>
+  <!-- intentionally multiple !F lines to get proper order -->
+!Finclude/net/mac80211.h ieee80211_hw
+!Finclude/net/mac80211.h ieee80211_hw_flags
+!Finclude/net/mac80211.h SET_IEEE80211_DEV
+!Finclude/net/mac80211.h SET_IEEE80211_PERM_ADDR
+!Finclude/net/mac80211.h ieee80211_ops
+!Finclude/net/mac80211.h ieee80211_alloc_hw
+!Finclude/net/mac80211.h ieee80211_register_hw
+!Finclude/net/mac80211.h ieee80211_unregister_hw
+!Finclude/net/mac80211.h ieee80211_free_hw
+      </chapter>
+
+      <chapter id="phy-handling">
+        <title>PHY configuration</title>
+        <para>TBD</para>
+        <para>
+          This chapter should describe PHY handling including
+          start/stop callbacks and the various structures used.
+        </para>
+!Finclude/net/mac80211.h ieee80211_conf
+!Finclude/net/mac80211.h ieee80211_conf_flags
+      </chapter>
+
+      <chapter id="iface-handling">
+        <title>Virtual interfaces</title>
+        <para>TBD</para>
+        <para>
+          This chapter should describe virtual interface basics
+          that are relevant to the driver (VLANs, MGMT etc are not.)
+          It should explain the use of the add_iface/remove_iface
+          callbacks as well as the interface configuration callbacks.
+        </para>
+        <para>Things related to AP mode should be discussed there.</para>
+        <para>
+          Things related to supporting multiple interfaces should be
+          in the appropriate chapter, a BIG FAT note should be here about
+          this though and the recommendation to allow only a single
+          interface in STA mode at first!
+        </para>
+!Finclude/net/mac80211.h ieee80211_vif
+      </chapter>
+
+      <chapter id="rx-tx">
+        <title>Receive and transmit processing</title>
+        <sect1>
+          <title>what should be here</title>
+          <para>TBD</para>
+          <para>
+            This should describe the receive and transmit
+            paths in mac80211/the drivers as well as
+            transmit status handling.
+          </para>
+        </sect1>
+        <sect1>
+          <title>Frame format</title>
+!Pinclude/net/mac80211.h Frame format
+        </sect1>
+        <sect1>
+          <title>Packet alignment</title>
+!Pnet/mac80211/rx.c Packet alignment
+        </sect1>
+        <sect1>
+          <title>Calling into mac80211 from interrupts</title>
+!Pinclude/net/mac80211.h Calling mac80211 from interrupts
+        </sect1>
+        <sect1>
+          <title>functions/definitions</title>
+!Finclude/net/mac80211.h ieee80211_rx_status
+!Finclude/net/mac80211.h mac80211_rx_flags
+!Finclude/net/mac80211.h mac80211_tx_control_flags
+!Finclude/net/mac80211.h mac80211_rate_control_flags
+!Finclude/net/mac80211.h ieee80211_tx_rate
+!Finclude/net/mac80211.h ieee80211_tx_info
+!Finclude/net/mac80211.h ieee80211_tx_info_clear_status
+!Finclude/net/mac80211.h ieee80211_rx
+!Finclude/net/mac80211.h ieee80211_rx_ni
+!Finclude/net/mac80211.h ieee80211_rx_irqsafe
+!Finclude/net/mac80211.h ieee80211_tx_status
+!Finclude/net/mac80211.h ieee80211_tx_status_ni
+!Finclude/net/mac80211.h ieee80211_tx_status_irqsafe
+!Finclude/net/mac80211.h ieee80211_rts_get
+!Finclude/net/mac80211.h ieee80211_rts_duration
+!Finclude/net/mac80211.h ieee80211_ctstoself_get
+!Finclude/net/mac80211.h ieee80211_ctstoself_duration
+!Finclude/net/mac80211.h ieee80211_generic_frame_duration
+!Finclude/net/mac80211.h ieee80211_wake_queue
+!Finclude/net/mac80211.h ieee80211_stop_queue
+!Finclude/net/mac80211.h ieee80211_wake_queues
+!Finclude/net/mac80211.h ieee80211_stop_queues
+!Finclude/net/mac80211.h ieee80211_queue_stopped
+        </sect1>
+      </chapter>
+
+      <chapter id="filters">
+        <title>Frame filtering</title>
+!Pinclude/net/mac80211.h Frame filtering
+!Finclude/net/mac80211.h ieee80211_filter_flags
+      </chapter>
+
+      <chapter id="workqueue">
+        <title>The mac80211 workqueue</title>
+!Pinclude/net/mac80211.h mac80211 workqueue
+!Finclude/net/mac80211.h ieee80211_queue_work
+!Finclude/net/mac80211.h ieee80211_queue_delayed_work
+      </chapter>
+    </part>
+
+    <part id="advanced">
+      <title>Advanced driver interface</title>
+      <partintro>
+        <para>
+         Information contained within this part of the book is
+         of interest only for advanced interaction of mac80211
+         with drivers to exploit more hardware capabilities and
+         improve performance.
+        </para>
+      </partintro>
+
+      <chapter id="led-support">
+        <title>LED support</title>
+        <para>
+         Mac80211 supports various ways of blinking LEDs. Wherever possible,
+         device LEDs should be exposed as LED class devices and hooked up to
+         the appropriate trigger, which will then be triggered appropriately
+         by mac80211.
+        </para>
+!Finclude/net/mac80211.h ieee80211_get_tx_led_name
+!Finclude/net/mac80211.h ieee80211_get_rx_led_name
+!Finclude/net/mac80211.h ieee80211_get_assoc_led_name
+!Finclude/net/mac80211.h ieee80211_get_radio_led_name
+!Finclude/net/mac80211.h ieee80211_tpt_blink
+!Finclude/net/mac80211.h ieee80211_tpt_led_trigger_flags
+!Finclude/net/mac80211.h ieee80211_create_tpt_led_trigger
+      </chapter>
+
+      <chapter id="hardware-crypto-offload">
+        <title>Hardware crypto acceleration</title>
+!Pinclude/net/mac80211.h Hardware crypto acceleration
+  <!-- intentionally multiple !F lines to get proper order -->
+!Finclude/net/mac80211.h set_key_cmd
+!Finclude/net/mac80211.h ieee80211_key_conf
+!Finclude/net/mac80211.h ieee80211_key_flags
+!Finclude/net/mac80211.h ieee80211_tkip_key_type
+!Finclude/net/mac80211.h ieee80211_get_tkip_key
+!Finclude/net/mac80211.h ieee80211_key_removed
+      </chapter>
+
+      <chapter id="powersave">
+        <title>Powersave support</title>
+!Pinclude/net/mac80211.h Powersave support
+      </chapter>
+
+      <chapter id="beacon-filter">
+        <title>Beacon filter support</title>
+!Pinclude/net/mac80211.h Beacon filter support
+!Finclude/net/mac80211.h ieee80211_beacon_loss
+      </chapter>
+
+      <chapter id="qos">
+        <title>Multiple queues and QoS support</title>
+        <para>TBD</para>
+!Finclude/net/mac80211.h ieee80211_tx_queue_params
+      </chapter>
+
+      <chapter id="AP">
+        <title>Access point mode support</title>
+        <para>TBD</para>
+        <para>Some parts of the if_conf should be discussed here instead</para>
+        <para>
+          Insert notes about VLAN interfaces with hw crypto here or
+          in the hw crypto chapter.
+        </para>
+!Finclude/net/mac80211.h ieee80211_get_buffered_bc
+!Finclude/net/mac80211.h ieee80211_beacon_get
+      </chapter>
+
+      <chapter id="multi-iface">
+        <title>Supporting multiple virtual interfaces</title>
+        <para>TBD</para>
+        <para>
+          Note: WDS with identical MAC address should almost always be OK
+        </para>
+        <para>
+          Insert notes about having multiple virtual interfaces with
+          different MAC addresses here, note which configurations are
+          supported by mac80211, add notes about supporting hw crypto
+          with it.
+        </para>
+!Finclude/net/mac80211.h ieee80211_iterate_active_interfaces
+!Finclude/net/mac80211.h ieee80211_iterate_active_interfaces_atomic
+      </chapter>
+
+      <chapter id="station-handling">
+        <title>Station handling</title>
+        <para>TODO</para>
+!Finclude/net/mac80211.h ieee80211_sta
+!Finclude/net/mac80211.h sta_notify_cmd
+!Finclude/net/mac80211.h ieee80211_find_sta
+!Finclude/net/mac80211.h ieee80211_find_sta_by_ifaddr
+!Finclude/net/mac80211.h ieee80211_sta_block_awake
+      </chapter>
+
+      <chapter id="hardware-scan-offload">
+        <title>Hardware scan offload</title>
+        <para>TBD</para>
+!Finclude/net/mac80211.h ieee80211_scan_completed
+      </chapter>
+
+      <chapter id="aggregation">
+        <title>Aggregation</title>
+        <sect1>
+          <title>TX A-MPDU aggregation</title>
+!Pnet/mac80211/agg-tx.c TX A-MPDU aggregation
+!Cnet/mac80211/agg-tx.c
+        </sect1>
+        <sect1>
+          <title>RX A-MPDU aggregation</title>
+!Pnet/mac80211/agg-rx.c RX A-MPDU aggregation
+!Cnet/mac80211/agg-rx.c
+        </sect1>
+!Finclude/net/mac80211.h ieee80211_ampdu_mlme_action
+      </chapter>
+
+      <chapter id="smps">
+        <title>Spatial Multiplexing Powersave (SMPS)</title>
+!Pinclude/net/mac80211.h Spatial multiplexing power save
+!Finclude/net/mac80211.h ieee80211_request_smps
+!Finclude/net/mac80211.h ieee80211_smps_mode
+      </chapter>
+    </part>
+
+    <part id="rate-control">
+      <title>Rate control interface</title>
+      <partintro>
+        <para>TBD</para>
+        <para>
+         This part of the book describes the rate control algorithm
+         interface and how it relates to mac80211 and drivers.
+        </para>
+      </partintro>
+      <chapter id="ratecontrol-api">
+        <title>Rate Control API</title>
+        <para>TBD</para>
+!Finclude/net/mac80211.h ieee80211_start_tx_ba_session
+!Finclude/net/mac80211.h ieee80211_start_tx_ba_cb_irqsafe
+!Finclude/net/mac80211.h ieee80211_stop_tx_ba_session
+!Finclude/net/mac80211.h ieee80211_stop_tx_ba_cb_irqsafe
+!Finclude/net/mac80211.h rate_control_changed
+!Finclude/net/mac80211.h ieee80211_tx_rate_control
+!Finclude/net/mac80211.h rate_control_send_low
+      </chapter>
+    </part>
+
+    <part id="internal">
+      <title>Internals</title>
+      <partintro>
+        <para>TBD</para>
+        <para>
+         This part of the book describes mac80211 internals.
+        </para>
+      </partintro>
+
+      <chapter id="key-handling">
+        <title>Key handling</title>
+        <sect1>
+          <title>Key handling basics</title>
+!Pnet/mac80211/key.c Key handling basics
+        </sect1>
+        <sect1>
+          <title>MORE TBD</title>
+          <para>TBD</para>
+        </sect1>
+      </chapter>
+
+      <chapter id="rx-processing">
+        <title>Receive processing</title>
+        <para>TBD</para>
+      </chapter>
+
+      <chapter id="tx-processing">
+        <title>Transmit processing</title>
+        <para>TBD</para>
+      </chapter>
+
+      <chapter id="sta-info">
+        <title>Station info handling</title>
+        <sect1>
+          <title>Programming information</title>
+!Fnet/mac80211/sta_info.h sta_info
+!Fnet/mac80211/sta_info.h ieee80211_sta_info_flags
+        </sect1>
+        <sect1>
+          <title>STA information lifetime rules</title>
+!Pnet/mac80211/sta_info.c STA information lifetime rules
+        </sect1>
+      </chapter>
+
+      <chapter id="aggregation-internals">
+        <title>Aggregation</title>
+!Fnet/mac80211/sta_info.h sta_ampdu_mlme
+!Fnet/mac80211/sta_info.h tid_ampdu_tx
+!Fnet/mac80211/sta_info.h tid_ampdu_rx
+      </chapter>
+
+      <chapter id="synchronisation">
+        <title>Synchronisation</title>
+        <para>TBD</para>
+        <para>Locking, lots of RCU</para>
+      </chapter>
+    </part>
+  </book>
+</set>

+ 5 - 5
Documentation/DocBook/Makefile

@@ -12,9 +12,9 @@ DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
 	    kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
 	    gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
 	    genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
-	    mac80211.xml debugobjects.xml sh.xml regulator.xml \
+	    80211.xml debugobjects.xml sh.xml regulator.xml \
 	    alsa-driver-api.xml writing-an-alsa-driver.xml \
-	    tracepoint.xml media.xml
+	    tracepoint.xml media.xml drm.xml
 
 ###
 # The build process is as follows (targets):
@@ -35,7 +35,7 @@ PS_METHOD	= $(prefer-db2x)
 PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs cleandocs xmldoclinks
 
 BOOKS := $(addprefix $(obj)/,$(DOCBOOKS))
-xmldocs: $(BOOKS) xmldoclinks
+xmldocs: $(BOOKS)
 sgmldocs: xmldocs
 
 PS := $(patsubst %.xml, %.ps, $(BOOKS))
@@ -45,7 +45,7 @@ PDF := $(patsubst %.xml, %.pdf, $(BOOKS))
 pdfdocs: $(PDF)
 
 HTML := $(sort $(patsubst %.xml, %.html, $(BOOKS)))
-htmldocs: $(HTML)
+htmldocs: $(HTML) xmldoclinks
 	$(call build_main_index)
 	$(call build_images)
 
@@ -95,7 +95,7 @@ define rule_docproc
         ) > $(dir $@).$(notdir $@).cmd
 endef
 
-%.xml: %.tmpl FORCE
+%.xml: %.tmpl xmldoclinks FORCE
 	$(call if_changed_rule,docproc)
 
 ###

+ 11 - 2
Documentation/DocBook/device-drivers.tmpl

@@ -45,14 +45,18 @@
      </sect1>
 
      <sect1><title>Atomic and pointer manipulation</title>
-!Iarch/x86/include/asm/atomic_32.h
-!Iarch/x86/include/asm/unaligned.h
+!Iarch/x86/include/asm/atomic.h
      </sect1>
 
      <sect1><title>Delaying, scheduling, and timer routines</title>
 !Iinclude/linux/sched.h
 !Ekernel/sched.c
+!Iinclude/linux/completion.h
 !Ekernel/timer.c
+     </sect1>
+     <sect1><title>Wait queues and Wake events</title>
+!Iinclude/linux/wait.h
+!Ekernel/wait.c
      </sect1>
      <sect1><title>High-resolution timers</title>
 !Iinclude/linux/ktime.h
@@ -111,6 +115,7 @@ X!Edrivers/base/attribute_container.c
 <!--
 X!Edrivers/base/interface.c
 -->
+!Iinclude/linux/platform_device.h
 !Edrivers/base/platform.c
 !Edrivers/base/bus.c
      </sect1>
@@ -298,6 +303,10 @@ X!Idrivers/video/console/fonts.c
 !Edrivers/input/input.c
 !Edrivers/input/ff-core.c
 !Edrivers/input/ff-memless.c
+     </sect1>
+     <sect1><title>Multitouch Library</title>
+!Iinclude/linux/input/mt.h
+!Edrivers/input/input-mt.c
      </sect1>
      <sect1><title>Polled input devices</title>
 !Iinclude/linux/input-polldev.h

+ 1 - 1
Documentation/DocBook/deviceiobook.tmpl

@@ -316,7 +316,7 @@ CPU B:  spin_unlock_irqrestore(&amp;dev_lock, flags)
 
   <chapter id="pubfunctions">
      <title>Public Functions Provided</title>
-!Iarch/x86/include/asm/io_32.h
+!Iarch/x86/include/asm/io.h
 !Elib/iomap.c
   </chapter>
 

+ 840 - 0
Documentation/DocBook/drm.tmpl

@@ -0,0 +1,840 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="drmDevelopersGuide">
+  <bookinfo>
+    <title>Linux DRM Developer's Guide</title>
+
+    <copyright>
+      <year>2008-2009</year>
+      <holder>
+	Intel Corporation (Jesse Barnes &lt;jesse.barnes@intel.com&gt;)
+      </holder>
+    </copyright>
+
+    <legalnotice>
+      <para>
+	The contents of this file may be used under the terms of the GNU
+	General Public License version 2 (the "GPL") as distributed in
+	the kernel source COPYING file.
+      </para>
+    </legalnotice>
+  </bookinfo>
+
+<toc></toc>
+
+  <!-- Introduction -->
+
+  <chapter id="drmIntroduction">
+    <title>Introduction</title>
+    <para>
+      The Linux DRM layer contains code intended to support the needs
+      of complex graphics devices, usually containing programmable
+      pipelines well suited to 3D graphics acceleration.  Graphics
+      drivers in the kernel can make use of DRM functions to make
+      tasks like memory management, interrupt handling and DMA easier,
+      and provide a uniform interface to applications.
+    </para>
+    <para>
+      A note on versions: this guide covers features found in the DRM
+      tree, including the TTM memory manager, output configuration and
+      mode setting, and the new vblank internals, in addition to all
+      the regular features found in current kernels.
+    </para>
+    <para>
+      [Insert diagram of typical DRM stack here]
+    </para>
+  </chapter>
+
+  <!-- Internals -->
+
+  <chapter id="drmInternals">
+    <title>DRM Internals</title>
+    <para>
+      This chapter documents DRM internals relevant to driver authors
+      and developers working to add support for the latest features to
+      existing drivers.
+    </para>
+    <para>
+      First, we'll go over some typical driver initialization
+      requirements, like setting up command buffers, creating an
+      initial output configuration, and initializing core services.
+      Subsequent sections will cover core internals in more detail,
+      providing implementation notes and examples.
+    </para>
+    <para>
+      The DRM layer provides several services to graphics drivers,
+      many of them driven by the application interfaces it provides
+      through libdrm, the library that wraps most of the DRM ioctls.
+      These include vblank event handling, memory
+      management, output management, framebuffer management, command
+      submission &amp; fencing, suspend/resume support, and DMA
+      services.
+    </para>
+    <para>
+      The core of every DRM driver is struct drm_device.  Drivers
+      will typically statically initialize a drm_device structure,
+      then pass it to drm_init() at load time.
+    </para>
+
+  <!-- Internals: driver init -->
+
+  <sect1>
+    <title>Driver initialization</title>
+    <para>
+      Before calling the DRM initialization routines, the driver must
+      first create and fill out a struct drm_device structure.
+    </para>
+    <programlisting>
+      static struct drm_driver driver = {
+	/* don't use mtrr's here, the Xserver or user space app should
+	 * deal with them for intel hardware.
+	 */
+	.driver_features =
+	    DRIVER_USE_AGP | DRIVER_REQUIRE_AGP |
+	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_MODESET,
+	.load = i915_driver_load,
+	.unload = i915_driver_unload,
+	.firstopen = i915_driver_firstopen,
+	.lastclose = i915_driver_lastclose,
+	.preclose = i915_driver_preclose,
+	.save = i915_save,
+	.restore = i915_restore,
+	.device_is_agp = i915_driver_device_is_agp,
+	.get_vblank_counter = i915_get_vblank_counter,
+	.enable_vblank = i915_enable_vblank,
+	.disable_vblank = i915_disable_vblank,
+	.irq_preinstall = i915_driver_irq_preinstall,
+	.irq_postinstall = i915_driver_irq_postinstall,
+	.irq_uninstall = i915_driver_irq_uninstall,
+	.irq_handler = i915_driver_irq_handler,
+	.reclaim_buffers = drm_core_reclaim_buffers,
+	.get_map_ofs = drm_core_get_map_ofs,
+	.get_reg_ofs = drm_core_get_reg_ofs,
+	.fb_probe = intelfb_probe,
+	.fb_remove = intelfb_remove,
+	.fb_resize = intelfb_resize,
+	.master_create = i915_master_create,
+	.master_destroy = i915_master_destroy,
+#if defined(CONFIG_DEBUG_FS)
+	.debugfs_init = i915_debugfs_init,
+	.debugfs_cleanup = i915_debugfs_cleanup,
+#endif
+	.gem_init_object = i915_gem_init_object,
+	.gem_free_object = i915_gem_free_object,
+	.gem_vm_ops = &amp;i915_gem_vm_ops,
+	.ioctls = i915_ioctls,
+	.fops = {
+		.owner = THIS_MODULE,
+		.open = drm_open,
+		.release = drm_release,
+		.ioctl = drm_ioctl,
+		.mmap = drm_mmap,
+		.poll = drm_poll,
+		.fasync = drm_fasync,
+#ifdef CONFIG_COMPAT
+		.compat_ioctl = i915_compat_ioctl,
+#endif
+		.llseek = noop_llseek,
+		},
+	.pci_driver = {
+		.name = DRIVER_NAME,
+		.id_table = pciidlist,
+		.probe = probe,
+		.remove = __devexit_p(drm_cleanup_pci),
+		},
+	.name = DRIVER_NAME,
+	.desc = DRIVER_DESC,
+	.date = DRIVER_DATE,
+	.major = DRIVER_MAJOR,
+	.minor = DRIVER_MINOR,
+	.patchlevel = DRIVER_PATCHLEVEL,
+      };
+    </programlisting>
+    <para>
+      In the example above, taken from the i915 DRM driver, the driver
+      sets several flags indicating what core features it supports.
+      We'll go over the individual callbacks in later sections.  Since
+      flags indicate which features your driver supports to the DRM
+      core, you need to set most of them prior to calling drm_init().  Some,
+      like DRIVER_MODESET can be set later based on user supplied parameters,
+      but that's the exception rather than the rule.
+    </para>
+    <variablelist>
+      <title>Driver flags</title>
+      <varlistentry>
+	<term>DRIVER_USE_AGP</term>
+	<listitem><para>
+	    Driver uses AGP interface
+	</para></listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_REQUIRE_AGP</term>
+	<listitem><para>
+	    Driver needs AGP interface to function.
+	</para></listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_USE_MTRR</term>
+	<listitem>
+	  <para>
+	    Driver uses MTRR interface for mapping memory.  Deprecated.
+	  </para>
+	</listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_PCI_DMA</term>
+	<listitem><para>
+	    Driver is capable of PCI DMA.  Deprecated.
+	</para></listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_SG</term>
+	<listitem><para>
+	    Driver can perform scatter/gather DMA.  Deprecated.
+	</para></listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_HAVE_DMA</term>
+	<listitem><para>Driver supports DMA.  Deprecated.</para></listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
+	<listitem>
+	  <para>
+	    DRIVER_HAVE_IRQ indicates whether the driver has a IRQ
+	    handler, DRIVER_IRQ_SHARED indicates whether the device &amp;
+	    handler support shared IRQs (note that this is required of
+	    PCI drivers).
+	  </para>
+	</listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_DMA_QUEUE</term>
+	<listitem>
+	  <para>
+	    If the driver queues DMA requests and completes them
+	    asynchronously, this flag should be set.  Deprecated.
+	  </para>
+	</listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_FB_DMA</term>
+	<listitem>
+	  <para>
+	    Driver supports DMA to/from the framebuffer.  Deprecated.
+	  </para>
+	</listitem>
+      </varlistentry>
+      <varlistentry>
+	<term>DRIVER_MODESET</term>
+	<listitem>
+	  <para>
+	    Driver supports mode setting interfaces.
+	  </para>
+	</listitem>
+      </varlistentry>
+    </variablelist>
+    <para>
+      In this specific case, the driver requires AGP and supports
+      IRQs.  DMA, as we'll see, is handled by device specific ioctls
+      in this case.  It also supports the kernel mode setting APIs, though
+      unlike in the actual i915 driver source, this example unconditionally
+      exports KMS capability.
+    </para>
+  </sect1>
+
+  <!-- Internals: driver load -->
+
+  <sect1>
+    <title>Driver load</title>
+    <para>
+      In the previous section, we saw what a typical drm_driver
+      structure might look like.  One of the more important fields in
+      the structure is the hook for the load function.
+    </para>
+    <programlisting>
+      static struct drm_driver driver = {
+      	...
+      	.load = i915_driver_load,
+        ...
+      };
+    </programlisting>
+    <para>
+      The load function has many responsibilities: allocating a driver
+      private structure, specifying supported performance counters,
+      configuring the device (e.g. mapping registers &amp; command
+      buffers), initializing the memory manager, and setting up the
+      initial output configuration.
+    </para>
+    <para>
+      Note that the tasks performed at driver load time must not
+      conflict with DRM client requirements.  For instance, if user
+      level mode setting drivers are in use, it would be problematic
+      to perform output discovery &amp; configuration at load time.
+      Likewise, if pre-memory management aware user level drivers are
+      in use, memory management and command buffer setup may need to
+      be omitted.  These requirements are driver specific, and care
+      needs to be taken to keep both old and new applications and
+      libraries working.  The i915 driver supports the "modeset"
+      module parameter to control whether advanced features are
+      enabled at load time or in legacy fashion.  If compatibility is
+      a concern (e.g. with drivers converted over to the new interfaces
+      from the old ones), care must be taken to prevent incompatible
+      device initialization and control with the currently active
+      userspace drivers.
+    </para>
+
+    <sect2>
+      <title>Driver private &amp; performance counters</title>
+      <para>
+	The driver private hangs off the main drm_device structure and
+	can be used for tracking various device specific bits of
+	information, like register offsets, command buffer status,
+	register state for suspend/resume, etc.  At load time, a
+	driver can simply allocate one and set drm_device.dev_priv
+	appropriately; at unload the driver can free it and set
+	drm_device.dev_priv to NULL.
+      </para>
+      <para>
+	The DRM supports several counters which can be used for rough
+	performance characterization.  Note that the DRM stat counter
+	system is not often used by applications, and supporting
+	additional counters is completely optional.
+      </para>
+      <para>
+	These interfaces are deprecated and should not be used.  If performance
+	monitoring is desired, the developer should investigate and
+	potentially enhance the kernel perf and tracing infrastructure to export
+	GPU related performance information to performance monitoring
+	tools and applications.
+      </para>
+    </sect2>
+
+    <sect2>
+      <title>Configuring the device</title>
+      <para>
+	Obviously, device configuration will be device specific.
+	However, there are several common operations: finding a
+	device's PCI resources, mapping them, and potentially setting
+	up an IRQ handler.
+      </para>
+      <para>
+	Finding &amp; mapping resources is fairly straightforward.  The
+	DRM wrapper functions, drm_get_resource_start() and
+	drm_get_resource_len() can be used to find BARs on the given
+	drm_device struct.  Once those values have been retrieved, the
+	driver load function can call drm_addmap() to create a new
+	mapping for the BAR in question.  Note you'll probably want a
+	drm_local_map_t in your driver private structure to track any
+	mappings you create.
+<!-- !Fdrivers/gpu/drm/drm_bufs.c drm_get_resource_* -->
+<!-- !Finclude/drm/drmP.h drm_local_map_t -->
+      </para>
+      <para>
+	if compatibility with other operating systems isn't a concern
+	(DRM drivers can run under various BSD variants and OpenSolaris),
+	native Linux calls can be used for the above, e.g. pci_resource_*
+	and iomap*/iounmap.  See the Linux device driver book for more
+	info.
+      </para>
+      <para>
+	Once you have a register map, you can use the DRM_READn() and
+	DRM_WRITEn() macros to access the registers on your device, or
+	use driver specific versions to offset into your MMIO space
+	relative to a driver specific base pointer (see I915_READ for
+	example).
+      </para>
+      <para>
+	If your device supports interrupt generation, you may want to
+	setup an interrupt handler at driver load time as well.  This
+	is done using the drm_irq_install() function.  If your device
+	supports vertical blank interrupts, it should call
+	drm_vblank_init() to initialize the core vblank handling code before
+	enabling interrupts on your device.  This ensures the vblank related
+	structures are allocated and allows the core to handle vblank events.
+      </para>
+<!--!Fdrivers/char/drm/drm_irq.c drm_irq_install-->
+      <para>
+	Once your interrupt handler is registered (it'll use your
+	drm_driver.irq_handler as the actual interrupt handling
+	function), you can safely enable interrupts on your device,
+	assuming any other state your interrupt handler uses is also
+	initialized.
+      </para>
+      <para>
+	Another task that may be necessary during configuration is
+	mapping the video BIOS.  On many devices, the VBIOS describes
+	device configuration, LCD panel timings (if any), and contains
+	flags indicating device state.  Mapping the BIOS can be done
+	using the pci_map_rom() call, a convenience function that
+	takes care of mapping the actual ROM, whether it has been
+	shadowed into memory (typically at address 0xc0000) or exists
+	on the PCI device in the ROM BAR.  Note that once you've
+	mapped the ROM and extracted any necessary information, be
+	sure to unmap it; on many devices the ROM address decoder is
+	shared with other BARs, so leaving it mapped can cause
+	undesired behavior like hangs or memory corruption.
+<!--!Fdrivers/pci/rom.c pci_map_rom-->
+      </para>
+    </sect2>
+
+    <sect2>
+      <title>Memory manager initialization</title>
+      <para>
+	In order to allocate command buffers, cursor memory, scanout
+	buffers, etc., as well as support the latest features provided
+	by packages like Mesa and the X.Org X server, your driver
+	should support a memory manager.
+      </para>
+      <para>
+	If your driver supports memory management (it should!), you'll
+	need to set that up at load time as well.  How you initialize
+	it depends on which memory manager you're using, TTM or GEM.
+      </para>
+      <sect3>
+	<title>TTM initialization</title>
+	<para>
+	  TTM (for Translation Table Manager) manages video memory and
+	  aperture space for graphics devices. TTM supports both UMA devices
+	  and devices with dedicated video RAM (VRAM), i.e. most discrete
+	  graphics devices.  If your device has dedicated RAM, supporting
+	  TTM is desirable.  TTM also integrates tightly with your
+	  driver specific buffer execution function.  See the radeon
+	  driver for examples.
+	</para>
+	<para>
+	  The core TTM structure is the ttm_bo_driver struct.  It contains
+	  several fields with function pointers for initializing the TTM,
+	  allocating and freeing memory, waiting for command completion
+	  and fence synchronization, and memory migration.  See the
+	  radeon_ttm.c file for an example of usage.
+	</para>
+	<para>
+	  The ttm_global_reference structure is made up of several fields:
+	</para>
+	<programlisting>
+	  struct ttm_global_reference {
+	  	enum ttm_global_types global_type;
+	  	size_t size;
+	  	void *object;
+	  	int (*init) (struct ttm_global_reference *);
+	  	void (*release) (struct ttm_global_reference *);
+	  };
+	</programlisting>
+	<para>
+	  There should be one global reference structure for your memory
+	  manager as a whole, and there will be others for each object
+	  created by the memory manager at runtime.  Your global TTM should
+	  have a type of TTM_GLOBAL_TTM_MEM.  The size field for the global
+	  object should be sizeof(struct ttm_mem_global), and the init and
+	  release hooks should point at your driver specific init and
+	  release routines, which will probably eventually call
+	  ttm_mem_global_init and ttm_mem_global_release respectively.
+	</para>
+	<para>
+	  Once your global TTM accounting structure is set up and initialized
+	  (done by calling ttm_global_item_ref on the global object you
+	  just created), you'll need to create a buffer object TTM to
+	  provide a pool for buffer object allocation by clients and the
+	  kernel itself.  The type of this object should be TTM_GLOBAL_TTM_BO,
+	  and its size should be sizeof(struct ttm_bo_global).  Again,
+	  driver specific init and release functions can be provided,
+	  likely eventually calling ttm_bo_global_init and
+	  ttm_bo_global_release, respectively.  Also like the previous
+	  object, ttm_global_item_ref is used to create an initial reference
+	  count for the TTM, which will call your initialization function.
+	</para>
+      </sect3>
+      <sect3>
+	<title>GEM initialization</title>
+	<para>
+	  GEM is an alternative to TTM, designed specifically for UMA
+	  devices.  It has simpler initialization and execution requirements
+	  than TTM, but has no VRAM management capability.  Core GEM
+	  initialization is comprised of a basic drm_mm_init call to create
+	  a GTT DRM MM object, which provides an address space pool for
+	  object allocation.  In a KMS configuration, the driver will
+	  need to allocate and initialize a command ring buffer following
+	  basic GEM initialization.  Most UMA devices have a so-called
+	  "stolen" memory region, which provides space for the initial
+	  framebuffer and large, contiguous memory regions required by the
+	  device.  This space is not typically managed by GEM, and must
+	  be initialized separately into its own DRM MM object.
+	</para>
+	<para>
+	  Initialization will be driver specific, and will depend on
+	  the architecture of the device.  In the case of Intel
+	  integrated graphics chips like 965GM, GEM initialization can
+	  be done by calling the internal GEM init function,
+	  i915_gem_do_init().  Since the 965GM is a UMA device
+	  (i.e. it doesn't have dedicated VRAM), GEM will manage
+	  making regular RAM available for GPU operations.  Memory set
+	  aside by the BIOS (called "stolen" memory by the i915
+	  driver) will be managed by the DRM memrange allocator; the
+	  rest of the aperture will be managed by GEM.
+	  <programlisting>
+	    /* Basic memrange allocator for stolen space (aka vram) */
+	    drm_memrange_init(&amp;dev_priv->vram, 0, prealloc_size);
+	    /* Let GEM Manage from end of prealloc space to end of aperture */
+	    i915_gem_do_init(dev, prealloc_size, agp_size);
+	  </programlisting>
+<!--!Edrivers/char/drm/drm_memrange.c-->
+	</para>
+	<para>
+	  Once the memory manager has been set up, we can allocate the
+	  command buffer.  In the i915 case, this is also done with a
+	  GEM function, i915_gem_init_ringbuffer().
+	</para>
+      </sect3>
+    </sect2>
+
+    <sect2>
+      <title>Output configuration</title>
+      <para>
+	The final initialization task is output configuration.  This involves
+	finding and initializing the CRTCs, encoders and connectors
+	for your device, creating an initial configuration and
+	registering a framebuffer console driver.
+      </para>
+      <sect3>
+	<title>Output discovery and initialization</title>
+	<para>
+	  Several core functions exist to create CRTCs, encoders and
+	  connectors, namely drm_crtc_init(), drm_connector_init() and
+	  drm_encoder_init(), along with several "helper" functions to
+	  perform common tasks.
+	</para>
+	<para>
+	  Connectors should be registered with sysfs once they've been
+	  detected and initialized, using the
+	  drm_sysfs_connector_add() function.  Likewise, when they're
+	  removed from the system, they should be destroyed with
+	  drm_sysfs_connector_remove().
+	</para>
+	<programlisting>
+<![CDATA[
+void intel_crt_init(struct drm_device *dev)
+{
+	struct drm_connector *connector;
+	struct intel_output *intel_output;
+
+	intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
+	if (!intel_output)
+		return;
+
+	connector = &intel_output->base;
+	drm_connector_init(dev, &intel_output->base,
+			   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
+
+	drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
+			 DRM_MODE_ENCODER_DAC);
+
+	drm_mode_connector_attach_encoder(&intel_output->base,
+					  &intel_output->enc);
+
+	/* Set up the DDC bus. */
+	intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
+	if (!intel_output->ddc_bus) {
+		dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
+			   "failed.\n");
+		return;
+	}
+
+	intel_output->type = INTEL_OUTPUT_ANALOG;
+	connector->interlace_allowed = 0;
+	connector->doublescan_allowed = 0;
+
+	drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
+	drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
+
+	drm_sysfs_connector_add(connector);
+}
+]]>
+	</programlisting>
+	<para>
+	  In the example above (again, taken from the i915 driver), a
+	  CRT connector and encoder combination is created.  A device
+	  specific i2c bus is also created, for fetching EDID data and
+	  performing monitor detection.  Once the process is complete,
+	  the new connector is registered with sysfs, to make its
+	  properties available to applications.
+	</para>
+	<sect4>
+	  <title>Helper functions and core functions</title>
+	  <para>
+	    Since many PC-class graphics devices have similar display output
+	    designs, the DRM provides a set of helper functions to make
+	    output management easier.  The core helper routines handle
+	    encoder re-routing and disabling of unused functions following
+	    mode set.  Using the helpers is optional, but recommended for
+	    devices with PC-style architectures (i.e. a set of display planes
+	    for feeding pixels to encoders which are in turn routed to
+	    connectors).  Devices with more complex requirements needing
+	    finer grained management can opt to use the core callbacks
+	    directly.
+	  </para>
+	  <para>
+	    [Insert typical diagram here.]  [Insert OMAP style config here.]
+	  </para>
+	</sect4>
+	<para>
+	  For each encoder, CRTC and connector, several functions must
+	  be provided, depending on the object type.  Encoder objects
+	  need to provide a DPMS (basically on/off) function, mode fixup
+	  (for converting requested modes into native hardware timings),
+	  and prepare, set and commit functions for use by the core DRM
+	  helper functions.  Connector helpers need to provide mode fetch and
+	  validity functions as well as an encoder matching function for
+	  returning an ideal encoder for a given connector.  The core
+	  connector functions include a DPMS callback, (deprecated)
+	  save/restore routines, detection, mode probing, property handling,
+	  and cleanup functions.
+	</para>
+<!--!Edrivers/char/drm/drm_crtc.h-->
+<!--!Edrivers/char/drm/drm_crtc.c-->
+<!--!Edrivers/char/drm/drm_crtc_helper.c-->
+      </sect3>
+    </sect2>
+  </sect1>
+
+  <!-- Internals: vblank handling -->
+
+  <sect1>
+    <title>VBlank event handling</title>
+    <para>
+      The DRM core exposes two vertical blank related ioctls:
+      DRM_IOCTL_WAIT_VBLANK and DRM_IOCTL_MODESET_CTL.
+<!--!Edrivers/char/drm/drm_irq.c-->
+    </para>
+    <para>
+      DRM_IOCTL_WAIT_VBLANK takes a struct drm_wait_vblank structure
+      as its argument, and is used to block or request a signal when a
+      specified vblank event occurs.
+    </para>
+    <para>
+      DRM_IOCTL_MODESET_CTL should be called by application level
+      drivers before and after mode setting, since on many devices the
+      vertical blank counter will be reset at that time.  Internally,
+      the DRM snapshots the last vblank count when the ioctl is called
+      with the _DRM_PRE_MODESET command so that the counter won't go
+      backwards (which is dealt with when _DRM_POST_MODESET is used).
+    </para>
+    <para>
+      To support the functions above, the DRM core provides several
+      helper functions for tracking vertical blank counters, and
+      requires drivers to provide several callbacks:
+      get_vblank_counter(), enable_vblank() and disable_vblank().  The
+      core uses get_vblank_counter() to keep the counter accurate
+      across interrupt disable periods.  It should return the current
+      vertical blank event count, which is often tracked in a device
+      register.  The enable and disable vblank callbacks should enable
+      and disable vertical blank interrupts, respectively.  In the
+      absence of DRM clients waiting on vblank events, the core DRM
+      code will use the disable_vblank() function to disable
+      interrupts, which saves power.  They'll be re-enabled again when
+      a client calls the vblank wait ioctl above.
+    </para>
+    <para>
+      Devices that don't provide a count register can simply use an
+      internal atomic counter incremented on every vertical blank
+      interrupt, and can make their enable and disable vblank
+      functions into no-ops.
+    </para>
+  </sect1>
+
+  <sect1>
+    <title>Memory management</title>
+    <para>
+      The memory manager lies at the heart of many DRM operations, and
+      is also required to support advanced client features like OpenGL
+      pbuffers.  The DRM currently contains two memory managers, TTM
+      and GEM.
+    </para>
+
+    <sect2>
+      <title>The Translation Table Manager (TTM)</title>
+      <para>
+	TTM was developed by Tungsten Graphics, primarily by Thomas
+	Hellström, and is intended to be a flexible, high performance
+	graphics memory manager.
+      </para>
+      <para>
+	Drivers wishing to support TTM must fill out a drm_bo_driver
+	structure.
+      </para>
+      <para>
+	TTM design background and information belongs here.
+      </para>
+    </sect2>
+
+    <sect2>
+      <title>The Graphics Execution Manager (GEM)</title>
+      <para>
+	GEM is an Intel project, authored by Eric Anholt and Keith
+	Packard.  It provides simpler interfaces than TTM, and is well
+	suited for UMA devices.
+      </para>
+      <para>
+	GEM-enabled drivers must provide gem_init_object() and
+	gem_free_object() callbacks to support the core memory
+	allocation routines.  They should also provide several driver
+	specific ioctls to support command execution, pinning, buffer
+	read &amp; write, mapping, and domain ownership transfers.
+      </para>
+      <para>
+	On a fundamental level, GEM involves several operations: memory
+	allocation and freeing, command execution, and aperture management
+	at command execution time.  Buffer object allocation is relatively
+	straightforward and largely provided by Linux's shmem layer, which
+	provides memory to back each object.  When mapped into the GTT
+	or used in a command buffer, the backing pages for an object are
+	flushed to memory and marked write combined so as to be coherent
+	with the GPU.  Likewise, when the GPU finishes rendering to an object,
+	if the CPU accesses it, it must be made coherent with the CPU's view
+	of memory, usually involving GPU cache flushing of various kinds.
+	This core CPU&lt;-&gt;GPU coherency management is provided by the GEM
+	set domain function, which evaluates an object's current domain and
+	performs any necessary flushing or synchronization to put the object
+	into the desired coherency domain (note that the object may be busy,
+	i.e. an active render target; in that case the set domain function
+	will block the client and wait for rendering to complete before
+	performing any necessary flushing operations).
+      </para>
+      <para>
+	Perhaps the most important GEM function is providing a command
+	execution interface to clients.  Client programs construct command
+	buffers containing references to previously allocated memory objects
+	and submit them to GEM.  At that point, GEM will take care to bind
+	all the objects into the GTT, execute the buffer, and provide
+	necessary synchronization between clients accessing the same buffers.
+	This often involves evicting some objects from the GTT and re-binding
+	others (a fairly expensive operation), and providing relocation
+	support which hides fixed GTT offsets from clients.  Clients must
+	take care not to submit command buffers that reference more objects
+	than can fit in the GTT or GEM will reject them and no rendering
+	will occur.  Similarly, if several objects in the buffer require
+	fence registers to be allocated for correct rendering (e.g. 2D blits
+	on pre-965 chips), care must be taken not to require more fence
+	registers than are available to the client.  Such resource management
+	should be abstracted from the client in libdrm.
+      </para>
+    </sect2>
+
+  </sect1>
+
+  <!-- Output management -->
+  <sect1>
+    <title>Output management</title>
+    <para>
+      At the core of the DRM output management code is a set of
+      structures representing CRTCs, encoders and connectors.
+    </para>
+    <para>
+      A CRTC is an abstraction representing a part of the chip that
+      contains a pointer to a scanout buffer.  Therefore, the number
+      of CRTCs available determines how many independent scanout
+      buffers can be active at any given time.  The CRTC structure
+      contains several fields to support this: a pointer to some video
+      memory, a display mode, and an (x, y) offset into the video
+      memory to support panning or configurations where one piece of
+      video memory spans multiple CRTCs.
+    </para>
+    <para>
+      An encoder takes pixel data from a CRTC and converts it to a
+      format suitable for any attached connectors.  On some devices,
+      it may be possible to have a CRTC send data to more than one
+      encoder.  In that case, both encoders would receive data from
+      the same scanout buffer, resulting in a "cloned" display
+      configuration across the connectors attached to each encoder.
+    </para>
+    <para>
+      A connector is the final destination for pixel data on a device,
+      and usually connects directly to an external display device like
+      a monitor or laptop panel.  A connector can only be attached to
+      one encoder at a time.  The connector is also the structure
+      where information about the attached display is kept, so it
+      contains fields for display data, EDID data, DPMS &amp;
+      connection status, and information about modes supported on the
+      attached displays.
+    </para>
+<!--!Edrivers/char/drm/drm_crtc.c-->
+  </sect1>
+
+  <sect1>
+    <title>Framebuffer management</title>
+    <para>
+      In order to set a mode on a given CRTC, encoder and connector
+      configuration, clients need to provide a framebuffer object which
+      will provide a source of pixels for the CRTC to deliver to the encoder(s)
+      and ultimately the connector(s) in the configuration.  A framebuffer
+      is fundamentally a driver specific memory object, made into an opaque
+      handle by the DRM addfb function.  Once an fb has been created this
+      way it can be passed to the KMS mode setting routines for use in
+      a configuration.
+    </para>
+  </sect1>
+
+  <sect1>
+    <title>Command submission &amp; fencing</title>
+    <para>
+      This should cover a few device specific command submission
+      implementations.
+    </para>
+  </sect1>
+
+  <sect1>
+    <title>Suspend/resume</title>
+    <para>
+      The DRM core provides some suspend/resume code, but drivers
+      wanting full suspend/resume support should provide save() and
+      restore() functions.  These will be called at suspend,
+      hibernate, or resume time, and should perform any state save or
+      restore required by your device across suspend or hibernate
+      states.
+    </para>
+  </sect1>
+
+  <sect1>
+    <title>DMA services</title>
+    <para>
+      This should cover how DMA mapping etc. is supported by the core.
+      These functions are deprecated and should not be used.
+    </para>
+  </sect1>
+  </chapter>
+
+  <!-- External interfaces -->
+
+  <chapter id="drmExternals">
+    <title>Userland interfaces</title>
+    <para>
+      The DRM core exports several interfaces to applications,
+      generally intended to be used through corresponding libdrm
+      wrapper functions.  In addition, drivers export device specific
+      interfaces for use by userspace drivers &amp; device aware
+      applications through ioctls and sysfs files.
+    </para>
+    <para>
+      External interfaces include: memory mapping, context management,
+      DMA operations, AGP management, vblank control, fence
+      management, memory management, and output management.
+    </para>
+    <para>
+      Cover generic ioctls and sysfs layout here.  Only need high
+      level info, since man pages will cover the rest.
+    </para>
+  </chapter>
+
+  <!-- API reference -->
+
+  <appendix id="drmDriverApi">
+    <title>DRM Driver API</title>
+    <para>
+      Include auto-generated API reference here (need to reference it
+      from paragraphs above too).
+    </para>
+  </appendix>
+
+</book>

+ 16 - 3
Documentation/DocBook/dvb/dvbapi.xml

@@ -12,10 +12,12 @@
 <othername role="mi">O. C.</othername>
 <affiliation><address><email>rjkm@metzlerbros.de</email></address></affiliation>
 </author>
+</authorgroup>
+<authorgroup>
 <author>
 <firstname>Mauro</firstname>
-<surname>Chehab</surname>
 <othername role="mi">Carvalho</othername>
+<surname>Chehab</surname>
 <affiliation><address><email>mchehab@redhat.com</email></address></affiliation>
 <contrib>Ported document to Docbook XML.</contrib>
 </author>
@@ -23,12 +25,23 @@
 <copyright>
 	<year>2002</year>
 	<year>2003</year>
-	<year>2009</year>
 	<holder>Convergence GmbH</holder>
 </copyright>
+<copyright>
+	<year>2009-2010</year>
+	<holder>Mauro Carvalho Chehab</holder>
+</copyright>
 
 <revhistory>
 <!-- Put document revisions here, newest first. -->
+<revision>
+	<revnumber>2.0.3</revnumber>
+	<date>2010-07-03</date>
+	<authorinitials>mcc</authorinitials>
+	<revremark>
+		Add some frontend capabilities flags, present on kernel, but missing at the specs.
+	</revremark>
+</revision>
 <revision>
 	<revnumber>2.0.2</revnumber>
 	<date>2009-10-25</date>
@@ -63,7 +76,7 @@ Added ISDB-T test originally written by Patrick Boettcher
 
 
 <title>LINUX DVB API</title>
-<subtitle>Version 3</subtitle>
+<subtitle>Version 5.2</subtitle>
 <!-- ADD THE CHAPTERS HERE -->
   <chapter id="dvb_introdution">
     &sub-intro;

+ 1 - 0
Documentation/DocBook/dvb/frontend.h.xml

@@ -63,6 +63,7 @@ typedef enum fe_caps {
         FE_CAN_8VSB                     = 0x200000,
         FE_CAN_16VSB                    = 0x400000,
         FE_HAS_EXTENDED_CAPS            = 0x800000,   /* We need more bitspace for newer APIs, indicate this. */
+        FE_CAN_TURBO_FEC                = 0x8000000,  /* frontend supports "turbo fec modulation" */
         FE_CAN_2G_MODULATION            = 0x10000000, /* frontend supports "2nd generation modulation" (DVB-S2) */
         FE_NEEDS_BENDING                = 0x20000000, /* not supported anymore, don't use (frontend requires frequency bending) */
         FE_CAN_RECOVER                  = 0x40000000, /* frontend can recover from a cable unplug automatically */

+ 8 - 2
Documentation/DocBook/dvb/frontend.xml

@@ -64,8 +64,14 @@ a specific frontend type.</para>
 	FE_CAN_BANDWIDTH_AUTO         = 0x40000,
 	FE_CAN_GUARD_INTERVAL_AUTO    = 0x80000,
 	FE_CAN_HIERARCHY_AUTO         = 0x100000,
-	FE_CAN_MUTE_TS                = 0x80000000,
-	FE_CAN_CLEAN_SETUP            = 0x40000000
+	FE_CAN_8VSB                   = 0x200000,
+	FE_CAN_16VSB                  = 0x400000,
+	FE_HAS_EXTENDED_CAPS          = 0x800000,
+	FE_CAN_TURBO_FEC              = 0x8000000,
+	FE_CAN_2G_MODULATION          = 0x10000000,
+	FE_NEEDS_BENDING              = 0x20000000,
+	FE_CAN_RECOVER                = 0x40000000,
+	FE_CAN_MUTE_TS                = 0x80000000
 	} fe_caps_t;
 </programlisting>
 </section>

+ 52 - 32
Documentation/DocBook/genericirq.tmpl

@@ -28,7 +28,7 @@
   </authorgroup>
 
   <copyright>
-   <year>2005-2006</year>
+   <year>2005-2010</year>
    <holder>Thomas Gleixner</holder>
   </copyright>
   <copyright>
@@ -100,6 +100,10 @@
 	  <listitem><para>Edge type</para></listitem>
 	  <listitem><para>Simple type</para></listitem>
 	</itemizedlist>
+	During the implementation we identified another type:
+	<itemizedlist>
+	  <listitem><para>Fast EOI type</para></listitem>
+	</itemizedlist>
 	In the SMP world of the __do_IRQ() super-handler another type
 	was identified:
 	<itemizedlist>
@@ -153,6 +157,7 @@
 	is still available. This leads to a kind of duality for the time
 	being. Over time the new model should be used in more and more
 	architectures, as it enables smaller and cleaner IRQ subsystems.
+	It's deprecated for three years now and about to be removed.
 	</para>
   </chapter>
   <chapter id="bugs">
@@ -217,6 +222,7 @@
 	  <itemizedlist>
 	  <listitem><para>handle_level_irq</para></listitem>
 	  <listitem><para>handle_edge_irq</para></listitem>
+	  <listitem><para>handle_fasteoi_irq</para></listitem>
 	  <listitem><para>handle_simple_irq</para></listitem>
 	  <listitem><para>handle_percpu_irq</para></listitem>
 	  </itemizedlist>
@@ -233,33 +239,33 @@
 		are used by the default flow implementations.
 		The following helper functions are implemented (simplified excerpt):
 		<programlisting>
-default_enable(irq)
+default_enable(struct irq_data *data)
 {
-	desc->chip->unmask(irq);
+	desc->chip->irq_unmask(data);
 }
 
-default_disable(irq)
+default_disable(struct irq_data *data)
 {
-	if (!delay_disable(irq))
-		desc->chip->mask(irq);
+	if (!delay_disable(data))
+		desc->chip->irq_mask(data);
 }
 
-default_ack(irq)
+default_ack(struct irq_data *data)
 {
-	chip->ack(irq);
+	chip->irq_ack(data);
 }
 
-default_mask_ack(irq)
+default_mask_ack(struct irq_data *data)
 {
-	if (chip->mask_ack) {
-		chip->mask_ack(irq);
+	if (chip->irq_mask_ack) {
+		chip->irq_mask_ack(data);
 	} else {
-		chip->mask(irq);
-		chip->ack(irq);
+		chip->irq_mask(data);
+		chip->irq_ack(data);
 	}
 }
 
-noop(irq)
+noop(struct irq_data *data))
 {
 }
 
@@ -278,12 +284,27 @@ noop(irq)
 		<para>
 		The following control flow is implemented (simplified excerpt):
 		<programlisting>
-desc->chip->start();
+desc->chip->irq_mask();
 handle_IRQ_event(desc->action);
-desc->chip->end();
+desc->chip->irq_unmask();
 		</programlisting>
 		</para>
-   	    </sect3>
+	    </sect3>
+	    <sect3 id="Default_FASTEOI_IRQ_flow_handler">
+		<title>Default Fast EOI IRQ flow handler</title>
+		<para>
+		handle_fasteoi_irq provides a generic implementation
+		for interrupts, which only need an EOI at the end of
+		the handler
+		</para>
+		<para>
+		The following control flow is implemented (simplified excerpt):
+		<programlisting>
+handle_IRQ_event(desc->action);
+desc->chip->irq_eoi();
+		</programlisting>
+		</para>
+	    </sect3>
 	    <sect3 id="Default_Edge_IRQ_flow_handler">
 	 	<title>Default Edge IRQ flow handler</title>
 		<para>
@@ -294,20 +315,19 @@ desc->chip->end();
 		The following control flow is implemented (simplified excerpt):
 		<programlisting>
 if (desc->status &amp; running) {
-	desc->chip->hold();
+	desc->chip->irq_mask();
 	desc->status |= pending | masked;
 	return;
 }
-desc->chip->start();
+desc->chip->irq_ack();
 desc->status |= running;
 do {
 	if (desc->status &amp; masked)
-		desc->chip->enable();
+		desc->chip->irq_unmask();
 	desc->status &amp;= ~pending;
 	handle_IRQ_event(desc->action);
 } while (status &amp; pending);
 desc->status &amp;= ~running;
-desc->chip->end();
 		</programlisting>
 		</para>
    	    </sect3>
@@ -342,9 +362,9 @@ handle_IRQ_event(desc->action);
 		<para>
 		The following control flow is implemented (simplified excerpt):
 		<programlisting>
-desc->chip->start();
 handle_IRQ_event(desc->action);
-desc->chip->end();
+if (desc->chip->irq_eoi)
+        desc->chip->irq_eoi();
 		</programlisting>
 		</para>
    	    </sect3>
@@ -375,8 +395,7 @@ desc->chip->end();
 	mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when
 	you want to use the delayed interrupt disable feature and your
 	hardware is not capable of retriggering	an interrupt.)
-	The delayed interrupt disable can be runtime enabled, per interrupt,
-	by setting the IRQ_DELAYED_DISABLE flag in the irq_desc status field.
+	The delayed interrupt disable is not configurable.
 	</para>
 	</sect2>
     </sect1>
@@ -387,13 +406,13 @@ desc->chip->end();
 	contains all the direct chip relevant functions, which
 	can be utilized by the irq flow implementations.
 	  <itemizedlist>
-	  <listitem><para>ack()</para></listitem>
-	  <listitem><para>mask_ack() - Optional, recommended for performance</para></listitem>
-	  <listitem><para>mask()</para></listitem>
-	  <listitem><para>unmask()</para></listitem>
-	  <listitem><para>retrigger() - Optional</para></listitem>
-	  <listitem><para>set_type() - Optional</para></listitem>
-	  <listitem><para>set_wake() - Optional</para></listitem>
+	  <listitem><para>irq_ack()</para></listitem>
+	  <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
+	  <listitem><para>irq_mask()</para></listitem>
+	  <listitem><para>irq_unmask()</para></listitem>
+	  <listitem><para>irq_retrigger() - Optional</para></listitem>
+	  <listitem><para>irq_set_type() - Optional</para></listitem>
+	  <listitem><para>irq_set_wake() - Optional</para></listitem>
 	  </itemizedlist>
 	These primitives are strictly intended to mean what they say: ack means
 	ACK, masking means masking of an IRQ line, etc. It is up to the flow
@@ -458,6 +477,7 @@ desc->chip->end();
      <para>
      This chapter contains the autogenerated documentation of the internal functions.
      </para>
+!Ikernel/irq/irqdesc.c
 !Ikernel/irq/handle.c
 !Ikernel/irq/chip.c
   </chapter>

+ 8 - 3
Documentation/DocBook/kernel-api.tmpl

@@ -57,7 +57,6 @@
      </para>
 
      <sect1><title>String Conversions</title>
-!Ilib/vsprintf.c
 !Elib/vsprintf.c
      </sect1>
      <sect1><title>String Manipulation</title>
@@ -94,6 +93,12 @@ X!Ilib/string.c
 !Elib/crc32.c
 !Elib/crc-ccitt.c
      </sect1>
+
+     <sect1 id="idr"><title>idr/ida Functions</title>
+!Pinclude/linux/idr.h idr sync
+!Plib/idr.c IDA description
+!Elib/idr.c
+     </sect1>
   </chapter>
 
   <chapter id="mm">
@@ -132,7 +137,6 @@ X!Ilib/string.c
      <title>FIFO Buffer</title>
      <sect1><title>kfifo interface</title>
 !Iinclude/linux/kfifo.h
-!Ekernel/kfifo.c
      </sect1>
   </chapter>
 
@@ -259,7 +263,8 @@ X!Earch/x86/kernel/mca_32.c
 !Iblock/blk-sysfs.c
 !Eblock/blk-settings.c
 !Eblock/blk-exec.c
-!Eblock/blk-barrier.c
+!Eblock/blk-flush.c
+!Eblock/blk-lib.c
 !Eblock/blk-tag.c
 !Iblock/blk-tag.c
 !Eblock/blk-integrity.c

+ 15 - 12
Documentation/DocBook/kernel-locking.tmpl

@@ -1645,7 +1645,9 @@ the amount of locking which needs to be done.
       all the readers who were traversing the list when we deleted the
       element are finished.  We use <function>call_rcu()</function> to
       register a callback which will actually destroy the object once
-      the readers are finished.
+      all pre-existing readers are finished.  Alternatively,
+      <function>synchronize_rcu()</function> may be used to block until
+      all pre-existing are finished.
     </para>
     <para>
       But how does Read Copy Update know when the readers are
@@ -1714,7 +1716,7 @@ the amount of locking which needs to be done.
 -        object_put(obj);
 +        list_del_rcu(&amp;obj-&gt;list);
          cache_num--;
-+        call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
++        call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu);
  }
 
  /* Must be holding cache_lock */
@@ -1725,14 +1727,6 @@ the amount of locking which needs to be done.
          if (++cache_num > MAX_CACHE_SIZE) {
                  struct object *i, *outcast = NULL;
                  list_for_each_entry(i, &amp;cache, list) {
-@@ -85,6 +94,7 @@
-         obj-&gt;popularity = 0;
-         atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
-         spin_lock_init(&amp;obj-&gt;lock);
-+        INIT_RCU_HEAD(&amp;obj-&gt;rcu);
-
-         spin_lock_irqsave(&amp;cache_lock, flags);
-         __cache_add(obj);
 @@ -104,12 +114,11 @@
  struct object *cache_find(int id)
  {
@@ -1922,9 +1916,12 @@ machines due to caching.
       <function>mutex_lock()</function>
       </para>
       <para>
-       There is a <function>mutex_trylock()</function> which can be
-       used inside interrupt context, as it will not sleep.
+       There is a <function>mutex_trylock()</function> which does not
+       sleep.  Still, it must not be used inside interrupt context since
+       its implementation is not safe for that.
        <function>mutex_unlock()</function> will also never sleep.
+       It cannot be used in interrupt context either since a mutex
+       must be released by the same task that acquired it.
       </para>
      </listitem>
     </itemizedlist>
@@ -1958,6 +1955,12 @@ machines due to caching.
    </sect1>
   </chapter>
 
+  <chapter id="apiref">
+   <title>Mutex API reference</title>
+!Iinclude/linux/mutex.h
+!Ekernel/mutex.c
+  </chapter>
+
   <chapter id="references">
    <title>Further reading</title>
 

+ 623 - 180
Documentation/DocBook/kgdb.tmpl

@@ -4,7 +4,7 @@
 
 <book id="kgdbOnLinux">
  <bookinfo>
-  <title>Using kgdb and the kgdb Internals</title>
+  <title>Using kgdb, kdb and the kernel debugger internals</title>
 
   <authorgroup>
    <author>
@@ -17,33 +17,8 @@
     </affiliation>
    </author>
   </authorgroup>
-
-  <authorgroup>
-   <author>
-    <firstname>Tom</firstname>
-    <surname>Rini</surname>
-    <affiliation>
-     <address>
-      <email>trini@kernel.crashing.org</email>
-     </address>
-    </affiliation>
-   </author>
-  </authorgroup>
-
-  <authorgroup>
-   <author>
-    <firstname>Amit S.</firstname>
-    <surname>Kale</surname>
-    <affiliation>
-     <address>
-      <email>amitkale@linsyssoft.com</email>
-     </address>
-    </affiliation>
-   </author>
-  </authorgroup>
-
   <copyright>
-   <year>2008</year>
+   <year>2008,2010</year>
    <holder>Wind River Systems, Inc.</holder>
   </copyright>
   <copyright>
@@ -69,41 +44,76 @@
   <chapter id="Introduction">
     <title>Introduction</title>
     <para>
-    kgdb is a source level debugger for linux kernel. It is used along
-    with gdb to debug a linux kernel.  The expectation is that gdb can
-    be used to "break in" to the kernel to inspect memory, variables
-    and look through call stack information similar to what an
-    application developer would use gdb for.  It is possible to place
-    breakpoints in kernel code and perform some limited execution
-    stepping.
+    The kernel has two different debugger front ends (kdb and kgdb)
+    which interface to the debug core.  It is possible to use either
+    of the debugger front ends and dynamically transition between them
+    if you configure the kernel properly at compile and runtime.
+    </para>
+    <para>
+    Kdb is simplistic shell-style interface which you can use on a
+    system console with a keyboard or serial console.  You can use it
+    to inspect memory, registers, process lists, dmesg, and even set
+    breakpoints to stop in a certain location.  Kdb is not a source
+    level debugger, although you can set breakpoints and execute some
+    basic kernel run control.  Kdb is mainly aimed at doing some
+    analysis to aid in development or diagnosing kernel problems.  You
+    can access some symbols by name in kernel built-ins or in kernel
+    modules if the code was built
+    with <symbol>CONFIG_KALLSYMS</symbol>.
+    </para>
+    <para>
+    Kgdb is intended to be used as a source level debugger for the
+    Linux kernel. It is used along with gdb to debug a Linux kernel.
+    The expectation is that gdb can be used to "break in" to the
+    kernel to inspect memory, variables and look through call stack
+    information similar to the way an application developer would use
+    gdb to debug an application.  It is possible to place breakpoints
+    in kernel code and perform some limited execution stepping.
     </para>
     <para>
-    Two machines are required for using kgdb. One of these machines is a
-    development machine and the other is a test machine.  The kernel
-    to be debugged runs on the test machine. The development machine
-    runs an instance of gdb against the vmlinux file which contains
-    the symbols (not boot image such as bzImage, zImage, uImage...).
-    In gdb the developer specifies the connection parameters and
-    connects to kgdb.  The type of connection a developer makes with
-    gdb depends on the availability of kgdb I/O modules compiled as
-    builtin's or kernel modules in the test machine's kernel.
+    Two machines are required for using kgdb. One of these machines is
+    a development machine and the other is the target machine.  The
+    kernel to be debugged runs on the target machine. The development
+    machine runs an instance of gdb against the vmlinux file which
+    contains the symbols (not boot image such as bzImage, zImage,
+    uImage...).  In gdb the developer specifies the connection
+    parameters and connects to kgdb.  The type of connection a
+    developer makes with gdb depends on the availability of kgdb I/O
+    modules compiled as built-ins or loadable kernel modules in the test
+    machine's kernel.
     </para>
   </chapter>
   <chapter id="CompilingAKernel">
-    <title>Compiling a kernel</title>
+  <title>Compiling a kernel</title>
+  <para>
+  <itemizedlist>
+  <listitem><para>In order to enable compilation of kdb, you must first enable kgdb.</para></listitem>
+  <listitem><para>The kgdb test compile options are described in the kgdb test suite chapter.</para></listitem>
+  </itemizedlist>
+  </para>
+  <sect1 id="CompileKGDB">
+    <title>Kernel config options for kgdb</title>
     <para>
     To enable <symbol>CONFIG_KGDB</symbol> you should first turn on
     "Prompt for development and/or incomplete code/drivers"
     (CONFIG_EXPERIMENTAL) in  "General setup", then under the
-    "Kernel debugging" select "KGDB: kernel debugging with remote gdb".
+    "Kernel debugging" select "KGDB: kernel debugger".
+    </para>
+    <para>
+    While it is not a hard requirement that you have symbols in your
+    vmlinux file, gdb tends not to be very useful without the symbolic
+    data, so you will want to turn
+    on <symbol>CONFIG_DEBUG_INFO</symbol> which is called "Compile the
+    kernel with debug info" in the config menu.
     </para>
     <para>
     It is advised, but not required that you turn on the
-    CONFIG_FRAME_POINTER kernel option.  This option inserts code to
-    into the compiled executable which saves the frame information in
-    registers or on the stack at different points which will allow a
-    debugger such as gdb to more accurately construct stack back traces
-    while debugging the kernel.
+    <symbol>CONFIG_FRAME_POINTER</symbol> kernel option which is called "Compile the
+    kernel with frame pointers" in the config menu.  This option
+    inserts code to into the compiled executable which saves the frame
+    information in registers or on the stack at different points which
+    allows a debugger such as gdb to more accurately construct
+    stack back traces while debugging the kernel.
     </para>
     <para>
     If the architecture that you are using supports the kernel option
@@ -116,38 +126,192 @@
     this option.
     </para>
     <para>
-    Next you should choose one of more I/O drivers to interconnect debugging
-    host and debugged target.  Early boot debugging requires a KGDB
-    I/O driver that supports early debugging and the driver must be
-    built into the kernel directly. Kgdb I/O driver configuration
-    takes place via kernel or module parameters, see following
-    chapter.
+    Next you should choose one of more I/O drivers to interconnect
+    debugging host and debugged target.  Early boot debugging requires
+    a KGDB I/O driver that supports early debugging and the driver
+    must be built into the kernel directly. Kgdb I/O driver
+    configuration takes place via kernel or module parameters which
+    you can learn more about in the in the section that describes the
+    parameter "kgdboc".
     </para>
-    <para>
-    The kgdb test compile options are described in the kgdb test suite chapter.
+    <para>Here is an example set of .config symbols to enable or
+    disable for kgdb:
+    <itemizedlist>
+    <listitem><para># CONFIG_DEBUG_RODATA is not set</para></listitem>
+    <listitem><para>CONFIG_FRAME_POINTER=y</para></listitem>
+    <listitem><para>CONFIG_KGDB=y</para></listitem>
+    <listitem><para>CONFIG_KGDB_SERIAL_CONSOLE=y</para></listitem>
+    </itemizedlist>
     </para>
-
+  </sect1>
+  <sect1 id="CompileKDB">
+    <title>Kernel config options for kdb</title>
+    <para>Kdb is quite a bit more complex than the simple gdbstub
+    sitting on top of the kernel's debug core.  Kdb must implement a
+    shell, and also adds some helper functions in other parts of the
+    kernel, responsible for printing out interesting data such as what
+    you would see if you ran "lsmod", or "ps".  In order to build kdb
+    into the kernel you follow the same steps as you would for kgdb.
+    </para>
+    <para>The main config option for kdb
+    is <symbol>CONFIG_KGDB_KDB</symbol> which is called "KGDB_KDB:
+    include kdb frontend for kgdb" in the config menu.  In theory you
+    would have already also selected an I/O driver such as the
+    CONFIG_KGDB_SERIAL_CONSOLE interface if you plan on using kdb on a
+    serial port, when you were configuring kgdb.
+    </para>
+    <para>If you want to use a PS/2-style keyboard with kdb, you would
+    select CONFIG_KDB_KEYBOARD which is called "KGDB_KDB: keyboard as
+    input device" in the config menu.  The CONFIG_KDB_KEYBOARD option
+    is not used for anything in the gdb interface to kgdb.  The
+    CONFIG_KDB_KEYBOARD option only works with kdb.
+    </para>
+    <para>Here is an example set of .config symbols to enable/disable kdb:
+    <itemizedlist>
+    <listitem><para># CONFIG_DEBUG_RODATA is not set</para></listitem>
+    <listitem><para>CONFIG_FRAME_POINTER=y</para></listitem>
+    <listitem><para>CONFIG_KGDB=y</para></listitem>
+    <listitem><para>CONFIG_KGDB_SERIAL_CONSOLE=y</para></listitem>
+    <listitem><para>CONFIG_KGDB_KDB=y</para></listitem>
+    <listitem><para>CONFIG_KDB_KEYBOARD=y</para></listitem>
+    </itemizedlist>
+    </para>
+  </sect1>
   </chapter>
-  <chapter id="EnableKGDB">
-   <title>Enable kgdb for debugging</title>
-   <para>
-   In order to use kgdb you must activate it by passing configuration
-   information to one of the kgdb I/O drivers.  If you do not pass any
-   configuration information kgdb will not do anything at all.  Kgdb
-   will only actively hook up to the kernel trap hooks if a kgdb I/O
-   driver is loaded and configured.  If you unconfigure a kgdb I/O
-   driver, kgdb will unregister all the kernel hook points.
+  <chapter id="kgdbKernelArgs">
+  <title>Kernel Debugger Boot Arguments</title>
+  <para>This section describes the various runtime kernel
+  parameters that affect the configuration of the kernel debugger.
+  The following chapter covers using kdb and kgdb as well as
+  provides some examples of the configuration parameters.</para>
+   <sect1 id="kgdboc">
+   <title>Kernel parameter: kgdboc</title>
+   <para>The kgdboc driver was originally an abbreviation meant to
+   stand for "kgdb over console".  Today it is the primary mechanism
+   to configure how to communicate from gdb to kgdb as well as the
+   devices you want to use to interact with the kdb shell.
+   </para>
+   <para>For kgdb/gdb, kgdboc is designed to work with a single serial
+   port. It is intended to cover the circumstance where you want to
+   use a serial console as your primary console as well as using it to
+   perform kernel debugging.  It is also possible to use kgdb on a
+   serial port which is not designated as a system console.  Kgdboc
+   may be configured as a kernel built-in or a kernel loadable module.
+   You can only make use of <constant>kgdbwait</constant> and early
+   debugging if you build kgdboc into the kernel as a built-in.
+   <para>Optionally you can elect to activate kms (Kernel Mode
+   Setting) integration.  When you use kms with kgdboc and you have a
+   video driver that has atomic mode setting hooks, it is possible to
+   enter the debugger on the graphics console.  When the kernel
+   execution is resumed, the previous graphics mode will be restored.
+   This integration can serve as a useful tool to aid in diagnosing
+   crashes or doing analysis of memory with kdb while allowing the
+   full graphics console applications to run.
+   </para>
+   </para>
+   <sect2 id="kgdbocArgs">
+   <title>kgdboc arguments</title>
+   <para>Usage: <constant>kgdboc=[kms][[,]kbd][[,]serial_device][,baud]</constant></para>
+   <para>The order listed above must be observed if you use any of the
+   optional configurations together.
    </para>
+   <para>Abbreviations:
+   <itemizedlist>
+   <listitem><para>kms = Kernel Mode Setting</para></listitem>
+   <listitem><para>kbd = Keyboard</para></listitem>
+   </itemizedlist>
+   </para>
+   <para>You can configure kgdboc to use the keyboard, and or a serial
+   device depending on if you are using kdb and or kgdb, in one of the
+   following scenarios.  The order listed above must be observed if
+   you use any of the optional configurations together.  Using kms +
+   only gdb is generally not a useful combination.</para>
+   <sect3 id="kgdbocArgs1">
+   <title>Using loadable module or built-in</title>
    <para>
-   All drivers can be reconfigured at run time, if
-   <symbol>CONFIG_SYSFS</symbol> and <symbol>CONFIG_MODULES</symbol>
-   are enabled, by echo'ing a new config string to
-   <constant>/sys/module/&lt;driver&gt;/parameter/&lt;option&gt;</constant>.
-   The driver can be unconfigured by passing an empty string.  You cannot
-   change the configuration while the debugger is attached.  Make sure
-   to detach the debugger with the <constant>detach</constant> command
-   prior to trying unconfigure a kgdb I/O driver.
+   <orderedlist>
+   <listitem><para>As a kernel built-in:</para>
+   <para>Use the kernel boot argument: <constant>kgdboc=&lt;tty-device&gt;,[baud]</constant></para></listitem>
+   <listitem>
+   <para>As a kernel loadable module:</para>
+   <para>Use the command: <constant>modprobe kgdboc kgdboc=&lt;tty-device&gt;,[baud]</constant></para>
+   <para>Here are two examples of how you might format the kgdboc
+   string. The first is for an x86 target using the first serial port.
+   The second example is for the ARM Versatile AB using the second
+   serial port.
+   <orderedlist>
+   <listitem><para><constant>kgdboc=ttyS0,115200</constant></para></listitem>
+   <listitem><para><constant>kgdboc=ttyAMA1,115200</constant></para></listitem>
+   </orderedlist>
+   </para>
+   </listitem>
+   </orderedlist></para>
+   </sect3>
+   <sect3 id="kgdbocArgs2">
+   <title>Configure kgdboc at runtime with sysfs</title>
+   <para>At run time you can enable or disable kgdboc by echoing a
+   parameters into the sysfs.  Here are two examples:</para>
+   <orderedlist>
+   <listitem><para>Enable kgdboc on ttyS0</para>
+   <para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
+   <listitem><para>Disable kgdboc</para>
+   <para><constant>echo "" &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
+   </orderedlist>
+   <para>NOTE: You do not need to specify the baud if you are
+   configuring the console on tty which is already configured or
+   open.</para>
+   </sect3>
+   <sect3 id="kgdbocArgs3">
+   <title>More examples</title>
+   <para>You can configure kgdboc to use the keyboard, and or a serial
+   device depending on if you are using kdb and or kgdb, in one of the
+   following scenarios.</para>
+   <para>You can configure kgdboc to use the keyboard, and or a serial device
+   depending on if you are using kdb and or kgdb, in one of the
+   following scenarios.
+   <orderedlist>
+   <listitem><para>kdb and kgdb over only a serial port</para>
+   <para><constant>kgdboc=&lt;serial_device&gt;[,baud]</constant></para>
+   <para>Example: <constant>kgdboc=ttyS0,115200</constant></para>
+   </listitem>
+   <listitem><para>kdb and kgdb with keyboard and a serial port</para>
+   <para><constant>kgdboc=kbd,&lt;serial_device&gt;[,baud]</constant></para>
+   <para>Example: <constant>kgdboc=kbd,ttyS0,115200</constant></para>
+   </listitem>
+   <listitem><para>kdb with a keyboard</para>
+   <para><constant>kgdboc=kbd</constant></para>
+   </listitem>
+   <listitem><para>kdb with kernel mode setting</para>
+   <para><constant>kgdboc=kms,kbd</constant></para>
+   </listitem>
+   <listitem><para>kdb with kernel mode setting and kgdb over a serial port</para>
+   <para><constant>kgdboc=kms,kbd,ttyS0,115200</constant></para>
+   </listitem>
+   </orderedlist>
+   </para>
+   </sect3>
+   <para>NOTE: Kgdboc does not support interrupting the target via the
+   gdb remote protocol.  You must manually send a sysrq-g unless you
+   have a proxy that splits console output to a terminal program.
+   A console proxy has a separate TCP port for the debugger and a separate
+   TCP port for the "human" console.  The proxy can take care of sending
+   the sysrq-g for you.
    </para>
+   <para>When using kgdboc with no debugger proxy, you can end up
+    connecting the debugger at one of two entry points.  If an
+    exception occurs after you have loaded kgdboc, a message should
+    print on the console stating it is waiting for the debugger.  In
+    this case you disconnect your terminal program and then connect the
+    debugger in its place.  If you want to interrupt the target system
+    and forcibly enter a debug session you have to issue a Sysrq
+    sequence and then type the letter <constant>g</constant>.  Then
+    you disconnect the terminal session and connect gdb.  Your options
+    if you don't like this are to hack gdb to send the sysrq-g for you
+    as well as on the initial connect, or to use a debugger proxy that
+    allows an unmodified gdb to do the debugging.
+   </para>
+   </sect2>
+   </sect1>
    <sect1 id="kgdbwait">
    <title>Kernel parameter: kgdbwait</title>
    <para>
@@ -162,103 +326,204 @@
    </para>
    <para>
    The kernel will stop and wait as early as the I/O driver and
-   architecture will allow when you use this option.  If you build the
-   kgdb I/O driver as a kernel module kgdbwait will not do anything.
+   architecture allows when you use this option.  If you build the
+   kgdb I/O driver as a loadable kernel module kgdbwait will not do
+   anything.
    </para>
    </sect1>
-  <sect1 id="kgdboc">
-  <title>Kernel parameter: kgdboc</title>
-  <para>
-  The kgdboc driver was originally an abbreviation meant to stand for
-  "kgdb over console".  Kgdboc is designed to work with a single
-  serial port. It was meant to cover the circumstance
-  where you wanted to use a serial console as your primary console as
-  well as using it to perform kernel debugging.  Of course you can
-  also use kgdboc without assigning a console to the same port.
+   <sect1 id="kgdbcon">
+   <title>Kernel parameter: kgdbcon</title>
+   <para> The kgdbcon feature allows you to see printk() messages
+   inside gdb while gdb is connected to the kernel.  Kdb does not make
+    use of the kgdbcon feature.
+   </para>
+   <para>Kgdb supports using the gdb serial protocol to send console
+   messages to the debugger when the debugger is connected and running.
+   There are two ways to activate this feature.
+   <orderedlist>
+   <listitem><para>Activate with the kernel command line option:</para>
+   <para><constant>kgdbcon</constant></para>
+   </listitem>
+   <listitem><para>Use sysfs before configuring an I/O driver</para>
+   <para>
+   <constant>echo 1 &gt; /sys/module/kgdb/parameters/kgdb_use_con</constant>
+   </para>
+   <para>
+   NOTE: If you do this after you configure the kgdb I/O driver, the
+   setting will not take effect until the next point the I/O is
+   reconfigured.
+   </para>
+   </listitem>
+   </orderedlist>
+   <para>IMPORTANT NOTE: You cannot use kgdboc + kgdbcon on a tty that is an
+   active system console.  An example incorrect usage is <constant>console=ttyS0,115200 kgdboc=ttyS0 kgdbcon</constant>
+   </para>
+   <para>It is possible to use this option with kgdboc on a tty that is not a system console.
+   </para>
   </para>
-  <sect2 id="UsingKgdboc">
-  <title>Using kgdboc</title>
-  <para>
-  You can configure kgdboc via sysfs or a module or kernel boot line
-  parameter depending on if you build with CONFIG_KGDBOC as a module
-  or built-in.
-  <orderedlist>
-  <listitem><para>From the module load or build-in</para>
-  <para><constant>kgdboc=&lt;tty-device&gt;,[baud]</constant></para>
+  </sect1>
+  </chapter>
+  <chapter id="usingKDB">
+  <title>Using kdb</title>
   <para>
-  The example here would be if your console port was typically ttyS0, you would use something like <constant>kgdboc=ttyS0,115200</constant> or on the ARM Versatile AB you would likely use <constant>kgdboc=ttyAMA0,115200</constant>
+  </para>
+  <sect1 id="quickKDBserial">
+  <title>Quick start for kdb on a serial port</title>
+  <para>This is a quick example of how to use kdb.</para>
+  <para><orderedlist>
+  <listitem><para>Boot kernel with arguments:
+  <itemizedlist>
+  <listitem><para><constant>console=ttyS0,115200 kgdboc=ttyS0,115200</constant></para></listitem>
+  </itemizedlist></para>
+  <para>OR</para>
+  <para>Configure kgdboc after the kernel booted; assuming you are using a serial port console:
+  <itemizedlist>
+  <listitem><para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
+  </itemizedlist>
   </para>
   </listitem>
-  <listitem><para>From sysfs</para>
-  <para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para>
+  <listitem><para>Enter the kernel debugger manually or by waiting for an oops or fault.  There are several ways you can enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled CONFIG_MAGIC_SYSRQ=y in your kernel config.</para>
+  <itemizedlist>
+  <listitem><para>When logged in as root or with a super user session you can run:</para>
+   <para><constant>echo g &gt; /proc/sysrq-trigger</constant></para></listitem>
+  <listitem><para>Example using minicom 2.2</para>
+  <para>Press: <constant>Control-a</constant></para>
+  <para>Press: <constant>f</constant></para>
+  <para>Press: <constant>g</constant></para>
   </listitem>
-  </orderedlist>
-  </para>
-  <para>
-  NOTE: Kgdboc does not support interrupting the target via the
-  gdb remote protocol.  You must manually send a sysrq-g unless you
-  have a proxy that splits console output to a terminal problem and
-  has a separate port for the debugger to connect to that sends the
-  sysrq-g for you.
+  <listitem><para>When you have telneted to a terminal server that supports sending a remote break</para>
+  <para>Press: <constant>Control-]</constant></para>
+  <para>Type in:<constant>send break</constant></para>
+  <para>Press: <constant>Enter</constant></para>
+  <para>Press: <constant>g</constant></para>
+  </listitem>
+  </itemizedlist>
+  </listitem>
+  <listitem><para>From the kdb prompt you can run the "help" command to see a complete list of the commands that are available.</para>
+  <para>Some useful commands in kdb include:
+  <itemizedlist>
+  <listitem><para>lsmod  -- Shows where kernel modules are loaded</para></listitem>
+  <listitem><para>ps -- Displays only the active processes</para></listitem>
+  <listitem><para>ps A -- Shows all the processes</para></listitem>
+  <listitem><para>summary -- Shows kernel version info and memory usage</para></listitem>
+  <listitem><para>bt -- Get a backtrace of the current process using dump_stack()</para></listitem>
+  <listitem><para>dmesg -- View the kernel syslog buffer</para></listitem>
+  <listitem><para>go -- Continue the system</para></listitem>
+  </itemizedlist>
   </para>
-  <para>When using kgdboc with no debugger proxy, you can end up
-  connecting the debugger for one of two entry points.  If an
-  exception occurs after you have loaded kgdboc a message should print
-  on the console stating it is waiting for the debugger.  In case you
-  disconnect your terminal program and then connect the debugger in
-  its place.  If you want to interrupt the target system and forcibly
-  enter a debug session you have to issue a Sysrq sequence and then
-  type the letter <constant>g</constant>.  Then you disconnect the
-  terminal session and connect gdb.  Your options if you don't like
-  this are to hack gdb to send the sysrq-g for you as well as on the
-  initial connect, or to use a debugger proxy that allows an
-  unmodified gdb to do the debugging.
+  </listitem>
+  <listitem>
+  <para>When you are done using kdb you need to consider rebooting the
+  system or using the "go" command to resuming normal kernel
+  execution.  If you have paused the kernel for a lengthy period of
+  time, applications that rely on timely networking or anything to do
+  with real wall clock time could be adversely affected, so you
+  should take this into consideration when using the kernel
+  debugger.</para>
+  </listitem>
+  </orderedlist></para>
+  </sect1>
+  <sect1 id="quickKDBkeyboard">
+  <title>Quick start for kdb using a keyboard connected console</title>
+  <para>This is a quick example of how to use kdb with a keyboard.</para>
+  <para><orderedlist>
+  <listitem><para>Boot kernel with arguments:
+  <itemizedlist>
+  <listitem><para><constant>kgdboc=kbd</constant></para></listitem>
+  </itemizedlist></para>
+  <para>OR</para>
+  <para>Configure kgdboc after the kernel booted:
+  <itemizedlist>
+  <listitem><para><constant>echo kbd &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
+  </itemizedlist>
   </para>
-  </sect2>
+  </listitem>
+  <listitem><para>Enter the kernel debugger manually or by waiting for an oops or fault.  There are several ways you can enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled CONFIG_MAGIC_SYSRQ=y in your kernel config.</para>
+  <itemizedlist>
+  <listitem><para>When logged in as root or with a super user session you can run:</para>
+   <para><constant>echo g &gt; /proc/sysrq-trigger</constant></para></listitem>
+  <listitem><para>Example using a laptop keyboard</para>
+  <para>Press and hold down: <constant>Alt</constant></para>
+  <para>Press and hold down: <constant>Fn</constant></para>
+  <para>Press and release the key with the label: <constant>SysRq</constant></para>
+  <para>Release: <constant>Fn</constant></para>
+  <para>Press and release: <constant>g</constant></para>
+  <para>Release: <constant>Alt</constant></para>
+  </listitem>
+  <listitem><para>Example using a PS/2 101-key keyboard</para>
+  <para>Press and hold down: <constant>Alt</constant></para>
+  <para>Press and release the key with the label: <constant>SysRq</constant></para>
+  <para>Press and release: <constant>g</constant></para>
+  <para>Release: <constant>Alt</constant></para>
+  </listitem>
+  </itemizedlist>
+  </listitem>
+  <listitem>
+  <para>Now type in a kdb command such as "help", "dmesg", "bt" or "go" to continue kernel execution.</para>
+  </listitem>
+  </orderedlist></para>
   </sect1>
-  <sect1 id="kgdbcon">
-  <title>Kernel parameter: kgdbcon</title>
-  <para>
-  Kgdb supports using the gdb serial protocol to send console messages
-  to the debugger when the debugger is connected and running.  There
-  are two ways to activate this feature.
+  </chapter>
+  <chapter id="EnableKGDB">
+   <title>Using kgdb / gdb</title>
+   <para>In order to use kgdb you must activate it by passing
+   configuration information to one of the kgdb I/O drivers.  If you
+   do not pass any configuration information kgdb will not do anything
+   at all.  Kgdb will only actively hook up to the kernel trap hooks
+   if a kgdb I/O driver is loaded and configured.  If you unconfigure
+   a kgdb I/O driver, kgdb will unregister all the kernel hook points.
+   </para>
+   <para> All kgdb I/O drivers can be reconfigured at run time, if
+   <symbol>CONFIG_SYSFS</symbol> and <symbol>CONFIG_MODULES</symbol>
+   are enabled, by echo'ing a new config string to
+   <constant>/sys/module/&lt;driver&gt;/parameter/&lt;option&gt;</constant>.
+   The driver can be unconfigured by passing an empty string.  You cannot
+   change the configuration while the debugger is attached.  Make sure
+   to detach the debugger with the <constant>detach</constant> command
+   prior to trying to unconfigure a kgdb I/O driver.
+   </para>
+  <sect1 id="ConnectingGDB">
+  <title>Connecting with gdb to a serial port</title>
   <orderedlist>
-  <listitem><para>Activate with the kernel command line option:</para>
-  <para><constant>kgdbcon</constant></para>
+  <listitem><para>Configure kgdboc</para>
+   <para>Boot kernel with arguments:
+   <itemizedlist>
+    <listitem><para><constant>kgdboc=ttyS0,115200</constant></para></listitem>
+   </itemizedlist></para>
+   <para>OR</para>
+   <para>Configure kgdboc after the kernel booted:
+   <itemizedlist>
+    <listitem><para><constant>echo ttyS0 &gt; /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem>
+   </itemizedlist></para>
   </listitem>
-  <listitem><para>Use sysfs before configuring an io driver</para>
-  <para>
-  <constant>echo 1 &gt; /sys/module/kgdb/parameters/kgdb_use_con</constant>
-  </para>
-  <para>
-  NOTE: If you do this after you configure the kgdb I/O driver, the
-  setting will not take effect until the next point the I/O is
-  reconfigured.
-  </para>
+  <listitem>
+  <para>Stop kernel execution (break into the debugger)</para>
+  <para>In order to connect to gdb via kgdboc, the kernel must
+  first be stopped.  There are several ways to stop the kernel which
+  include using kgdbwait as a boot argument, via a sysrq-g, or running
+  the kernel until it takes an exception where it waits for the
+  debugger to attach.
+  <itemizedlist>
+  <listitem><para>When logged in as root or with a super user session you can run:</para>
+   <para><constant>echo g &gt; /proc/sysrq-trigger</constant></para></listitem>
+  <listitem><para>Example using minicom 2.2</para>
+  <para>Press: <constant>Control-a</constant></para>
+  <para>Press: <constant>f</constant></para>
+  <para>Press: <constant>g</constant></para>
   </listitem>
-  </orderedlist>
-  </para>
-  <para>
-  IMPORTANT NOTE: Using this option with kgdb over the console
-  (kgdboc) is not supported.
+  <listitem><para>When you have telneted to a terminal server that supports sending a remote break</para>
+  <para>Press: <constant>Control-]</constant></para>
+  <para>Type in:<constant>send break</constant></para>
+  <para>Press: <constant>Enter</constant></para>
+  <para>Press: <constant>g</constant></para>
+  </listitem>
+  </itemizedlist>
   </para>
-  </sect1>
-  </chapter>
-  <chapter id="ConnectingGDB">
-  <title>Connecting gdb</title>
-    <para>
-    If you are using kgdboc, you need to have used kgdbwait as a boot
-    argument, issued a sysrq-g, or the system you are going to debug
-    has already taken an exception and is waiting for the debugger to
-    attach before you can connect gdb.
-    </para>
-    <para>
-    If you are not using different kgdb I/O driver other than kgdboc,
-    you should be able to connect and the target will automatically
-    respond.
-    </para>
+  </listitem>
+  <listitem>
+    <para>Connect from from gdb</para>
     <para>
-    Example (using a serial port):
+    Example (using a directly connected port):
     </para>
     <programlisting>
     % gdb ./vmlinux
@@ -266,7 +531,7 @@
     (gdb) target remote /dev/ttyS0
     </programlisting>
     <para>
-    Example (kgdb to a terminal server on tcp port 2012):
+    Example (kgdb to a terminal server on TCP port 2012):
     </para>
     <programlisting>
     % gdb ./vmlinux
@@ -283,6 +548,83 @@
     communications.  You do this prior to issuing the <constant>target
     remote</constant> command by typing in: <constant>set debug remote 1</constant>
     </para>
+  </listitem>
+  </orderedlist>
+  <para>Remember if you continue in gdb, and need to "break in" again,
+  you need to issue an other sysrq-g.  It is easy to create a simple
+  entry point by putting a breakpoint at <constant>sys_sync</constant>
+  and then you can run "sync" from a shell or script to break into the
+  debugger.</para>
+  </sect1>
+  </chapter>
+  <chapter id="switchKdbKgdb">
+  <title>kgdb and kdb interoperability</title>
+  <para>It is possible to transition between kdb and kgdb dynamically.
+  The debug core will remember which you used the last time and
+  automatically start in the same mode.</para>
+  <sect1>
+  <title>Switching between kdb and kgdb</title>
+  <sect2>
+  <title>Switching from kgdb to kdb</title>
+  <para>
+  There are two ways to switch from kgdb to kdb: you can use gdb to
+  issue a maintenance packet, or you can blindly type the command $3#33.
+  Whenever kernel debugger stops in kgdb mode it will print the
+  message <constant>KGDB or $3#33 for KDB</constant>.  It is important
+  to note that you have to type the sequence correctly in one pass.
+  You cannot type a backspace or delete because kgdb will interpret
+  that as part of the debug stream.
+  <orderedlist>
+  <listitem><para>Change from kgdb to kdb by blindly typing:</para>
+  <para><constant>$3#33</constant></para></listitem>
+  <listitem><para>Change from kgdb to kdb with gdb</para>
+  <para><constant>maintenance packet 3</constant></para>
+  <para>NOTE: Now you must kill gdb. Typically you press control-z and
+  issue the command: kill -9 %</para></listitem>
+  </orderedlist>
+  </para>
+  </sect2>
+  <sect2>
+  <title>Change from kdb to kgdb</title>
+  <para>There are two ways you can change from kdb to kgdb.  You can
+  manually enter kgdb mode by issuing the kgdb command from the kdb
+  shell prompt, or you can connect gdb while the kdb shell prompt is
+  active.  The kdb shell looks for the typical first commands that gdb
+  would issue with the gdb remote protocol and if it sees one of those
+  commands it automatically changes into kgdb mode.</para>
+  <orderedlist>
+  <listitem><para>From kdb issue the command:</para>
+  <para><constant>kgdb</constant></para>
+  <para>Now disconnect your terminal program and connect gdb in its place</para></listitem>
+  <listitem><para>At the kdb prompt, disconnect the terminal program and connect gdb in its place.</para></listitem>
+  </orderedlist>
+  </sect2>
+  </sect1>
+  <sect1>
+  <title>Running kdb commands from gdb</title>
+  <para>It is possible to run a limited set of kdb commands from gdb,
+  using the gdb monitor command.  You don't want to execute any of the
+  run control or breakpoint operations, because it can disrupt the
+  state of the kernel debugger.  You should be using gdb for
+  breakpoints and run control operations if you have gdb connected.
+  The more useful commands to run are things like lsmod, dmesg, ps or
+  possibly some of the memory information commands.  To see all the kdb
+  commands you can run <constant>monitor help</constant>.</para>
+  <para>Example:
+  <informalexample><programlisting>
+(gdb) monitor ps
+1 idle process (state I) and
+27 sleeping system daemon (state M) processes suppressed,
+use 'ps A' to see all.
+Task Addr       Pid   Parent [*] cpu State Thread     Command
+
+0xc78291d0        1        0  0    0   S  0xc7829404  init
+0xc7954150      942        1  0    0   S  0xc7954384  dropbear
+0xc78789c0      944        1  0    0   S  0xc7878bf4  sh
+(gdb)
+  </programlisting></informalexample>
+  </para>
+  </sect1>
   </chapter>
   <chapter id="KGDBTestSuite">
     <title>kgdb Test Suite</title>
@@ -309,34 +651,38 @@
     </para>
   </chapter>
   <chapter id="CommonBackEndReq">
-  <title>KGDB Internals</title>
+  <title>Kernel Debugger Internals</title>
   <sect1 id="kgdbArchitecture">
     <title>Architecture Specifics</title>
       <para>
-      Kgdb is organized into three basic components:
+      The kernel debugger is organized into a number of components:
       <orderedlist>
-      <listitem><para>kgdb core</para>
+      <listitem><para>The debug core</para>
       <para>
-      The kgdb core is found in kernel/kgdb.c.  It contains:
+      The debug core is found in kernel/debugger/debug_core.c.  It contains:
       <itemizedlist>
-      <listitem><para>All the logic to implement the gdb serial protocol</para></listitem>
-      <listitem><para>A generic OS exception handler which includes sync'ing the processors into a stopped state on an multi cpu system.</para></listitem>
+      <listitem><para>A generic OS exception handler which includes
+      sync'ing the processors into a stopped state on an multi-CPU
+      system.</para></listitem>
       <listitem><para>The API to talk to the kgdb I/O drivers</para></listitem>
-      <listitem><para>The API to make calls to the arch specific kgdb implementation</para></listitem>
+      <listitem><para>The API to make calls to the arch-specific kgdb implementation</para></listitem>
       <listitem><para>The logic to perform safe memory reads and writes to memory while using the debugger</para></listitem>
       <listitem><para>A full implementation for software breakpoints unless overridden by the arch</para></listitem>
+      <listitem><para>The API to invoke either the kdb or kgdb frontend to the debug core.</para></listitem>
+      <listitem><para>The structures and callback API for atomic kernel mode setting.</para>
+      <para>NOTE: kgdboc is where the kms callbacks are invoked.</para></listitem>
       </itemizedlist>
       </para>
       </listitem>
-      <listitem><para>kgdb arch specific implementation</para>
+      <listitem><para>kgdb arch-specific implementation</para>
       <para>
       This implementation is generally found in arch/*/kernel/kgdb.c.
       As an example, arch/x86/kernel/kgdb.c contains the specifics to
       implement HW breakpoint as well as the initialization to
       dynamically register and unregister for the trap handlers on
-      this architecture.  The arch specific portion implements:
+      this architecture.  The arch-specific portion implements:
       <itemizedlist>
-      <listitem><para>contains an arch specific trap catcher which
+      <listitem><para>contains an arch-specific trap catcher which
       invokes kgdb_handle_exception() to start kgdb about doing its
       work</para></listitem>
       <listitem><para>translation to and from gdb specific packet format to pt_regs</para></listitem>
@@ -347,11 +693,46 @@
       </itemizedlist>
       </para>
       </listitem>
+      <listitem><para>gdbstub frontend (aka kgdb)</para>
+      <para>The gdbstub is located in kernel/debug/gdbstub.c. It contains:</para>
+      <itemizedlist>
+        <listitem><para>All the logic to implement the gdb serial protocol</para></listitem>
+      </itemizedlist>
+      </listitem>
+      <listitem><para>kdb frontend</para>
+      <para>The kdb debugger shell is broken down into a number of
+      components.  The kdb core is located in kernel/debug/kdb.  There
+      are a number of helper functions in some of the other kernel
+      components to make it possible for kdb to examine and report
+      information about the kernel without taking locks that could
+      cause a kernel deadlock.  The kdb core contains implements the following functionality.</para>
+      <itemizedlist>
+        <listitem><para>A simple shell</para></listitem>
+        <listitem><para>The kdb core command set</para></listitem>
+        <listitem><para>A registration API to register additional kdb shell commands.</para>
+	<itemizedlist>
+        <listitem><para>A good example of a self-contained kdb module
+        is the "ftdump" command for dumping the ftrace buffer.  See:
+        kernel/trace/trace_kdb.c</para></listitem>
+        <listitem><para>For an example of how to dynamically register
+        a new kdb command you can build the kdb_hello.ko kernel module
+        from samples/kdb/kdb_hello.c.  To build this example you can
+        set CONFIG_SAMPLES=y and CONFIG_SAMPLE_KDB=m in your kernel
+        config.  Later run "modprobe kdb_hello" and the next time you
+        enter the kdb shell, you can run the "hello"
+        command.</para></listitem>
+	</itemizedlist></listitem>
+        <listitem><para>The implementation for kdb_printf() which
+        emits messages directly to I/O drivers, bypassing the kernel
+        log.</para></listitem>
+        <listitem><para>SW / HW breakpoint management for the kdb shell</para></listitem>
+      </itemizedlist>
+      </listitem>
       <listitem><para>kgdb I/O driver</para>
       <para>
-      Each kgdb I/O driver has to provide an implemenation for the following:
+      Each kgdb I/O driver has to provide an implementation for the following:
       <itemizedlist>
-      <listitem><para>configuration via builtin or module</para></listitem>
+      <listitem><para>configuration via built-in or module</para></listitem>
       <listitem><para>dynamic configuration and kgdb hook registration calls</para></listitem>
       <listitem><para>read and write character interface</para></listitem>
       <listitem><para>A cleanup handler for unconfiguring from the kgdb core</para></listitem>
@@ -411,20 +792,19 @@
   </sect1>
   <sect1 id="kgdbocDesign">
   <title>kgdboc internals</title>
+  <sect2>
+  <title>kgdboc and uarts</title>
   <para>
   The kgdboc driver is actually a very thin driver that relies on the
   underlying low level to the hardware driver having "polling hooks"
   which the to which the tty driver is attached.  In the initial
   implementation of kgdboc it the serial_core was changed to expose a
-  low level uart hook for doing polled mode reading and writing of a
+  low level UART hook for doing polled mode reading and writing of a
   single character while in an atomic context.  When kgdb makes an I/O
-  request to the debugger, kgdboc invokes a call back in the serial
-  core which in turn uses the call back in the uart driver.  It is
-  certainly possible to extend kgdboc to work with non-uart based
-  consoles in the future.
-  </para>
+  request to the debugger, kgdboc invokes a callback in the serial
+  core which in turn uses the callback in the UART driver.</para>
   <para>
-  When using kgdboc with a uart, the uart driver must implement two callbacks in the <constant>struct uart_ops</constant>. Example from drivers/8250.c:<programlisting>
+  When using kgdboc with a UART, the UART driver must implement two callbacks in the <constant>struct uart_ops</constant>. Example from drivers/8250.c:<programlisting>
 #ifdef CONFIG_CONSOLE_POLL
 	.poll_get_char = serial8250_get_poll_char,
 	.poll_put_char = serial8250_put_poll_char,
@@ -434,11 +814,70 @@
   <constant>#ifdef CONFIG_CONSOLE_POLL</constant>, as shown above.
   Keep in mind that polling hooks have to be implemented in such a way
   that they can be called from an atomic context and have to restore
-  the state of the uart chip on return such that the system can return
+  the state of the UART chip on return such that the system can return
   to normal when the debugger detaches.  You need to be very careful
-  with any kind of lock you consider, because failing here is most
+  with any kind of lock you consider, because failing here is most likely
   going to mean pressing the reset button.
   </para>
+  </sect2>
+  <sect2 id="kgdbocKbd">
+  <title>kgdboc and keyboards</title>
+  <para>The kgdboc driver contains logic to configure communications
+  with an attached keyboard.  The keyboard infrastructure is only
+  compiled into the kernel when CONFIG_KDB_KEYBOARD=y is set in the
+  kernel configuration.</para>
+  <para>The core polled keyboard driver driver for PS/2 type keyboards
+  is in drivers/char/kdb_keyboard.c.  This driver is hooked into the
+  debug core when kgdboc populates the callback in the array
+  called <constant>kdb_poll_funcs[]</constant>.  The
+  kdb_get_kbd_char() is the top-level function which polls hardware
+  for single character input.
+  </para>
+  </sect2>
+  <sect2 id="kgdbocKms">
+  <title>kgdboc and kms</title>
+  <para>The kgdboc driver contains logic to request the graphics
+  display to switch to a text context when you are using
+  "kgdboc=kms,kbd", provided that you have a video driver which has a
+  frame buffer console and atomic kernel mode setting support.</para>
+  <para>
+  Every time the kernel
+  debugger is entered it calls kgdboc_pre_exp_handler() which in turn
+  calls con_debug_enter() in the virtual console layer.  On resuming kernel
+  execution, the kernel debugger calls kgdboc_post_exp_handler() which
+  in turn calls con_debug_leave().</para>
+  <para>Any video driver that wants to be compatible with the kernel
+  debugger and the atomic kms callbacks must implement the
+  mode_set_base_atomic, fb_debug_enter and fb_debug_leave operations.
+  For the fb_debug_enter and fb_debug_leave the option exists to use
+  the generic drm fb helper functions or implement something custom for
+  the hardware.  The following example shows the initialization of the
+  .mode_set_base_atomic operation in
+  drivers/gpu/drm/i915/intel_display.c:
+  <informalexample>
+  <programlisting>
+static const struct drm_crtc_helper_funcs intel_helper_funcs = {
+[...]
+        .mode_set_base_atomic = intel_pipe_set_base_atomic,
+[...]
+};
+  </programlisting>
+  </informalexample>
+  </para>
+  <para>Here is an example of how the i915 driver initializes the fb_debug_enter and fb_debug_leave functions to use the generic drm helpers in
+  drivers/gpu/drm/i915/intel_fb.c:
+  <informalexample>
+  <programlisting>
+static struct fb_ops intelfb_ops = {
+[...]
+       .fb_debug_enter = drm_fb_helper_debug_enter,
+       .fb_debug_leave = drm_fb_helper_debug_leave,
+[...]
+};
+  </programlisting>
+  </informalexample>
+  </para>
+  </sect2>
   </sect1>
   </chapter>
   <chapter id="credits">
@@ -453,6 +892,10 @@
 		<itemizedlist>
 		<listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem>
 		</itemizedlist>
+                In Jan 2010 this document was updated to include kdb.
+		<itemizedlist>
+		<listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem>
+		</itemizedlist>
 	</para>
   </chapter>
 </book>

+ 29 - 36
Documentation/DocBook/libata.tmpl

@@ -81,16 +81,14 @@ void (*port_disable) (struct ata_port *);
 	</programlisting>
 
 	<para>
-	Called from ata_bus_probe() and ata_bus_reset() error paths,
-	as well as when unregistering from the SCSI module (rmmod, hot
-	unplug).
+	Called from ata_bus_probe() error path, as well as when
+	unregistering from the SCSI module (rmmod, hot unplug).
 	This function should do whatever needs to be done to take the
 	port out of use.  In most cases, ata_port_disable() can be used
 	as this hook.
 	</para>
 	<para>
 	Called from ata_bus_probe() on a failed probe.
-	Called from ata_bus_reset() on a failed bus reset.
 	Called from ata_scsi_release().
 	</para>
 
@@ -107,10 +105,6 @@ void (*dev_config) (struct ata_port *, struct ata_device *);
 	issue of SET FEATURES - XFER MODE, and prior to operation.
 	</para>
 	<para>
-	Called by ata_device_add() after ata_dev_identify() determines
-	a device is present.
-	</para>
-	<para>
 	This entry may be specified as NULL in ata_port_operations.
 	</para>
 
@@ -154,8 +148,8 @@ unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned in
 
 	<sect2><title>Taskfile read/write</title>
 	<programlisting>
-void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
-void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
+void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
+void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
 	</programlisting>
 
 	<para>
@@ -164,36 +158,35 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
 	hardware registers / DMA buffers, to obtain the current set of
 	taskfile register values.
 	Most drivers for taskfile-based hardware (PIO or MMIO) use
-	ata_tf_load() and ata_tf_read() for these hooks.
+	ata_sff_tf_load() and ata_sff_tf_read() for these hooks.
 	</para>
 
 	</sect2>
 
 	<sect2><title>PIO data read/write</title>
 	<programlisting>
-void (*data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
+void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int);
 	</programlisting>
 
 	<para>
 All bmdma-style drivers must implement this hook.  This is the low-level
 operation that actually copies the data bytes during a PIO data
 transfer.
-Typically the driver
-will choose one of ata_pio_data_xfer_noirq(), ata_pio_data_xfer(), or
-ata_mmio_data_xfer().
+Typically the driver will choose one of ata_sff_data_xfer_noirq(),
+ata_sff_data_xfer(), or ata_sff_data_xfer32().
 	</para>
 
 	</sect2>
 
 	<sect2><title>ATA command execute</title>
 	<programlisting>
-void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
+void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
 	</programlisting>
 
 	<para>
 	causes an ATA command, previously loaded with
 	->tf_load(), to be initiated in hardware.
-	Most drivers for taskfile-based hardware use ata_exec_command()
+	Most drivers for taskfile-based hardware use ata_sff_exec_command()
 	for this hook.
 	</para>
 
@@ -218,8 +211,8 @@ command.
 
 	<sect2><title>Read specific ATA shadow registers</title>
 	<programlisting>
-u8   (*check_status)(struct ata_port *ap);
-u8   (*check_altstatus)(struct ata_port *ap);
+u8   (*sff_check_status)(struct ata_port *ap);
+u8   (*sff_check_altstatus)(struct ata_port *ap);
 	</programlisting>
 
 	<para>
@@ -227,20 +220,26 @@ u8   (*check_altstatus)(struct ata_port *ap);
 	hardware.  On some hardware, reading the Status register has
 	the side effect of clearing the interrupt condition.
 	Most drivers for taskfile-based hardware use
-	ata_check_status() for this hook.
+	ata_sff_check_status() for this hook.
 	</para>
+
+	</sect2>
+
+	<sect2><title>Write specific ATA shadow register</title>
+	<programlisting>
+void (*sff_set_devctl)(struct ata_port *ap, u8 ctl);
+	</programlisting>
+
 	<para>
-	Note that because this is called from ata_device_add(), at
-	least a dummy function that clears device interrupts must be
-	provided for all drivers, even if the controller doesn't
-	actually have a taskfile status register.
+	Write the device control ATA shadow register to the hardware.
+	Most drivers don't need to define this.
 	</para>
 
 	</sect2>
 
 	<sect2><title>Select ATA device on bus</title>
 	<programlisting>
-void (*dev_select)(struct ata_port *ap, unsigned int device);
+void (*sff_dev_select)(struct ata_port *ap, unsigned int device);
 	</programlisting>
 
 	<para>
@@ -251,9 +250,7 @@ void (*dev_select)(struct ata_port *ap, unsigned int device);
 	</para>
 	<para>
 	Most drivers for taskfile-based hardware use
-	ata_std_dev_select() for this hook.  Controllers which do not
-	support second drives on a port (such as SATA contollers) will
-	use ata_noop_dev_select().
+	ata_sff_dev_select() for this hook.
 	</para>
 
 	</sect2>
@@ -441,13 +438,13 @@ void (*irq_clear) (struct ata_port *);
 	to struct ata_host_set.
 	</para>
 	<para>
-	Most legacy IDE drivers use ata_interrupt() for the
+	Most legacy IDE drivers use ata_sff_interrupt() for the
 	irq_handler hook, which scans all ports in the host_set,
 	determines which queued command was active (if any), and calls
-	ata_host_intr(ap,qc).
+	ata_sff_host_intr(ap,qc).
 	</para>
 	<para>
-	Most legacy IDE drivers use ata_bmdma_irq_clear() for the
+	Most legacy IDE drivers use ata_sff_irq_clear() for the
 	irq_clear() hook, which simply clears the interrupt and error
 	flags in the DMA status register.
 	</para>
@@ -490,16 +487,12 @@ void (*host_stop) (struct ata_host_set *host_set);
 	allocates space for a legacy IDE PRD table and returns.
 	</para>
 	<para>
-	->port_stop() is called after ->host_stop().  It's sole function
+	->port_stop() is called after ->host_stop().  Its sole function
 	is to release DMA/memory resources, now that they are no longer
 	actively being used.  Many drivers also free driver-private
 	data from port at this time.
 	</para>
 	<para>
-	Many drivers use ata_port_stop() as this hook, which frees the
-	PRD table.
-	</para>
-	<para>
 	->host_stop() is called after all ->port_stop() calls
 have completed.  The hook must finalize hardware shutdown, release DMA
 and other resources, etc.

+ 0 - 338
Documentation/DocBook/mac80211.tmpl

@@ -1,338 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
-	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
-
-<book id="mac80211-developers-guide">
-  <bookinfo>
-    <title>The mac80211 subsystem for kernel developers</title>
-
-    <authorgroup>
-      <author>
-        <firstname>Johannes</firstname>
-        <surname>Berg</surname>
-        <affiliation>
-          <address><email>johannes@sipsolutions.net</email></address>
-        </affiliation>
-      </author>
-    </authorgroup>
-
-    <copyright>
-      <year>2007-2009</year>
-      <holder>Johannes Berg</holder>
-    </copyright>
-
-    <legalnotice>
-      <para>
-        This documentation is free software; you can redistribute
-        it and/or modify it under the terms of the GNU General Public
-        License version 2 as published by the Free Software Foundation.
-      </para>
-
-      <para>
-        This documentation is distributed in the hope that it will be
-        useful, but WITHOUT ANY WARRANTY; without even the implied
-        warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-        See the GNU General Public License for more details.
-      </para>
-
-      <para>
-        You should have received a copy of the GNU General Public
-        License along with this documentation; if not, write to the Free
-        Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
-        MA 02111-1307 USA
-      </para>
-
-      <para>
-        For more details see the file COPYING in the source
-        distribution of Linux.
-      </para>
-    </legalnotice>
-
-    <abstract>
-!Pinclude/net/mac80211.h Introduction
-!Pinclude/net/mac80211.h Warning
-    </abstract>
-  </bookinfo>
-
-  <toc></toc>
-
-<!--
-Generally, this document shall be ordered by increasing complexity.
-It is important to note that readers should be able to read only
-the first few sections to get a working driver and only advanced
-usage should require reading the full document.
--->
-
-  <part>
-    <title>The basic mac80211 driver interface</title>
-    <partintro>
-      <para>
-        You should read and understand the information contained
-        within this part of the book while implementing a driver.
-        In some chapters, advanced usage is noted, that may be
-        skipped at first.
-      </para>
-      <para>
-        This part of the book only covers station and monitor mode
-        functionality, additional information required to implement
-        the other modes is covered in the second part of the book.
-      </para>
-    </partintro>
-
-    <chapter id="basics">
-      <title>Basic hardware handling</title>
-      <para>TBD</para>
-      <para>
-        This chapter shall contain information on getting a hw
-        struct allocated and registered with mac80211.
-      </para>
-      <para>
-        Since it is required to allocate rates/modes before registering
-        a hw struct, this chapter shall also contain information on setting
-        up the rate/mode structs.
-      </para>
-      <para>
-        Additionally, some discussion about the callbacks and
-        the general programming model should be in here, including
-        the definition of ieee80211_ops which will be referred to
-        a lot.
-      </para>
-      <para>
-        Finally, a discussion of hardware capabilities should be done
-        with references to other parts of the book.
-      </para>
-<!-- intentionally multiple !F lines to get proper order -->
-!Finclude/net/mac80211.h ieee80211_hw
-!Finclude/net/mac80211.h ieee80211_hw_flags
-!Finclude/net/mac80211.h SET_IEEE80211_DEV
-!Finclude/net/mac80211.h SET_IEEE80211_PERM_ADDR
-!Finclude/net/mac80211.h ieee80211_ops
-!Finclude/net/mac80211.h ieee80211_alloc_hw
-!Finclude/net/mac80211.h ieee80211_register_hw
-!Finclude/net/mac80211.h ieee80211_get_tx_led_name
-!Finclude/net/mac80211.h ieee80211_get_rx_led_name
-!Finclude/net/mac80211.h ieee80211_get_assoc_led_name
-!Finclude/net/mac80211.h ieee80211_get_radio_led_name
-!Finclude/net/mac80211.h ieee80211_unregister_hw
-!Finclude/net/mac80211.h ieee80211_free_hw
-    </chapter>
-
-    <chapter id="phy-handling">
-      <title>PHY configuration</title>
-      <para>TBD</para>
-      <para>
-        This chapter should describe PHY handling including
-        start/stop callbacks and the various structures used.
-      </para>
-!Finclude/net/mac80211.h ieee80211_conf
-!Finclude/net/mac80211.h ieee80211_conf_flags
-    </chapter>
-
-    <chapter id="iface-handling">
-      <title>Virtual interfaces</title>
-      <para>TBD</para>
-      <para>
-        This chapter should describe virtual interface basics
-        that are relevant to the driver (VLANs, MGMT etc are not.)
-        It should explain the use of the add_iface/remove_iface
-        callbacks as well as the interface configuration callbacks.
-      </para>
-      <para>Things related to AP mode should be discussed there.</para>
-      <para>
-        Things related to supporting multiple interfaces should be
-        in the appropriate chapter, a BIG FAT note should be here about
-        this though and the recommendation to allow only a single
-        interface in STA mode at first!
-      </para>
-!Finclude/net/mac80211.h ieee80211_if_init_conf
-    </chapter>
-
-    <chapter id="rx-tx">
-      <title>Receive and transmit processing</title>
-      <sect1>
-        <title>what should be here</title>
-        <para>TBD</para>
-        <para>
-          This should describe the receive and transmit
-          paths in mac80211/the drivers as well as
-          transmit status handling.
-        </para>
-      </sect1>
-      <sect1>
-        <title>Frame format</title>
-!Pinclude/net/mac80211.h Frame format
-      </sect1>
-      <sect1>
-        <title>Packet alignment</title>
-!Pnet/mac80211/rx.c Packet alignment
-      </sect1>
-      <sect1>
-        <title>Calling into mac80211 from interrupts</title>
-!Pinclude/net/mac80211.h Calling mac80211 from interrupts
-      </sect1>
-      <sect1>
-        <title>functions/definitions</title>
-!Finclude/net/mac80211.h ieee80211_rx_status
-!Finclude/net/mac80211.h mac80211_rx_flags
-!Finclude/net/mac80211.h ieee80211_tx_info
-!Finclude/net/mac80211.h ieee80211_rx
-!Finclude/net/mac80211.h ieee80211_rx_irqsafe
-!Finclude/net/mac80211.h ieee80211_tx_status
-!Finclude/net/mac80211.h ieee80211_tx_status_irqsafe
-!Finclude/net/mac80211.h ieee80211_rts_get
-!Finclude/net/mac80211.h ieee80211_rts_duration
-!Finclude/net/mac80211.h ieee80211_ctstoself_get
-!Finclude/net/mac80211.h ieee80211_ctstoself_duration
-!Finclude/net/mac80211.h ieee80211_generic_frame_duration
-!Finclude/net/mac80211.h ieee80211_wake_queue
-!Finclude/net/mac80211.h ieee80211_stop_queue
-!Finclude/net/mac80211.h ieee80211_wake_queues
-!Finclude/net/mac80211.h ieee80211_stop_queues
-      </sect1>
-    </chapter>
-
-    <chapter id="filters">
-      <title>Frame filtering</title>
-!Pinclude/net/mac80211.h Frame filtering
-!Finclude/net/mac80211.h ieee80211_filter_flags
-    </chapter>
-  </part>
-
-  <part id="advanced">
-    <title>Advanced driver interface</title>
-    <partintro>
-      <para>
-       Information contained within this part of the book is
-       of interest only for advanced interaction of mac80211
-       with drivers to exploit more hardware capabilities and
-       improve performance.
-      </para>
-    </partintro>
-
-    <chapter id="hardware-crypto-offload">
-      <title>Hardware crypto acceleration</title>
-!Pinclude/net/mac80211.h Hardware crypto acceleration
-<!-- intentionally multiple !F lines to get proper order -->
-!Finclude/net/mac80211.h set_key_cmd
-!Finclude/net/mac80211.h ieee80211_key_conf
-!Finclude/net/mac80211.h ieee80211_key_alg
-!Finclude/net/mac80211.h ieee80211_key_flags
-    </chapter>
-
-    <chapter id="powersave">
-      <title>Powersave support</title>
-!Pinclude/net/mac80211.h Powersave support
-    </chapter>
-
-    <chapter id="beacon-filter">
-      <title>Beacon filter support</title>
-!Pinclude/net/mac80211.h Beacon filter support
-!Finclude/net/mac80211.h ieee80211_beacon_loss
-    </chapter>
-
-    <chapter id="qos">
-      <title>Multiple queues and QoS support</title>
-      <para>TBD</para>
-!Finclude/net/mac80211.h ieee80211_tx_queue_params
-!Finclude/net/mac80211.h ieee80211_tx_queue_stats
-    </chapter>
-
-    <chapter id="AP">
-      <title>Access point mode support</title>
-      <para>TBD</para>
-      <para>Some parts of the if_conf should be discussed here instead</para>
-      <para>
-        Insert notes about VLAN interfaces with hw crypto here or
-        in the hw crypto chapter.
-      </para>
-!Finclude/net/mac80211.h ieee80211_get_buffered_bc
-!Finclude/net/mac80211.h ieee80211_beacon_get
-    </chapter>
-
-    <chapter id="multi-iface">
-      <title>Supporting multiple virtual interfaces</title>
-      <para>TBD</para>
-      <para>
-        Note: WDS with identical MAC address should almost always be OK
-      </para>
-      <para>
-        Insert notes about having multiple virtual interfaces with
-        different MAC addresses here, note which configurations are
-        supported by mac80211, add notes about supporting hw crypto
-        with it.
-      </para>
-    </chapter>
-
-    <chapter id="hardware-scan-offload">
-      <title>Hardware scan offload</title>
-      <para>TBD</para>
-!Finclude/net/mac80211.h ieee80211_scan_completed
-    </chapter>
-  </part>
-
-  <part id="rate-control">
-    <title>Rate control interface</title>
-    <partintro>
-      <para>TBD</para>
-      <para>
-       This part of the book describes the rate control algorithm
-       interface and how it relates to mac80211 and drivers.
-      </para>
-    </partintro>
-    <chapter id="dummy">
-      <title>dummy chapter</title>
-      <para>TBD</para>
-    </chapter>
-  </part>
-
-  <part id="internal">
-    <title>Internals</title>
-    <partintro>
-      <para>TBD</para>
-      <para>
-       This part of the book describes mac80211 internals.
-      </para>
-    </partintro>
-
-    <chapter id="key-handling">
-      <title>Key handling</title>
-      <sect1>
-        <title>Key handling basics</title>
-!Pnet/mac80211/key.c Key handling basics
-      </sect1>
-      <sect1>
-        <title>MORE TBD</title>
-        <para>TBD</para>
-      </sect1>
-    </chapter>
-
-    <chapter id="rx-processing">
-      <title>Receive processing</title>
-      <para>TBD</para>
-    </chapter>
-
-    <chapter id="tx-processing">
-      <title>Transmit processing</title>
-      <para>TBD</para>
-    </chapter>
-
-    <chapter id="sta-info">
-      <title>Station info handling</title>
-      <sect1>
-        <title>Programming information</title>
-!Fnet/mac80211/sta_info.h sta_info
-!Fnet/mac80211/sta_info.h ieee80211_sta_info_flags
-      </sect1>
-      <sect1>
-        <title>STA information lifetime rules</title>
-!Pnet/mac80211/sta_info.c STA information lifetime rules
-      </sect1>
-    </chapter>
-
-    <chapter id="synchronisation">
-      <title>Synchronisation</title>
-      <para>TBD</para>
-      <para>Locking, lots of RCU</para>
-    </chapter>
-  </part>
-</book>

+ 18 - 0
Documentation/DocBook/media-entities.tmpl

@@ -17,6 +17,7 @@
 <!ENTITY VIDIOC-DBG-G-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_G_REGISTER</constant></link>">
 <!ENTITY VIDIOC-DBG-S-REGISTER "<link linkend='vidioc-dbg-g-register'><constant>VIDIOC_DBG_S_REGISTER</constant></link>">
 <!ENTITY VIDIOC-DQBUF "<link linkend='vidioc-qbuf'><constant>VIDIOC_DQBUF</constant></link>">
+<!ENTITY VIDIOC-DQEVENT "<link linkend='vidioc-dqevent'><constant>VIDIOC_DQEVENT</constant></link>">
 <!ENTITY VIDIOC-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_ENCODER_CMD</constant></link>">
 <!ENTITY VIDIOC-ENUMAUDIO "<link linkend='vidioc-enumaudio'><constant>VIDIOC_ENUMAUDIO</constant></link>">
 <!ENTITY VIDIOC-ENUMAUDOUT "<link linkend='vidioc-enumaudioout'><constant>VIDIOC_ENUMAUDOUT</constant></link>">
@@ -60,6 +61,7 @@
 <!ENTITY VIDIOC-REQBUFS "<link linkend='vidioc-reqbufs'><constant>VIDIOC_REQBUFS</constant></link>">
 <!ENTITY VIDIOC-STREAMOFF "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMOFF</constant></link>">
 <!ENTITY VIDIOC-STREAMON "<link linkend='vidioc-streamon'><constant>VIDIOC_STREAMON</constant></link>">
+<!ENTITY VIDIOC-SUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_SUBSCRIBE_EVENT</constant></link>">
 <!ENTITY VIDIOC-S-AUDIO "<link linkend='vidioc-g-audio'><constant>VIDIOC_S_AUDIO</constant></link>">
 <!ENTITY VIDIOC-S-AUDOUT "<link linkend='vidioc-g-audioout'><constant>VIDIOC_S_AUDOUT</constant></link>">
 <!ENTITY VIDIOC-S-CROP "<link linkend='vidioc-g-crop'><constant>VIDIOC_S_CROP</constant></link>">
@@ -83,6 +85,7 @@
 <!ENTITY VIDIOC-TRY-ENCODER-CMD "<link linkend='vidioc-encoder-cmd'><constant>VIDIOC_TRY_ENCODER_CMD</constant></link>">
 <!ENTITY VIDIOC-TRY-EXT-CTRLS "<link linkend='vidioc-g-ext-ctrls'><constant>VIDIOC_TRY_EXT_CTRLS</constant></link>">
 <!ENTITY VIDIOC-TRY-FMT "<link linkend='vidioc-g-fmt'><constant>VIDIOC_TRY_FMT</constant></link>">
+<!ENTITY VIDIOC-UNSUBSCRIBE-EVENT "<link linkend='vidioc-subscribe-event'><constant>VIDIOC_UNSUBSCRIBE_EVENT</constant></link>">
 
 <!-- Types -->
 <!ENTITY v4l2-std-id "<link linkend='v4l2-std-id'>v4l2_std_id</link>">
@@ -141,6 +144,9 @@
 <!ENTITY v4l2-enc-idx "struct&nbsp;<link linkend='v4l2-enc-idx'>v4l2_enc_idx</link>">
 <!ENTITY v4l2-enc-idx-entry "struct&nbsp;<link linkend='v4l2-enc-idx-entry'>v4l2_enc_idx_entry</link>">
 <!ENTITY v4l2-encoder-cmd "struct&nbsp;<link linkend='v4l2-encoder-cmd'>v4l2_encoder_cmd</link>">
+<!ENTITY v4l2-event "struct&nbsp;<link linkend='v4l2-event'>v4l2_event</link>">
+<!ENTITY v4l2-event-subscription "struct&nbsp;<link linkend='v4l2-event-subscription'>v4l2_event_subscription</link>">
+<!ENTITY v4l2-event-vsync "struct&nbsp;<link linkend='v4l2-event-vsync'>v4l2_event_vsync</link>">
 <!ENTITY v4l2-ext-control "struct&nbsp;<link linkend='v4l2-ext-control'>v4l2_ext_control</link>">
 <!ENTITY v4l2-ext-controls "struct&nbsp;<link linkend='v4l2-ext-controls'>v4l2_ext_controls</link>">
 <!ENTITY v4l2-fmtdesc "struct&nbsp;<link linkend='v4l2-fmtdesc'>v4l2_fmtdesc</link>">
@@ -200,6 +206,7 @@
 <!ENTITY sub-controls SYSTEM "v4l/controls.xml">
 <!ENTITY sub-dev-capture SYSTEM "v4l/dev-capture.xml">
 <!ENTITY sub-dev-codec SYSTEM "v4l/dev-codec.xml">
+<!ENTITY sub-dev-event SYSTEM "v4l/dev-event.xml">
 <!ENTITY sub-dev-effect SYSTEM "v4l/dev-effect.xml">
 <!ENTITY sub-dev-osd SYSTEM "v4l/dev-osd.xml">
 <!ENTITY sub-dev-output SYSTEM "v4l/dev-output.xml">
@@ -211,6 +218,7 @@
 <!ENTITY sub-dev-teletext SYSTEM "v4l/dev-teletext.xml">
 <!ENTITY sub-driver SYSTEM "v4l/driver.xml">
 <!ENTITY sub-libv4l SYSTEM "v4l/libv4l.xml">
+<!ENTITY sub-lirc_device_interface SYSTEM "v4l/lirc_device_interface.xml">
 <!ENTITY sub-remote_controllers SYSTEM "v4l/remote_controllers.xml">
 <!ENTITY sub-fdl-appendix SYSTEM "v4l/fdl-appendix.xml">
 <!ENTITY sub-close SYSTEM "v4l/func-close.xml">
@@ -242,6 +250,9 @@
 <!ENTITY sub-yuv422p SYSTEM "v4l/pixfmt-yuv422p.xml">
 <!ENTITY sub-yuyv SYSTEM "v4l/pixfmt-yuyv.xml">
 <!ENTITY sub-yvyu SYSTEM "v4l/pixfmt-yvyu.xml">
+<!ENTITY sub-srggb10 SYSTEM "v4l/pixfmt-srggb10.xml">
+<!ENTITY sub-srggb8 SYSTEM "v4l/pixfmt-srggb8.xml">
+<!ENTITY sub-y10 SYSTEM "v4l/pixfmt-y10.xml">
 <!ENTITY sub-pixfmt SYSTEM "v4l/pixfmt.xml">
 <!ENTITY sub-cropcap SYSTEM "v4l/vidioc-cropcap.xml">
 <!ENTITY sub-dbg-g-register SYSTEM "v4l/vidioc-dbg-g-register.xml">
@@ -292,6 +303,8 @@
 <!ENTITY sub-v4l2grab-c SYSTEM "v4l/v4l2grab.c.xml">
 <!ENTITY sub-videodev2-h SYSTEM "v4l/videodev2.h.xml">
 <!ENTITY sub-v4l2 SYSTEM "v4l/v4l2.xml">
+<!ENTITY sub-dqevent SYSTEM "v4l/vidioc-dqevent.xml">
+<!ENTITY sub-subscribe-event SYSTEM "v4l/vidioc-subscribe-event.xml">
 <!ENTITY sub-intro SYSTEM "dvb/intro.xml">
 <!ENTITY sub-frontend SYSTEM "dvb/frontend.xml">
 <!ENTITY sub-dvbproperty SYSTEM "dvb/dvbproperty.xml">
@@ -337,6 +350,9 @@
 <!ENTITY yuv422p SYSTEM "v4l/pixfmt-yuv422p.xml">
 <!ENTITY yuyv SYSTEM "v4l/pixfmt-yuyv.xml">
 <!ENTITY yvyu SYSTEM "v4l/pixfmt-yvyu.xml">
+<!ENTITY srggb10 SYSTEM "v4l/pixfmt-srggb10.xml">
+<!ENTITY srggb8 SYSTEM "v4l/pixfmt-srggb8.xml">
+<!ENTITY y10 SYSTEM "v4l/pixfmt-y10.xml">
 <!ENTITY cropcap SYSTEM "v4l/vidioc-cropcap.xml">
 <!ENTITY dbg-g-register SYSTEM "v4l/vidioc-dbg-g-register.xml">
 <!ENTITY encoder-cmd SYSTEM "v4l/vidioc-encoder-cmd.xml">
@@ -381,3 +397,5 @@
 <!ENTITY reqbufs SYSTEM "v4l/vidioc-reqbufs.xml">
 <!ENTITY s-hw-freq-seek SYSTEM "v4l/vidioc-s-hw-freq-seek.xml">
 <!ENTITY streamon SYSTEM "v4l/vidioc-streamon.xml">
+<!ENTITY dqevent SYSTEM "v4l/vidioc-dqevent.xml">
+<!ENTITY subscribe_event SYSTEM "v4l/vidioc-subscribe-event.xml">

+ 4 - 4
Documentation/DocBook/media.tmpl

@@ -28,7 +28,7 @@
 <title>LINUX MEDIA INFRASTRUCTURE API</title>
 
 <copyright>
-	<year>2009</year>
+	<year>2009-2010</year>
 	<holder>LinuxTV Developers</holder>
 </copyright>
 
@@ -61,7 +61,7 @@ Foundation. A copy of the license is included in the chapter entitled
 		in fact it covers several different video standards including
 		DVB-T, DVB-S, DVB-C and ATSC. The API is currently being updated
 		to documment support also for DVB-S2, ISDB-T and ISDB-S.</para>
-	<para>The third part covers other API's used by all media infrastructure devices</para>
+	<para>The third part covers Remote Controller API</para>
 	<para>For additional information and for the latest development code,
 		see: <ulink url="http://linuxtv.org">http://linuxtv.org</ulink>.</para>
 	<para>For discussing improvements, reporting troubles, sending new drivers, etc, please mail to: <ulink url="http://vger.kernel.org/vger-lists.html#linux-media">Linux Media Mailing List (LMML).</ulink>.</para>
@@ -86,7 +86,7 @@ Foundation. A copy of the license is included in the chapter entitled
 </author>
 </authorgroup>
 <copyright>
-	<year>2009</year>
+	<year>2009-2010</year>
 	<holder>Mauro Carvalho Chehab</holder>
 </copyright>
 
@@ -101,7 +101,7 @@ Foundation. A copy of the license is included in the chapter entitled
 </revhistory>
 </partinfo>
 
-<title>Other API's used by media infrastructure drivers</title>
+<title>Remote Controller API</title>
 <chapter id="remote_controllers">
 &sub-remote_controllers;
 </chapter>

+ 5 - 5
Documentation/DocBook/mtdnand.tmpl

@@ -250,7 +250,7 @@ static void board_hwcontrol(struct mtd_info *mtd, int cmd)
 		<title>Device ready function</title>
 		<para>
 			If the hardware interface has the ready busy pin of the NAND chip connected to a
-			GPIO or other accesible I/O pin, this function is used to read back the state of the
+			GPIO or other accessible I/O pin, this function is used to read back the state of the
 			pin. The function has no arguments and should return 0, if the device is busy (R/B pin 
 			is low) and 1, if the device is ready (R/B pin is high).
 			If the hardware interface does not give access to the ready busy pin, then
@@ -269,7 +269,7 @@ static void board_hwcontrol(struct mtd_info *mtd, int cmd)
 			information about the device.
 		</para>
 		<programlisting>
-int __init board_init (void)
+static int __init board_init (void)
 {
 	struct nand_chip *this;
 	int err = 0;
@@ -488,7 +488,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
 				The ECC bytes must be placed immidiately after the data
 				bytes in order to make the syndrome generator work. This
 				is contrary to the usual layout used by software ECC. The
-				seperation of data and out of band area is not longer
+				separation of data and out of band area is not longer
 				possible. The nand driver code handles this layout and
 				the remaining free bytes in the oob area are managed by 
 				the autoplacement code. Provide a matching oob-layout
@@ -560,7 +560,7 @@ static void board_select_chip (struct mtd_info *mtd, int chip)
 				bad blocks. They have factory marked good blocks. The marker pattern
 				is erased when the block is erased to be reused. So in case of
 				powerloss before writing the pattern back to the chip this block 
-				would be lost and added to the bad blocks. Therefor we scan the 
+				would be lost and added to the bad blocks. Therefore we scan the 
 				chip(s) when we detect them the first time for good blocks and 
 				store this information in a bad block table before erasing any 
 				of the blocks.
@@ -1094,7 +1094,7 @@ in this page</entry>
 		manufacturers specifications. This applies similar to the spare area. 
 	</para>
 	<para>
-		Therefor NAND aware filesystems must either write in page size chunks
+		Therefore NAND aware filesystems must either write in page size chunks
 		or hold a writebuffer to collect smaller writes until they sum up to 
 		pagesize. Available NAND aware filesystems: JFFS2, YAFFS. 		
 	</para>

+ 1 - 1
Documentation/DocBook/scsi.tmpl

@@ -393,7 +393,7 @@
         </para>
         <para>
           For documentation see
-          <ulink url='http://www.torque.net/sg/sdebug26.html'>http://www.torque.net/sg/sdebug26.html</ulink>
+          <ulink url='http://sg.danny.cz/sg/sdebug26.html'>http://sg.danny.cz/sg/sdebug26.html</ulink>
         </para>
 <!-- !Edrivers/scsi/scsi_debug.c -->
       </sect2>

+ 6 - 6
Documentation/DocBook/sh.tmpl

@@ -19,13 +19,17 @@
   </authorgroup>
 
   <copyright>
-   <year>2008</year>
+   <year>2008-2010</year>
    <holder>Paul Mundt</holder>
   </copyright>
   <copyright>
-   <year>2008</year>
+   <year>2008-2010</year>
    <holder>Renesas Technology Corp.</holder>
   </copyright>
+  <copyright>
+   <year>2010</year>
+   <holder>Renesas Electronics Corp.</holder>
+  </copyright>
 
   <legalnotice>
    <para>
@@ -75,10 +79,6 @@
       </sect2>
     </sect1>
   </chapter>
-  <chapter id="clk">
-    <title>Clock Framework Extensions</title>
-!Iarch/sh/include/asm/clock.h
-  </chapter>
   <chapter id="mach">
     <title>Machine Specific Interfaces</title>
     <sect1 id="dreamcast">

+ 1 - 0
Documentation/DocBook/stylesheet.xsl

@@ -6,4 +6,5 @@
 <param name="callout.graphics">0</param>
 <!-- <param name="paper.type">A4</param> -->
 <param name="generate.section.toc.level">2</param>
+<param name="use.id.as.filename">1</param>
 </stylesheet>

+ 18 - 0
Documentation/DocBook/tracepoint.tmpl

@@ -16,6 +16,15 @@
      </address>
     </affiliation>
    </author>
+   <author>
+    <firstname>William</firstname>
+    <surname>Cohen</surname>
+    <affiliation>
+     <address>
+      <email>wcohen@redhat.com</email>
+     </address>
+    </affiliation>
+   </author>
   </authorgroup>
 
   <legalnotice>
@@ -91,4 +100,13 @@
 !Iinclude/trace/events/signal.h
   </chapter>
 
+  <chapter id="block">
+   <title>Block IO</title>
+!Iinclude/trace/events/block.h
+  </chapter>
+
+  <chapter id="workqueue">
+   <title>Workqueue</title>
+!Iinclude/trace/events/workqueue.h
+  </chapter>
 </book>

+ 3 - 3
Documentation/DocBook/uio-howto.tmpl

@@ -16,7 +16,7 @@
 	</orgname>
 
 	<address>
-	   <email>hjk@linutronix.de</email>
+	   <email>hjk@hansjkoch.de</email>
 	</address>
     </affiliation>
 </author>
@@ -114,7 +114,7 @@ GPL version 2.
 
 <para>If you know of any translations for this document, or you are
 interested in translating it, please email me
-<email>hjk@linutronix.de</email>.
+<email>hjk@hansjkoch.de</email>.
 </para>
 </sect1>
 
@@ -171,7 +171,7 @@ interested in translating it, please email me
 <title>Feedback</title>
 	<para>Find something wrong with this document? (Or perhaps something
 	right?) I would love to hear from you. Please email me at
-	<email>hjk@linutronix.de</email>.</para>
+	<email>hjk@hansjkoch.de</email>.</para>
 </sect1>
 </chapter>
 

+ 1 - 1
Documentation/DocBook/v4l/common.xml

@@ -1170,7 +1170,7 @@ frames per second. If less than this number of frames is to be
 captured or output, applications can request frame skipping or
 duplicating on the driver side. This is especially useful when using
 the &func-read; or &func-write;, which are not augmented by timestamps
-or sequence counters, and to avoid unneccessary data copying.</para>
+or sequence counters, and to avoid unnecessary data copying.</para>
 
     <para>Finally these ioctls can be used to determine the number of
 buffers used internally by a driver in read/write mode. For

+ 88 - 67
Documentation/DocBook/v4l/compat.xml

@@ -21,11 +21,15 @@ API.</para>
       <title>Opening and Closing Devices</title>
 
       <para>For compatibility reasons the character device file names
-recommended for V4L2 video capture, overlay, radio, teletext and raw
+recommended for V4L2 video capture, overlay, radio and raw
 vbi capture devices did not change from those used by V4L. They are
 listed in <xref linkend="devices" /> and below in <xref
 	  linkend="v4l-dev" />.</para>
 
+      <para>The teletext devices (minor range 192-223) have been removed in
+V4L2 and no longer exist. There is no hardware available anymore for handling
+pure teletext. Instead raw or sliced VBI is used.</para>
+
       <para>The V4L <filename>videodev</filename> module automatically
 assigns minor numbers to drivers in load order, depending on the
 registered device type. We recommend that V4L2 drivers by default
@@ -65,13 +69,6 @@ not compatible with V4L or V4L2.</para> </footnote>,
 <filename>/dev/radio63</filename></para></entry>
 	      <entry>64-127</entry>
 	    </row>
-	    <row>
-	      <entry>Teletext decoder</entry>
-	      <entry><para><filename>/dev/vtx</filename>,
-<filename>/dev/vtx0</filename> to
-<filename>/dev/vtx31</filename></para></entry>
-	      <entry>192-223</entry>
-	    </row>
 	    <row>
 	      <entry>Raw VBI capture</entry>
 	      <entry><para><filename>/dev/vbi</filename>,
@@ -1091,8 +1088,9 @@ signed 64-bit integer. Output devices should not send a buffer out
 until the time in the timestamp field has arrived. I would like to
 follow SGI's lead, and adopt a multimedia timestamping system like
 their UST (Unadjusted System Time). See
-http://reality.sgi.com/cpirazzi_engr/lg/time/intro.html. [This link is
-no longer valid.] UST uses timestamps that are 64-bit signed integers
+http://web.archive.org/web/*/http://reality.sgi.com
+/cpirazzi_engr/lg/time/intro.html. 
+UST uses timestamps that are 64-bit signed integers
 (not struct timeval's) and given in nanosecond units. The UST clock
 starts at zero when the system is booted and runs continuously and
 uniformly. It takes a little over 292 years for UST to overflow. There
@@ -2332,15 +2330,37 @@ more information.</para>
 	</listitem>
       </orderedlist>
     </section>
-   </section>
+    <section>
+      <title>V4L2 in Linux 2.6.34</title>
+      <orderedlist>
+	<listitem>
+	  <para>Added
+<constant>V4L2_CID_IRIS_ABSOLUTE</constant> and
+<constant>V4L2_CID_IRIS_RELATIVE</constant> controls to the
+	    <link linkend="camera-controls">Camera controls class</link>.
+	  </para>
+	</listitem>
+      </orderedlist>
+    </section>
+    <section>
+      <title>V4L2 in Linux 2.6.37</title>
+      <orderedlist>
+	<listitem>
+	  <para>Remove the vtx (videotext/teletext) API. This API was no longer
+used and no hardware exists to verify the API. Nor were any userspace applications found
+that used it. It was originally scheduled for removal in 2.6.35.
+	  </para>
+	</listitem>
+      </orderedlist>
+    </section>
 
-   <section id="other">
-     <title>Relation of V4L2 to other Linux multimedia APIs</title>
+    <section id="other">
+      <title>Relation of V4L2 to other Linux multimedia APIs</title>
 
-    <section id="xvideo">
-      <title>X Video Extension</title>
+      <section id="xvideo">
+        <title>X Video Extension</title>
 
-      <para>The X Video Extension (abbreviated XVideo or just Xv) is
+        <para>The X Video Extension (abbreviated XVideo or just Xv) is
 an extension of the X Window system, implemented for example by the
 XFree86 project. Its scope is similar to V4L2, an API to video capture
 and output devices for X clients. Xv allows applications to display
@@ -2351,7 +2371,7 @@ capture or output still images in XPixmaps<footnote>
 extension available across many operating systems and
 architectures.</para>
 
-      <para>Because the driver is embedded into the X server Xv has a
+        <para>Because the driver is embedded into the X server Xv has a
 number of advantages over the V4L2 <link linkend="overlay">video
 overlay interface</link>. The driver can easily determine the overlay
 target, &ie; visible graphics memory or off-screen buffers for a
@@ -2360,16 +2380,16 @@ overlay, scaling or color-keying, or the clipping functions of the
 video capture hardware, always in sync with drawing operations or
 windows moving or changing their stacking order.</para>
 
-      <para>To combine the advantages of Xv and V4L a special Xv
+        <para>To combine the advantages of Xv and V4L a special Xv
 driver exists in XFree86 and XOrg, just programming any overlay capable
 Video4Linux device it finds. To enable it
 <filename>/etc/X11/XF86Config</filename> must contain these lines:</para>
-      <para><screen>
+        <para><screen>
 Section "Module"
     Load "v4l"
 EndSection</screen></para>
 
-      <para>As of XFree86 4.2 this driver still supports only V4L
+        <para>As of XFree86 4.2 this driver still supports only V4L
 ioctls, however it should work just fine with all V4L2 devices through
 the V4L2 backward-compatibility layer. Since V4L2 permits multiple
 opens it is possible (if supported by the V4L2 driver) to capture
@@ -2377,83 +2397,84 @@ video while an X client requested video overlay. Restrictions of
 simultaneous capturing and overlay are discussed in <xref
 	  linkend="overlay" /> apply.</para>
 
-      <para>Only marginally related to V4L2, XFree86 extended Xv to
+        <para>Only marginally related to V4L2, XFree86 extended Xv to
 support hardware YUV to RGB conversion and scaling for faster video
 playback, and added an interface to MPEG-2 decoding hardware. This API
 is useful to display images captured with V4L2 devices.</para>
-    </section>
+      </section>
 
-    <section>
-      <title>Digital Video</title>
+      <section>
+        <title>Digital Video</title>
 
-      <para>V4L2 does not support digital terrestrial, cable or
+        <para>V4L2 does not support digital terrestrial, cable or
 satellite broadcast. A separate project aiming at digital receivers
 exists. You can find its homepage at <ulink
 url="http://linuxtv.org">http://linuxtv.org</ulink>. The Linux DVB API
 has no connection to the V4L2 API except that drivers for hybrid
 hardware may support both.</para>
-    </section>
+      </section>
 
-    <section>
-      <title>Audio Interfaces</title>
+      <section>
+        <title>Audio Interfaces</title>
 
-      <para>[to do - OSS/ALSA]</para>
+        <para>[to do - OSS/ALSA]</para>
+      </section>
     </section>
-  </section>
 
-  <section id="experimental">
-    <title>Experimental API Elements</title>
+    <section id="experimental">
+      <title>Experimental API Elements</title>
 
-    <para>The following V4L2 API elements are currently experimental
+      <para>The following V4L2 API elements are currently experimental
 and may change in the future.</para>
 
-    <itemizedlist>
-      <listitem>
-	<para>Video Output Overlay (OSD) Interface, <xref
+      <itemizedlist>
+        <listitem>
+	  <para>Video Output Overlay (OSD) Interface, <xref
 	    linkend="osd" />.</para>
-      </listitem>
+        </listitem>
 	<listitem>
-	<para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
+	  <para><constant>V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY</constant>,
 	&v4l2-buf-type;, <xref linkend="v4l2-buf-type" />.</para>
-      </listitem>
-      <listitem>
-	<para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
+        </listitem>
+        <listitem>
+	  <para><constant>V4L2_CAP_VIDEO_OUTPUT_OVERLAY</constant>,
 &VIDIOC-QUERYCAP; ioctl, <xref linkend="device-capabilities" />.</para>
-      </listitem>
-      <listitem>
-	<para>&VIDIOC-ENUM-FRAMESIZES; and
+        </listitem>
+        <listitem>
+	  <para>&VIDIOC-ENUM-FRAMESIZES; and
 &VIDIOC-ENUM-FRAMEINTERVALS; ioctls.</para>
-      </listitem>
-      <listitem>
-	<para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
-      </listitem>
-      <listitem>
-	<para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
+        </listitem>
+        <listitem>
+	  <para>&VIDIOC-G-ENC-INDEX; ioctl.</para>
+        </listitem>
+        <listitem>
+	  <para>&VIDIOC-ENCODER-CMD; and &VIDIOC-TRY-ENCODER-CMD;
 ioctls.</para>
-      </listitem>
-      <listitem>
-	<para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
+        </listitem>
+        <listitem>
+	  <para>&VIDIOC-DBG-G-REGISTER; and &VIDIOC-DBG-S-REGISTER;
 ioctls.</para>
-      </listitem>
-      <listitem>
-	<para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
-      </listitem>
-    </itemizedlist>
-  </section>
+        </listitem>
+        <listitem>
+	  <para>&VIDIOC-DBG-G-CHIP-IDENT; ioctl.</para>
+        </listitem>
+      </itemizedlist>
+    </section>
 
-  <section id="obsolete">
-    <title>Obsolete API Elements</title>
+    <section id="obsolete">
+      <title>Obsolete API Elements</title>
 
-    <para>The following V4L2 API elements were superseded by new
+      <para>The following V4L2 API elements were superseded by new
 interfaces and should not be implemented in new drivers.</para>
 
-    <itemizedlist>
-      <listitem>
-	<para><constant>VIDIOC_G_MPEGCOMP</constant> and
+      <itemizedlist>
+        <listitem>
+	  <para><constant>VIDIOC_G_MPEGCOMP</constant> and
 <constant>VIDIOC_S_MPEGCOMP</constant> ioctls. Use Extended Controls,
 <xref linkend="extended-controls" />.</para>
-      </listitem>
-    </itemizedlist>
+        </listitem>
+      </itemizedlist>
+    </section>
   </section>
 
   <!--

+ 42 - 6
Documentation/DocBook/v4l/controls.xml

@@ -266,6 +266,12 @@ minimum value disables backlight compensation.</entry>
 	    <entry>boolean</entry>
 	    <entry>Chroma automatic gain control.</entry>
 	  </row>
+	  <row>
+	    <entry><constant>V4L2_CID_CHROMA_GAIN</constant></entry>
+	    <entry>integer</entry>
+	    <entry>Adjusts the Chroma gain control (for use when chroma AGC
+	    is disabled).</entry>
+	  </row>
 	  <row>
 	    <entry><constant>V4L2_CID_COLOR_KILLER</constant></entry>
 	    <entry>boolean</entry>
@@ -277,8 +283,15 @@ minimum value disables backlight compensation.</entry>
 	    <entry>Selects a color effect. Possible values for
 <constant>enum v4l2_colorfx</constant> are:
 <constant>V4L2_COLORFX_NONE</constant> (0),
-<constant>V4L2_COLORFX_BW</constant> (1) and
-<constant>V4L2_COLORFX_SEPIA</constant> (2).</entry>
+<constant>V4L2_COLORFX_BW</constant> (1),
+<constant>V4L2_COLORFX_SEPIA</constant> (2),
+<constant>V4L2_COLORFX_NEGATIVE</constant> (3),
+<constant>V4L2_COLORFX_EMBOSS</constant> (4),
+<constant>V4L2_COLORFX_SKETCH</constant> (5),
+<constant>V4L2_COLORFX_SKY_BLUE</constant> (6),
+<constant>V4L2_COLORFX_GRASS_GREEN</constant> (7),
+<constant>V4L2_COLORFX_SKIN_WHITEN</constant> (8) and
+<constant>V4L2_COLORFX_VIVID</constant> (9).</entry>
 	  </row>
 	  <row>
 	    <entry><constant>V4L2_CID_ROTATE</constant></entry>
@@ -298,11 +311,18 @@ minimum value disables backlight compensation.</entry>
 	    bits 8-15 Green color information, bits 16-23 Blue color
 	    information and bits 24-31 must be zero.</entry>
 	  </row>
+	  <row>
+	    <entry><constant>V4L2_CID_ILLUMINATORS_1</constant>
+		<constant>V4L2_CID_ILLUMINATORS_2</constant></entry>
+	    <entry>boolean</entry>
+	    <entry>Switch on or off the illuminator 1 or 2 of the device
+		(usually a microscope).</entry>
+	  </row>
 	  <row>
 	    <entry><constant>V4L2_CID_LASTP1</constant></entry>
 	    <entry></entry>
 	    <entry>End of the predefined control IDs (currently
-<constant>V4L2_CID_BG_COLOR</constant> + 1).</entry>
+<constant>V4L2_CID_ILLUMINATORS_2</constant> + 1).</entry>
 	  </row>
 	  <row>
 	    <entry><constant>V4L2_CID_PRIVATE_BASE</constant></entry>
@@ -344,9 +364,6 @@ enumerate_menu (void)
 	      querymenu.index++) {
 		if (0 == ioctl (fd, &VIDIOC-QUERYMENU;, &amp;querymenu)) {
 			printf ("  %s\n", querymenu.name);
-		} else {
-			perror ("VIDIOC_QUERYMENU");
-			exit (EXIT_FAILURE);
 		}
 	}
 }
@@ -1824,6 +1841,25 @@ wide-angle direction. The zoom speed unit is driver-specific.</entry>
 	  </row>
 	  <row><entry></entry></row>
 
+	  <row>
+	    <entry spanname="id"><constant>V4L2_CID_IRIS_ABSOLUTE</constant>&nbsp;</entry>
+	    <entry>integer</entry>
+	  </row><row><entry spanname="descr">This control sets the
+camera's aperture to the specified value. The unit is undefined.
+Larger values open the iris wider, smaller values close it.</entry>
+	  </row>
+	  <row><entry></entry></row>
+
+	  <row>
+	    <entry spanname="id"><constant>V4L2_CID_IRIS_RELATIVE</constant>&nbsp;</entry>
+	    <entry>integer</entry>
+	  </row><row><entry spanname="descr">This control modifies the
+camera's aperture by the specified amount. The unit is undefined.
+Positive values open the iris one step further, negative values close
+it one step further. This is a write-only control.</entry>
+	  </row>
+	  <row><entry></entry></row>
+
 	  <row>
 	    <entry spanname="id"><constant>V4L2_CID_PRIVACY</constant>&nbsp;</entry>
 	    <entry>boolean</entry>

+ 31 - 0
Documentation/DocBook/v4l/dev-event.xml

@@ -0,0 +1,31 @@
+  <title>Event Interface</title>
+
+  <para>The V4L2 event interface provides means for user to get
+  immediately notified on certain conditions taking place on a device.
+  This might include start of frame or loss of signal events, for
+  example.
+  </para>
+
+  <para>To receive events, the events the user is interested in first must
+  be subscribed using the &VIDIOC-SUBSCRIBE-EVENT; ioctl. Once an event is
+  subscribed, the events of subscribed types are dequeueable using the
+  &VIDIOC-DQEVENT; ioctl. Events may be unsubscribed using
+  VIDIOC_UNSUBSCRIBE_EVENT ioctl. The special event type V4L2_EVENT_ALL may
+  be used to unsubscribe all the events the driver supports.</para>
+
+  <para>The event subscriptions and event queues are specific to file
+  handles. Subscribing an event on one file handle does not affect
+  other file handles.
+  </para>
+
+  <para>The information on dequeueable events is obtained by using select or
+  poll system calls on video devices. The V4L2 events use POLLPRI events on
+  poll system call and exceptions on select system call.  </para>
+
+  <!--
+Local Variables:
+mode: sgml
+sgml-parent-document: "v4l2.sgml"
+indent-tabs-mode: nil
+End:
+  -->

+ 51 - 17
Documentation/DocBook/v4l/dev-rds.xml

@@ -3,15 +3,16 @@
       <para>The Radio Data System transmits supplementary
 information in binary format, for example the station name or travel
 information, on an inaudible audio subcarrier of a radio program. This
-interface is aimed at devices capable of receiving and decoding RDS
+interface is aimed at devices capable of receiving and/or transmitting RDS
 information.</para>
 
       <para>For more information see the core RDS standard <xref linkend="en50067" />
 and the RBDS standard <xref linkend="nrsc4" />.</para>
 
       <para>Note that the RBDS standard as is used in the USA is almost identical
-to the RDS standard. Any RDS decoder can also handle RBDS. Only some of the fields
-have slightly different meanings. See the RBDS standard for more information.</para>
+to the RDS standard. Any RDS decoder/encoder can also handle RBDS. Only some of the
+fields have slightly different meanings. See the RBDS standard for more
+information.</para>
 
       <para>The RBDS standard also specifies support for MMBS (Modified Mobile Search).
 This is a proprietary format which seems to be discontinued. The RDS interface does not
@@ -21,16 +22,25 @@ be needed, then please contact the linux-media mailing list: &v4l-ml;.</para>
   <section>
     <title>Querying Capabilities</title>
 
-    <para>Devices supporting the RDS capturing API
-set the <constant>V4L2_CAP_RDS_CAPTURE</constant> flag in
+    <para>Devices supporting the RDS capturing API set
+the <constant>V4L2_CAP_RDS_CAPTURE</constant> flag in
 the <structfield>capabilities</structfield> field of &v4l2-capability;
-returned by the &VIDIOC-QUERYCAP; ioctl.
-Any tuner that supports RDS will set the
-<constant>V4L2_TUNER_CAP_RDS</constant> flag in the <structfield>capability</structfield>
-field of &v4l2-tuner;.
-Whether an RDS signal is present can be detected by looking at
-the <structfield>rxsubchans</structfield> field of &v4l2-tuner;: the
-<constant>V4L2_TUNER_SUB_RDS</constant> will be set if RDS data was detected.</para>
+returned by the &VIDIOC-QUERYCAP; ioctl.  Any tuner that supports RDS
+will set the <constant>V4L2_TUNER_CAP_RDS</constant> flag in
+the <structfield>capability</structfield> field of &v4l2-tuner;.  If
+the driver only passes RDS blocks without interpreting the data
+the <constant>V4L2_TUNER_SUB_RDS_BLOCK_IO</constant> flag has to be
+set, see <link linkend="reading-rds-data">Reading RDS data</link>.
+For future use the
+flag <constant>V4L2_TUNER_SUB_RDS_CONTROLS</constant> has also been
+defined. However, a driver for a radio tuner with this capability does
+not yet exist, so if you are planning to write such a driver you
+should discuss this on the linux-media mailing list: &v4l-ml;.</para>
+
+    <para> Whether an RDS signal is present can be detected by looking
+at the <structfield>rxsubchans</structfield> field of &v4l2-tuner;:
+the <constant>V4L2_TUNER_SUB_RDS</constant> will be set if RDS data
+was detected.</para>
 
     <para>Devices supporting the RDS output API
 set the <constant>V4L2_CAP_RDS_OUTPUT</constant> flag in
@@ -40,16 +50,31 @@ Any modulator that supports RDS will set the
 <constant>V4L2_TUNER_CAP_RDS</constant> flag in the <structfield>capability</structfield>
 field of &v4l2-modulator;.
 In order to enable the RDS transmission one must set the <constant>V4L2_TUNER_SUB_RDS</constant>
-bit in the <structfield>txsubchans</structfield> field of &v4l2-modulator;.</para>
-
+bit in the <structfield>txsubchans</structfield> field of &v4l2-modulator;.
+If the driver only passes RDS blocks without interpreting the data
+the <constant>V4L2_TUNER_SUB_RDS_BLOCK_IO</constant> flag has to be set. If the
+tuner is capable of handling RDS entities like program identification codes and radio
+text, the flag <constant>V4L2_TUNER_SUB_RDS_CONTROLS</constant> should be set,
+see <link linkend="writing-rds-data">Writing RDS data</link> and
+<link linkend="fm-tx-controls">FM Transmitter Control Reference</link>.</para>
   </section>
 
-  <section>
+  <section  id="reading-rds-data">
     <title>Reading RDS data</title>
 
       <para>RDS data can be read from the radio device
-with the &func-read; function. The data is packed in groups of three bytes,
+with the &func-read; function. The data is packed in groups of three bytes.</para>
+  </section>
+
+  <section  id="writing-rds-data">
+    <title>Writing RDS data</title>
+
+      <para>RDS data can be written to the radio device
+with the &func-write; function. The data is packed in groups of three bytes,
 as follows:</para>
+  </section>
+
+  <section>
     <table frame="none" pgwide="1" id="v4l2-rds-data">
       <title>struct
 <structname>v4l2_rds_data</structname></title>
@@ -111,48 +136,57 @@ as follows:</para>
 	<tbody valign="top">
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_MSK</entry>
+	    <entry> </entry>
 	    <entry>7</entry>
 	    <entry>Mask for bits 0-2 to get the block ID.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_A</entry>
+	    <entry> </entry>
 	    <entry>0</entry>
 	    <entry>Block A.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_B</entry>
+	    <entry> </entry>
 	    <entry>1</entry>
 	    <entry>Block B.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_C</entry>
+	    <entry> </entry>
 	    <entry>2</entry>
 	    <entry>Block C.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_D</entry>
+	    <entry> </entry>
 	    <entry>3</entry>
 	    <entry>Block D.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_C_ALT</entry>
+	    <entry> </entry>
 	    <entry>4</entry>
 	    <entry>Block C'.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_INVALID</entry>
+	    <entry>read-only</entry>
 	    <entry>7</entry>
 	    <entry>An invalid block.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_CORRECTED</entry>
+	    <entry>read-only</entry>
 	    <entry>0x40</entry>
 	    <entry>A bit error was detected but corrected.</entry>
 	  </row>
 	  <row>
 	    <entry>V4L2_RDS_BLOCK_ERROR</entry>
+	    <entry>read-only</entry>
 	    <entry>0x80</entry>
-	    <entry>An incorrectable error occurred.</entry>
+	    <entry>An uncorrectable error occurred.</entry>
 	  </row>
 	</tbody>
       </tgroup>

+ 13 - 16
Documentation/DocBook/v4l/dev-teletext.xml

@@ -1,35 +1,32 @@
   <title>Teletext Interface</title>
 
-  <para>This interface aims at devices receiving and demodulating
+  <para>This interface was aimed at devices receiving and demodulating
 Teletext data [<xref linkend="ets300706" />, <xref linkend="itu653" />], evaluating the
 Teletext packages and storing formatted pages in cache memory. Such
 devices are usually implemented as microcontrollers with serial
-interface (I<superscript>2</superscript>C) and can be found on older
+interface (I<superscript>2</superscript>C) and could be found on old
 TV cards, dedicated Teletext decoding cards and home-brew devices
 connected to the PC parallel port.</para>
 
-  <para>The Teletext API was designed by Martin Buck. It is defined in
+  <para>The Teletext API was designed by Martin Buck. It was defined in
 the kernel header file <filename>linux/videotext.h</filename>, the
 specification is available from <ulink url="ftp://ftp.gwdg.de/pub/linux/misc/videotext/">
 ftp://ftp.gwdg.de/pub/linux/misc/videotext/</ulink>. (Videotext is the name of
-the German public television Teletext service.) Conventional character
-device file names are <filename>/dev/vtx</filename> and
-<filename>/dev/vttuner</filename>, with device number 83, 0 and 83, 16
-respectively. A similar interface exists for the Philips SAA5249
-Teletext decoder [specification?] with character device file names
-<filename>/dev/tlkN</filename>, device number 102, N.</para>
+the German public television Teletext service.)</para>
 
   <para>Eventually the Teletext API was integrated into the V4L API
 with character device file names <filename>/dev/vtx0</filename> to
 <filename>/dev/vtx31</filename>, device major number 81, minor numbers
-192 to 223. For reference the V4L Teletext API specification is
-reproduced here in full: "Teletext interfaces talk the existing VTX
-API." Teletext devices with major number 83 and 102 will be removed in
-Linux 2.6.</para>
+192 to 223.</para>
 
-  <para>There are no plans to replace the Teletext API or to integrate
-it into V4L2. Please write to the linux-media mailing list: &v4l-ml;
-when the need arises.</para>
+  <para>However, teletext decoders were quickly replaced by more
+generic VBI demodulators and those dedicated teletext decoders no longer exist.
+For many years the vtx devices were still around, even though nobody used
+them. So the decision was made to finally remove support for the Teletext API in
+kernel 2.6.37.</para>
+
+  <para>Modern devices all use the <link linkend="raw-vbi">raw</link> or
+<link linkend="sliced">sliced</link> VBI API.</para>
 
   <!--
 Local Variables:

+ 1 - 1
Documentation/DocBook/v4l/fdl-appendix.xml

@@ -2,7 +2,7 @@
      The GNU Free Documentation License 1.1 in DocBook
      Markup by Eric Baudais <baudais@okstate.edu>
      Maintained by the GNOME Documentation Project
-     http://developer.gnome.org/projects/gdp
+     http://live.gnome.org/DocumentationProject
      Version: 1.0.1
      Last Modified: Nov 16, 2000
 -->

+ 2 - 3
Documentation/DocBook/v4l/func-ioctl.xml

@@ -34,8 +34,7 @@
       <varlistentry>
 	<term><parameter>request</parameter></term>
 	<listitem>
-	  <para>V4L2 ioctl request code as defined in the <link
-linkend="videodev">videodev.h</link> header file, for example
+	  <para>V4L2 ioctl request code as defined in the <filename>videodev2.h</filename> header file, for example
 VIDIOC_QUERYCAP.</para>
 	</listitem>
       </varlistentry>
@@ -57,7 +56,7 @@ file descriptor. An ioctl <parameter>request</parameter> has encoded
 in it whether the argument is an input, output or read/write
 parameter, and the size of the argument <parameter>argp</parameter> in
 bytes. Macros and defines specifying V4L2 ioctl requests are located
-in the <link linkend="videodev">videodev.h</link> header file.
+in the <filename>videodev2.h</filename> header file.
 Applications should use their own copy, not include the version in the
 kernel sources on the system they compile on. All V4L2 ioctl requests,
 their respective function and parameters are specified in <xref

+ 16 - 5
Documentation/DocBook/v4l/io.xml

@@ -589,7 +589,8 @@ number of a video input as in &v4l2-input; field
 	    <entry></entry>
 	    <entry>A place holder for future extensions and custom
 (driver defined) buffer types
-<constant>V4L2_BUF_TYPE_PRIVATE</constant> and higher.</entry>
+<constant>V4L2_BUF_TYPE_PRIVATE</constant> and higher. Applications
+should set this to 0.</entry>
 	  </row>
 	</tbody>
       </tgroup>
@@ -700,6 +701,16 @@ buffer cannot be on both queues at the same time, the
 They can be both cleared however, then the buffer is in "dequeued"
 state, in the application domain to say so.</entry>
 	  </row>
+	  <row>
+	    <entry><constant>V4L2_BUF_FLAG_ERROR</constant></entry>
+	    <entry>0x0040</entry>
+	    <entry>When this flag is set, the buffer has been dequeued
+	    successfully, although the data might have been corrupted.
+	    This is recoverable, streaming may continue as normal and
+	    the buffer may be reused normally.
+	    Drivers set this flag when the <constant>VIDIOC_DQBUF</constant>
+	    ioctl is called.</entry>
+	  </row>
 	  <row>
 	    <entry><constant>V4L2_BUF_FLAG_KEYFRAME</constant></entry>
 	    <entry>0x0008</entry>
@@ -917,8 +928,8 @@ order</emphasis>.</para>
 
     <para>When the driver provides or accepts images field by field
 rather than interleaved, it is also important applications understand
-how the fields combine to frames. We distinguish between top and
-bottom fields, the <emphasis>spatial order</emphasis>: The first line
+how the fields combine to frames. We distinguish between top (aka odd) and
+bottom (aka even) fields, the <emphasis>spatial order</emphasis>: The first line
 of the top field is the first line of an interlaced frame, the first
 line of the bottom field is the second line of that frame.</para>
 
@@ -971,12 +982,12 @@ between <constant>V4L2_FIELD_TOP</constant> and
 	  <row>
 	    <entry><constant>V4L2_FIELD_TOP</constant></entry>
 	    <entry>2</entry>
-	    <entry>Images consist of the top field only.</entry>
+	    <entry>Images consist of the top (aka odd) field only.</entry>
 	  </row>
 	  <row>
 	    <entry><constant>V4L2_FIELD_BOTTOM</constant></entry>
 	    <entry>3</entry>
-	    <entry>Images consist of the bottom field only.
+	    <entry>Images consist of the bottom (aka even) field only.
 Applications may wish to prevent a device from capturing interlaced
 images because they will have "comb" or "feathering" artefacts around
 moving objects.</entry>

+ 251 - 0
Documentation/DocBook/v4l/lirc_device_interface.xml

@@ -0,0 +1,251 @@
+<section id="lirc_dev">
+<title>LIRC Device Interface</title>
+
+
+<section id="lirc_dev_intro">
+<title>Introduction</title>
+
+<para>The LIRC device interface is a bi-directional interface for
+transporting raw IR data between userspace and kernelspace. Fundamentally,
+it is just a chardev (/dev/lircX, for X = 0, 1, 2, ...), with a number
+of standard struct file_operations defined on it. With respect to
+transporting raw IR data to and fro, the essential fops are read, write
+and ioctl.</para>
+
+<para>Example dmesg output upon a driver registering w/LIRC:</para>
+  <blockquote>
+    <para>$ dmesg |grep lirc_dev</para>
+    <para>lirc_dev: IR Remote Control driver registered, major 248</para>
+    <para>rc rc0: lirc_dev: driver ir-lirc-codec (mceusb) registered at minor = 0</para>
+  </blockquote>
+
+<para>What you should see for a chardev:</para>
+  <blockquote>
+    <para>$ ls -l /dev/lirc*</para>
+    <para>crw-rw---- 1 root root 248, 0 Jul  2 22:20 /dev/lirc0</para>
+  </blockquote>
+</section>
+
+<section id="lirc_read">
+<title>LIRC read fop</title>
+
+<para>The lircd userspace daemon reads raw IR data from the LIRC chardev. The
+exact format of the data depends on what modes a driver supports, and what
+mode has been selected. lircd obtains supported modes and sets the active mode
+via the ioctl interface, detailed at <xref linkend="lirc_ioctl"/>. The generally
+preferred mode is LIRC_MODE_MODE2, in which packets containing an int value
+describing an IR signal are read from the chardev.</para>
+
+<para>See also <ulink url="http://www.lirc.org/html/technical.html">http://www.lirc.org/html/technical.html</ulink> for more info.</para>
+</section>
+
+<section id="lirc_write">
+<title>LIRC write fop</title>
+
+<para>The data written to the chardev is a pulse/space sequence of integer
+values. Pulses and spaces are only marked implicitly by their position. The
+data must start and end with a pulse, therefore, the data must always include
+an unevent number of samples. The write function must block until the data has
+been transmitted by the hardware.</para>
+</section>
+
+<section id="lirc_ioctl">
+<title>LIRC ioctl fop</title>
+
+<para>The LIRC device's ioctl definition is bound by the ioctl function
+definition of struct file_operations, leaving us with an unsigned int
+for the ioctl command and an unsigned long for the arg. For the purposes
+of ioctl portability across 32-bit and 64-bit, these values are capped
+to their 32-bit sizes.</para>
+
+<para>The following ioctls can be used to change specific hardware settings.
+In general each driver should have a default set of settings. The driver
+implementation is expected to re-apply the default settings when the device
+is closed by user-space, so that every application opening the device can rely
+on working with the default settings initially.</para>
+
+<variablelist>
+  <varlistentry>
+    <term>LIRC_GET_FEATURES</term>
+    <listitem>
+      <para>Obviously, get the underlying hardware device's features. If a driver
+      does not announce support of certain features, calling of the corresponding
+      ioctls is undefined.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_SEND_MODE</term>
+    <listitem>
+      <para>Get supported transmit mode. Only LIRC_MODE_PULSE is supported by lircd.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_REC_MODE</term>
+    <listitem>
+      <para>Get supported receive modes. Only LIRC_MODE_MODE2 and LIRC_MODE_LIRCCODE
+      are supported by lircd.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_SEND_CARRIER</term>
+    <listitem>
+      <para>Get carrier frequency (in Hz) currently used for transmit.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_REC_CARRIER</term>
+    <listitem>
+      <para>Get carrier frequency (in Hz) currently used for IR reception.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_{G,S}ET_{SEND,REC}_DUTY_CYCLE</term>
+    <listitem>
+      <para>Get/set the duty cycle (from 0 to 100) of the carrier signal. Currently,
+      no special meaning is defined for 0 or 100, but this could be used to switch
+      off carrier generation in the future, so these values should be reserved.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_REC_RESOLUTION</term>
+    <listitem>
+      <para>Some receiver have maximum resolution which is defined by internal
+      sample rate or data format limitations. E.g. it's common that signals can
+      only be reported in 50 microsecond steps. This integer value is used by
+      lircd to automatically adjust the aeps tolerance value in the lircd
+      config file.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_M{IN,AX}_TIMEOUT</term>
+    <listitem>
+      <para>Some devices have internal timers that can be used to detect when
+      there's no IR activity for a long time. This can help lircd in detecting
+      that a IR signal is finished and can speed up the decoding process.
+      Returns an integer value with the minimum/maximum timeout that can be
+      set. Some devices have a fixed timeout, in that case both ioctls will
+      return the same value even though the timeout cannot be changed.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_M{IN,AX}_FILTER_{PULSE,SPACE}</term>
+    <listitem>
+      <para>Some devices are able to filter out spikes in the incoming signal
+      using given filter rules. These ioctls return the hardware capabilities
+      that describe the bounds of the possible filters. Filter settings depend
+      on the IR protocols that are expected. lircd derives the settings from
+      all protocols definitions found in its config file.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_GET_LENGTH</term>
+    <listitem>
+      <para>Retrieves the code length in bits (only for LIRC_MODE_LIRCCODE).
+      Reads on the device must be done in blocks matching the bit count.
+      The bit could should be rounded up so that it matches full bytes.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_{SEND,REC}_MODE</term>
+    <listitem>
+      <para>Set send/receive mode. Largely obsolete for send, as only
+      LIRC_MODE_PULSE is supported.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_{SEND,REC}_CARRIER</term>
+    <listitem>
+      <para>Set send/receive carrier (in Hz).</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_TRANSMITTER_MASK</term>
+    <listitem>
+      <para>This enables the given set of transmitters. The first transmitter
+      is encoded by the least significant bit, etc. When an invalid bit mask
+      is given, i.e. a bit is set, even though the device does not have so many
+      transitters, then this ioctl returns the number of available transitters
+      and does nothing otherwise.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_REC_TIMEOUT</term>
+    <listitem>
+      <para>Sets the integer value for IR inactivity timeout (cf.
+      LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT). A value of 0 (if
+      supported by the hardware) disables all hardware timeouts and data should
+      be reported as soon as possible. If the exact value cannot be set, then
+      the next possible value _greater_ than the given value should be set.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_REC_TIMEOUT_REPORTS</term>
+    <listitem>
+      <para>Enable (1) or disable (0) timeout reports in LIRC_MODE_MODE2. By
+      default, timeout reports should be turned off.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_REC_FILTER_{,PULSE,SPACE}</term>
+    <listitem>
+      <para>Pulses/spaces shorter than this are filtered out by hardware. If
+      filters cannot be set independently for pulse/space, the corresponding
+      ioctls must return an error and LIRC_SET_REC_FILTER shall be used instead.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_MEASURE_CARRIER_MODE</term>
+    <listitem>
+      <para>Enable (1)/disable (0) measure mode. If enabled, from the next key
+      press on, the driver will send LIRC_MODE2_FREQUENCY packets. By default
+      this should be turned off.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_REC_{DUTY_CYCLE,CARRIER}_RANGE</term>
+    <listitem>
+      <para>To set a range use LIRC_SET_REC_DUTY_CYCLE_RANGE/LIRC_SET_REC_CARRIER_RANGE
+      with the lower bound first and later LIRC_SET_REC_DUTY_CYCLE/LIRC_SET_REC_CARRIER
+      with the upper bound.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_NOTIFY_DECODE</term>
+    <listitem>
+      <para>This ioctl is called by lircd whenever a successful decoding of an
+      incoming IR signal could be done. This can be used by supporting hardware
+      to give visual feedback to the user e.g. by flashing a LED.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SETUP_{START,END}</term>
+    <listitem>
+      <para>Setting of several driver parameters can be optimized by encapsulating
+      the according ioctl calls with LIRC_SETUP_START/LIRC_SETUP_END. When a
+      driver receives a LIRC_SETUP_START ioctl it can choose to not commit
+      further setting changes to the hardware until a LIRC_SETUP_END is received.
+      But this is open to the driver implementation and every driver must also
+      handle parameter changes which are not encapsulated by LIRC_SETUP_START
+      and LIRC_SETUP_END. Drivers can also choose to ignore these ioctls.</para>
+    </listitem>
+  </varlistentry>
+  <varlistentry>
+    <term>LIRC_SET_WIDEBAND_RECEIVER</term>
+    <listitem>
+      <para>Some receivers are equipped with special wide band receiver which is intended
+      to be used to learn output of existing remote.
+      Calling that ioctl with (1) will enable it, and with (0) disable it.
+      This might be useful of receivers that have otherwise narrow band receiver
+      that prevents them to be used with some remotes.
+      Wide band receiver might also be more precise
+      On the other hand its disadvantage it usually reduced range of reception.
+      Note: wide band receiver might be implictly enabled if you enable
+      carrier reports. In that case it will be disabled as soon as you disable
+      carrier reports. Trying to disable wide band receiver while carrier
+      reports are active will do nothing.</para>
+    </listitem>
+  </varlistentry>
+</variablelist>
+
+</section>
+</section>

+ 78 - 0
Documentation/DocBook/v4l/pixfmt-packed-rgb.xml

@@ -240,6 +240,45 @@ colorspace <constant>V4L2_COLORSPACE_SRGB</constant>.</para>
 	    <entry>r<subscript>1</subscript></entry>
 	    <entry>r<subscript>0</subscript></entry>
 	  </row>
+	  <row id="V4L2-PIX-FMT-BGR666">
+	    <entry><constant>V4L2_PIX_FMT_BGR666</constant></entry>
+	    <entry>'BGRH'</entry>
+	    <entry></entry>
+	    <entry>b<subscript>5</subscript></entry>
+	    <entry>b<subscript>4</subscript></entry>
+	    <entry>b<subscript>3</subscript></entry>
+	    <entry>b<subscript>2</subscript></entry>
+	    <entry>b<subscript>1</subscript></entry>
+	    <entry>b<subscript>0</subscript></entry>
+	    <entry>g<subscript>5</subscript></entry>
+	    <entry>g<subscript>4</subscript></entry>
+	    <entry></entry>
+	    <entry>g<subscript>3</subscript></entry>
+	    <entry>g<subscript>2</subscript></entry>
+	    <entry>g<subscript>1</subscript></entry>
+	    <entry>g<subscript>0</subscript></entry>
+	    <entry>r<subscript>5</subscript></entry>
+	    <entry>r<subscript>4</subscript></entry>
+	    <entry>r<subscript>3</subscript></entry>
+	    <entry>r<subscript>2</subscript></entry>
+	    <entry></entry>
+	    <entry>r<subscript>1</subscript></entry>
+	    <entry>r<subscript>0</subscript></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	  </row>
 	  <row id="V4L2-PIX-FMT-BGR24">
 	    <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry>
 	    <entry>'BGR3'</entry>
@@ -700,6 +739,45 @@ defined in error. Drivers may interpret them as in <xref
 	    <entry>b<subscript>1</subscript></entry>
 	    <entry>b<subscript>0</subscript></entry>
 	  </row>
+	  <row><!-- id="V4L2-PIX-FMT-BGR666" -->
+	    <entry><constant>V4L2_PIX_FMT_BGR666</constant></entry>
+	    <entry>'BGRH'</entry>
+	    <entry></entry>
+	    <entry>b<subscript>5</subscript></entry>
+	    <entry>b<subscript>4</subscript></entry>
+	    <entry>b<subscript>3</subscript></entry>
+	    <entry>b<subscript>2</subscript></entry>
+	    <entry>b<subscript>1</subscript></entry>
+	    <entry>b<subscript>0</subscript></entry>
+	    <entry>g<subscript>5</subscript></entry>
+	    <entry>g<subscript>4</subscript></entry>
+	    <entry></entry>
+	    <entry>g<subscript>3</subscript></entry>
+	    <entry>g<subscript>2</subscript></entry>
+	    <entry>g<subscript>1</subscript></entry>
+	    <entry>g<subscript>0</subscript></entry>
+	    <entry>r<subscript>5</subscript></entry>
+	    <entry>r<subscript>4</subscript></entry>
+	    <entry>r<subscript>3</subscript></entry>
+	    <entry>r<subscript>2</subscript></entry>
+	    <entry></entry>
+	    <entry>r<subscript>1</subscript></entry>
+	    <entry>r<subscript>0</subscript></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	    <entry></entry>
+	  </row>
 	  <row><!-- id="V4L2-PIX-FMT-BGR24" -->
 	    <entry><constant>V4L2_PIX_FMT_BGR24</constant></entry>
 	    <entry>'BGR3'</entry>

+ 90 - 0
Documentation/DocBook/v4l/pixfmt-srggb10.xml

@@ -0,0 +1,90 @@
+    <refentry>
+      <refmeta>
+	<refentrytitle>V4L2_PIX_FMT_SRGGB10 ('RG10'),
+	 V4L2_PIX_FMT_SGRBG10 ('BA10'),
+	 V4L2_PIX_FMT_SGBRG10 ('GB10'),
+	 V4L2_PIX_FMT_SBGGR10 ('BG10'),
+	 </refentrytitle>
+	&manvol;
+      </refmeta>
+      <refnamediv>
+	<refname id="V4L2-PIX-FMT-SRGGB10"><constant>V4L2_PIX_FMT_SRGGB10</constant></refname>
+	<refname id="V4L2-PIX-FMT-SGRBG10"><constant>V4L2_PIX_FMT_SGRBG10</constant></refname>
+	<refname id="V4L2-PIX-FMT-SGBRG10"><constant>V4L2_PIX_FMT_SGBRG10</constant></refname>
+	<refname id="V4L2-PIX-FMT-SBGGR10"><constant>V4L2_PIX_FMT_SBGGR10</constant></refname>
+	<refpurpose>10-bit Bayer formats expanded to 16 bits</refpurpose>
+      </refnamediv>
+      <refsect1>
+	<title>Description</title>
+
+	<para>The following four pixel formats are raw sRGB / Bayer formats with
+10 bits per colour. Each colour component is stored in a 16-bit word, with 6
+unused high bits filled with zeros. Each n-pixel row contains n/2 green samples
+and n/2 blue or red samples, with alternating red and blue rows. Bytes are
+stored in memory in little endian order. They are conventionally described
+as GRGR... BGBG..., RGRG... GBGB..., etc. Below is an example of one of these
+formats</para>
+
+    <example>
+      <title><constant>V4L2_PIX_FMT_SBGGR10</constant> 4 &times; 4
+pixel image</title>
+
+      <formalpara>
+	<title>Byte Order.</title>
+	<para>Each cell is one byte, high 6 bits in high bytes are 0.
+	  <informaltable frame="none">
+	    <tgroup cols="5" align="center">
+	      <colspec align="left" colwidth="2*" />
+	      <tbody valign="top">
+		<row>
+		  <entry>start&nbsp;+&nbsp;0:</entry>
+		  <entry>B<subscript>00low</subscript></entry>
+		  <entry>B<subscript>00high</subscript></entry>
+		  <entry>G<subscript>01low</subscript></entry>
+		  <entry>G<subscript>01high</subscript></entry>
+		  <entry>B<subscript>02low</subscript></entry>
+		  <entry>B<subscript>02high</subscript></entry>
+		  <entry>G<subscript>03low</subscript></entry>
+		  <entry>G<subscript>03high</subscript></entry>
+		</row>
+		<row>
+		  <entry>start&nbsp;+&nbsp;8:</entry>
+		  <entry>G<subscript>10low</subscript></entry>
+		  <entry>G<subscript>10high</subscript></entry>
+		  <entry>R<subscript>11low</subscript></entry>
+		  <entry>R<subscript>11high</subscript></entry>
+		  <entry>G<subscript>12low</subscript></entry>
+		  <entry>G<subscript>12high</subscript></entry>
+		  <entry>R<subscript>13low</subscript></entry>
+		  <entry>R<subscript>13high</subscript></entry>
+		</row>
+		<row>
+		  <entry>start&nbsp;+&nbsp;16:</entry>
+		  <entry>B<subscript>20low</subscript></entry>
+		  <entry>B<subscript>20high</subscript></entry>
+		  <entry>G<subscript>21low</subscript></entry>
+		  <entry>G<subscript>21high</subscript></entry>
+		  <entry>B<subscript>22low</subscript></entry>
+		  <entry>B<subscript>22high</subscript></entry>
+		  <entry>G<subscript>23low</subscript></entry>
+		  <entry>G<subscript>23high</subscript></entry>
+		</row>
+		<row>
+		  <entry>start&nbsp;+&nbsp;24:</entry>
+		  <entry>G<subscript>30low</subscript></entry>
+		  <entry>G<subscript>30high</subscript></entry>
+		  <entry>R<subscript>31low</subscript></entry>
+		  <entry>R<subscript>31high</subscript></entry>
+		  <entry>G<subscript>32low</subscript></entry>
+		  <entry>G<subscript>32high</subscript></entry>
+		  <entry>R<subscript>33low</subscript></entry>
+		  <entry>R<subscript>33high</subscript></entry>
+		</row>
+	      </tbody>
+	    </tgroup>
+	  </informaltable>
+	</para>
+      </formalpara>
+    </example>
+  </refsect1>
+</refentry>

+ 67 - 0
Documentation/DocBook/v4l/pixfmt-srggb8.xml

@@ -0,0 +1,67 @@
+    <refentry id="V4L2-PIX-FMT-SRGGB8">
+      <refmeta>
+	<refentrytitle>V4L2_PIX_FMT_SRGGB8 ('RGGB')</refentrytitle>
+	&manvol;
+      </refmeta>
+      <refnamediv>
+	<refname><constant>V4L2_PIX_FMT_SRGGB8</constant></refname>
+	<refpurpose>Bayer RGB format</refpurpose>
+      </refnamediv>
+      <refsect1>
+	<title>Description</title>
+
+	<para>This is commonly the native format of digital cameras,
+reflecting the arrangement of sensors on the CCD device. Only one red,
+green or blue value is given for each pixel. Missing components must
+be interpolated from neighbouring pixels. From left to right the first
+row consists of a red and green value, the second row of a green and
+blue value. This scheme repeats to the right and down for every two
+columns and rows.</para>
+
+	<example>
+	  <title><constant>V4L2_PIX_FMT_SRGGB8</constant> 4 &times; 4
+pixel image</title>
+
+	  <formalpara>
+	    <title>Byte Order.</title>
+	    <para>Each cell is one byte.
+	      <informaltable frame="none">
+		<tgroup cols="5" align="center">
+		  <colspec align="left" colwidth="2*" />
+		  <tbody valign="top">
+		    <row>
+		      <entry>start&nbsp;+&nbsp;0:</entry>
+		      <entry>R<subscript>00</subscript></entry>
+		      <entry>G<subscript>01</subscript></entry>
+		      <entry>R<subscript>02</subscript></entry>
+		      <entry>G<subscript>03</subscript></entry>
+		    </row>
+		    <row>
+		      <entry>start&nbsp;+&nbsp;4:</entry>
+		      <entry>G<subscript>10</subscript></entry>
+		      <entry>B<subscript>11</subscript></entry>
+		      <entry>G<subscript>12</subscript></entry>
+		      <entry>B<subscript>13</subscript></entry>
+		    </row>
+		    <row>
+		      <entry>start&nbsp;+&nbsp;8:</entry>
+		      <entry>R<subscript>20</subscript></entry>
+		      <entry>G<subscript>21</subscript></entry>
+		      <entry>R<subscript>22</subscript></entry>
+		      <entry>G<subscript>23</subscript></entry>
+		    </row>
+		    <row>
+		      <entry>start&nbsp;+&nbsp;12:</entry>
+		      <entry>G<subscript>30</subscript></entry>
+		      <entry>B<subscript>31</subscript></entry>
+		      <entry>G<subscript>32</subscript></entry>
+		      <entry>B<subscript>33</subscript></entry>
+		    </row>
+		  </tbody>
+		</tgroup>
+	      </informaltable>
+	    </para>
+	  </formalpara>
+	</example>
+      </refsect1>
+    </refentry>

+ 79 - 0
Documentation/DocBook/v4l/pixfmt-y10.xml

@@ -0,0 +1,79 @@
+<refentry id="V4L2-PIX-FMT-Y10">
+  <refmeta>
+    <refentrytitle>V4L2_PIX_FMT_Y10 ('Y10 ')</refentrytitle>
+    &manvol;
+  </refmeta>
+  <refnamediv>
+    <refname><constant>V4L2_PIX_FMT_Y10</constant></refname>
+    <refpurpose>Grey-scale image</refpurpose>
+  </refnamediv>
+  <refsect1>
+    <title>Description</title>
+
+    <para>This is a grey-scale image with a depth of 10 bits per pixel. Pixels
+are stored in 16-bit words with unused high bits padded with 0. The least
+significant byte is stored at lower memory addresses (little-endian).</para>
+
+    <example>
+      <title><constant>V4L2_PIX_FMT_Y10</constant> 4 &times; 4
+pixel image</title>
+
+      <formalpara>
+	<title>Byte Order.</title>
+	<para>Each cell is one byte.
+	  <informaltable frame="none">
+	    <tgroup cols="9" align="center">
+	      <colspec align="left" colwidth="2*" />
+	      <tbody valign="top">
+		<row>
+		  <entry>start&nbsp;+&nbsp;0:</entry>
+		  <entry>Y'<subscript>00low</subscript></entry>
+		  <entry>Y'<subscript>00high</subscript></entry>
+		  <entry>Y'<subscript>01low</subscript></entry>
+		  <entry>Y'<subscript>01high</subscript></entry>
+		  <entry>Y'<subscript>02low</subscript></entry>
+		  <entry>Y'<subscript>02high</subscript></entry>
+		  <entry>Y'<subscript>03low</subscript></entry>
+		  <entry>Y'<subscript>03high</subscript></entry>
+		</row>
+		<row>
+		  <entry>start&nbsp;+&nbsp;8:</entry>
+		  <entry>Y'<subscript>10low</subscript></entry>
+		  <entry>Y'<subscript>10high</subscript></entry>
+		  <entry>Y'<subscript>11low</subscript></entry>
+		  <entry>Y'<subscript>11high</subscript></entry>
+		  <entry>Y'<subscript>12low</subscript></entry>
+		  <entry>Y'<subscript>12high</subscript></entry>
+		  <entry>Y'<subscript>13low</subscript></entry>
+		  <entry>Y'<subscript>13high</subscript></entry>
+		</row>
+		<row>
+		  <entry>start&nbsp;+&nbsp;16:</entry>
+		  <entry>Y'<subscript>20low</subscript></entry>
+		  <entry>Y'<subscript>20high</subscript></entry>
+		  <entry>Y'<subscript>21low</subscript></entry>
+		  <entry>Y'<subscript>21high</subscript></entry>
+		  <entry>Y'<subscript>22low</subscript></entry>
+		  <entry>Y'<subscript>22high</subscript></entry>
+		  <entry>Y'<subscript>23low</subscript></entry>
+		  <entry>Y'<subscript>23high</subscript></entry>
+		</row>
+		<row>
+		  <entry>start&nbsp;+&nbsp;24:</entry>
+		  <entry>Y'<subscript>30low</subscript></entry>
+		  <entry>Y'<subscript>30high</subscript></entry>
+		  <entry>Y'<subscript>31low</subscript></entry>
+		  <entry>Y'<subscript>31high</subscript></entry>
+		  <entry>Y'<subscript>32low</subscript></entry>
+		  <entry>Y'<subscript>32high</subscript></entry>
+		  <entry>Y'<subscript>33low</subscript></entry>
+		  <entry>Y'<subscript>33high</subscript></entry>
+		</row>
+	      </tbody>
+	    </tgroup>
+	  </informaltable>
+	</para>
+      </formalpara>
+    </example>
+  </refsect1>
+</refentry>

+ 41 - 7
Documentation/DocBook/v4l/pixfmt.xml

@@ -142,8 +142,8 @@ leftmost pixel of the second row from the top, and so on. The last row
 has just as many pad bytes after it as the other rows.</para>
 
     <para>In V4L2 each format has an identifier which looks like
-<constant>PIX_FMT_XXX</constant>, defined in the <link
-linkend="videodev">videodev.h</link> header file. These identifiers
+<constant>PIX_FMT_XXX</constant>, defined in the <filename>videodev2.h</filename>
+header file. These identifiers
 represent <link linkend="v4l2-fourcc">four character codes</link>
 which are also listed below, however they are not the same as those
 used in the Windows world.</para>
@@ -566,7 +566,9 @@ access the palette, this must be done with ioctls of the Linux framebuffer API.<
     &sub-sbggr8;
     &sub-sgbrg8;
     &sub-sgrbg8;
+    &sub-srggb8;
     &sub-sbggr16;
+    &sub-srggb10;
   </section>
 
   <section id="yuv-formats">
@@ -589,6 +591,7 @@ information.</para>
 
     &sub-packed-yuv;
     &sub-grey;
+    &sub-y10;
     &sub-y16;
     &sub-yuyv;
     &sub-uyvy;
@@ -685,6 +688,11 @@ http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
 kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
 </para></entry>
 	  </row>
+	  <row id="V4L2-PIX-FMT-CPIA1">
+	    <entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
+	    <entry>'CPIA'</entry>
+	    <entry>YUV format used by the gspca cpia1 driver.</entry>
+	  </row>
 	  <row id="V4L2-PIX-FMT-SPCA501">
 	    <entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
 	    <entry>'S501'</entry>
@@ -705,11 +713,6 @@ kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm
 	    <entry>'S561'</entry>
 	    <entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
 	  </row>
-	  <row id="V4L2-PIX-FMT-SGRBG10">
-	    <entry><constant>V4L2_PIX_FMT_SGRBG10</constant></entry>
-	    <entry>'DA10'</entry>
-	    <entry>10 bit raw Bayer, expanded to 16 bits.</entry>
-	  </row>
 	  <row id="V4L2-PIX-FMT-SGRBG10DPCM8">
 	    <entry><constant>V4L2_PIX_FMT_SGRBG10DPCM8</constant></entry>
 	    <entry>'DB10'</entry>
@@ -770,6 +773,11 @@ kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm
 	    <entry>'S920'</entry>
 	    <entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
 	  </row>
+	  <row id="V4L2-PIX-FMT-SN9C2028">
+	    <entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
+	    <entry>'SONX'</entry>
+	    <entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
+	  </row>
 	  <row id="V4L2-PIX-FMT-STV0680">
 	    <entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
 	    <entry>'S680'</entry>
@@ -787,11 +795,37 @@ http://www.thedirks.org/winnov/</ulink></para></entry>
 	    <entry>'TM60'</entry>
 	    <entry><para>Used by Trident tm6000</para></entry>
 	  </row>
+	  <row id="V4L2-PIX-FMT-CIT-YYVYUY">
+	    <entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
+	    <entry>'CITV'</entry>
+	    <entry><para>Used by xirlink CIT, found at IBM webcams.</para>
+	           <para>Uses one line of Y then 1 line of VYUY</para>
+	    </entry>
+	  </row>
+	  <row id="V4L2-PIX-FMT-KONICA420">
+	    <entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
+	    <entry>'KONI'</entry>
+	    <entry><para>Used by Konica webcams.</para>
+	           <para>YUV420 planar in blocks of 256 pixels.</para>
+	    </entry>
+	  </row>
 	  <row id="V4L2-PIX-FMT-YYUV">
 	    <entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
 	    <entry>'YYUV'</entry>
 	    <entry>unknown</entry>
 	  </row>
+	  <row id="V4L2-PIX-FMT-Y4">
+	    <entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
+	    <entry>'Y04 '</entry>
+	    <entry>Old 4-bit greyscale format. Only the least significant 4 bits of each byte are used,
+the other bits are set to 0.</entry>
+	  </row>
+	  <row id="V4L2-PIX-FMT-Y6">
+	    <entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
+	    <entry>'Y06 '</entry>
+	    <entry>Old 6-bit greyscale format. Only the least significant 6 bits of each byte are used,
+the other bits are set to 0.</entry>
+	  </row>
 	</tbody>
       </tgroup>
     </table>

+ 2 - 0
Documentation/DocBook/v4l/remote_controllers.xml

@@ -173,3 +173,5 @@ keymapping.</para>
 <para>This program demonstrates how to replace the keymap tables.</para>
 &sub-keytable-c;
 </section>
+
+&sub-lirc_device_interface;

+ 13 - 2
Documentation/DocBook/v4l/v4l2.xml

@@ -58,7 +58,7 @@ MPEG stream embedded, sliced VBI data format in this specification.
 </contrib>
 	<affiliation>
 	  <address>
-	    <email>awalls@radix.net</email>
+	    <email>awalls@md.metrocast.net</email>
 	  </address>
 	</affiliation>
       </author>
@@ -99,6 +99,7 @@ Remote Controller chapter.</contrib>
       <year>2007</year>
       <year>2008</year>
       <year>2009</year>
+      <year>2010</year>
       <holder>Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin
 Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab</holder>
     </copyright>
@@ -110,9 +111,16 @@ Rubli, Andy Walls, Muralidharan Karicheri, Mauro Carvalho Chehab</holder>
       <!-- Put document revisions here, newest first. -->
       <!-- API revisions (changes and additions of defines, enums,
 structs, ioctls) must be noted in more detail in the history chapter
-(compat.sgml), along with the possible impact on existing drivers and
+(compat.xml), along with the possible impact on existing drivers and
 applications. -->
 
+      <revision>
+	<revnumber>2.6.37</revnumber>
+	<date>2010-08-06</date>
+	<authorinitials>hv</authorinitials>
+	<revremark>Removed obsolete vtx (videotext) API.</revremark>
+      </revision>
+
       <revision>
 	<revnumber>2.6.33</revnumber>
 	<date>2009-12-03</date>
@@ -401,6 +409,7 @@ and discussions on the V4L mailing list.</revremark>
     <section id="ttx"> &sub-dev-teletext; </section>
     <section id="radio"> &sub-dev-radio; </section>
     <section id="rds"> &sub-dev-rds; </section>
+    <section id="event"> &sub-dev-event; </section>
   </chapter>
 
   <chapter id="driver">
@@ -426,6 +435,7 @@ and discussions on the V4L mailing list.</revremark>
     &sub-cropcap;
     &sub-dbg-g-chip-ident;
     &sub-dbg-g-register;
+    &sub-dqevent;
     &sub-encoder-cmd;
     &sub-enumaudio;
     &sub-enumaudioout;
@@ -467,6 +477,7 @@ and discussions on the V4L mailing list.</revremark>
     &sub-reqbufs;
     &sub-s-hw-freq-seek;
     &sub-streamon;
+    &sub-subscribe-event;
     <!-- End of ioctls. -->
     &sub-mmap;
     &sub-munmap;

+ 87 - 19
Documentation/DocBook/v4l/videodev2.h.xml

@@ -154,23 +154,13 @@ enum <link linkend="v4l2-buf-type">v4l2_buf_type</link> {
         V4L2_BUF_TYPE_VBI_OUTPUT           = 5,
         V4L2_BUF_TYPE_SLICED_VBI_CAPTURE   = 6,
         V4L2_BUF_TYPE_SLICED_VBI_OUTPUT    = 7,
-#if 1 /*KEEP*/
+#if 1
         /* Experimental */
         V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY = 8,
 #endif
         V4L2_BUF_TYPE_PRIVATE              = 0x80,
 };
 
-enum <link linkend="v4l2-ctrl-type">v4l2_ctrl_type</link> {
-        V4L2_CTRL_TYPE_INTEGER       = 1,
-        V4L2_CTRL_TYPE_BOOLEAN       = 2,
-        V4L2_CTRL_TYPE_MENU          = 3,
-        V4L2_CTRL_TYPE_BUTTON        = 4,
-        V4L2_CTRL_TYPE_INTEGER64     = 5,
-        V4L2_CTRL_TYPE_CTRL_CLASS    = 6,
-        V4L2_CTRL_TYPE_STRING        = 7,
-};
-
 enum <link linkend="v4l2-tuner-type">v4l2_tuner_type</link> {
         V4L2_TUNER_RADIO             = 1,
         V4L2_TUNER_ANALOG_TV         = 2,
@@ -288,6 +278,7 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
 #define <link linkend="V4L2-PIX-FMT-RGB565">V4L2_PIX_FMT_RGB565</link>  v4l2_fourcc('R', 'G', 'B', 'P') /* 16  RGB-5-6-5     */
 #define <link linkend="V4L2-PIX-FMT-RGB555X">V4L2_PIX_FMT_RGB555X</link> v4l2_fourcc('R', 'G', 'B', 'Q') /* 16  RGB-5-5-5 BE  */
 #define <link linkend="V4L2-PIX-FMT-RGB565X">V4L2_PIX_FMT_RGB565X</link> v4l2_fourcc('R', 'G', 'B', 'R') /* 16  RGB-5-6-5 BE  */
+#define <link linkend="V4L2-PIX-FMT-BGR666">V4L2_PIX_FMT_BGR666</link>  v4l2_fourcc('B', 'G', 'R', 'H') /* 18  BGR-6-6-6     */
 #define <link linkend="V4L2-PIX-FMT-BGR24">V4L2_PIX_FMT_BGR24</link>   v4l2_fourcc('B', 'G', 'R', '3') /* 24  BGR-8-8-8     */
 #define <link linkend="V4L2-PIX-FMT-RGB24">V4L2_PIX_FMT_RGB24</link>   v4l2_fourcc('R', 'G', 'B', '3') /* 24  RGB-8-8-8     */
 #define <link linkend="V4L2-PIX-FMT-BGR32">V4L2_PIX_FMT_BGR32</link>   v4l2_fourcc('B', 'G', 'R', '4') /* 32  BGR-8-8-8-8   */
@@ -295,6 +286,9 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
 
 /* Grey formats */
 #define <link linkend="V4L2-PIX-FMT-GREY">V4L2_PIX_FMT_GREY</link>    v4l2_fourcc('G', 'R', 'E', 'Y') /*  8  Greyscale     */
+#define <link linkend="V4L2-PIX-FMT-Y4">V4L2_PIX_FMT_Y4</link>      v4l2_fourcc('Y', '0', '4', ' ') /*  4  Greyscale     */
+#define <link linkend="V4L2-PIX-FMT-Y6">V4L2_PIX_FMT_Y6</link>      v4l2_fourcc('Y', '0', '6', ' ') /*  6  Greyscale     */
+#define <link linkend="V4L2-PIX-FMT-Y10">V4L2_PIX_FMT_Y10</link>     v4l2_fourcc('Y', '1', '0', ' ') /* 10  Greyscale     */
 #define <link linkend="V4L2-PIX-FMT-Y16">V4L2_PIX_FMT_Y16</link>     v4l2_fourcc('Y', '1', '6', ' ') /* 16  Greyscale     */
 
 /* Palette formats */
@@ -330,7 +324,11 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
 #define <link linkend="V4L2-PIX-FMT-SBGGR8">V4L2_PIX_FMT_SBGGR8</link>  v4l2_fourcc('B', 'A', '8', '1') /*  8  BGBG.. GRGR.. */
 #define <link linkend="V4L2-PIX-FMT-SGBRG8">V4L2_PIX_FMT_SGBRG8</link>  v4l2_fourcc('G', 'B', 'R', 'G') /*  8  GBGB.. RGRG.. */
 #define <link linkend="V4L2-PIX-FMT-SGRBG8">V4L2_PIX_FMT_SGRBG8</link>  v4l2_fourcc('G', 'R', 'B', 'G') /*  8  GRGR.. BGBG.. */
-#define <link linkend="V4L2-PIX-FMT-SGRBG10">V4L2_PIX_FMT_SGRBG10</link> v4l2_fourcc('B', 'A', '1', '0') /* 10bit raw bayer */
+#define <link linkend="V4L2-PIX-FMT-SRGGB8">V4L2_PIX_FMT_SRGGB8</link>  v4l2_fourcc('R', 'G', 'G', 'B') /*  8  RGRG.. GBGB.. */
+#define <link linkend="V4L2-PIX-FMT-SBGGR10">V4L2_PIX_FMT_SBGGR10</link> v4l2_fourcc('B', 'G', '1', '0') /* 10  BGBG.. GRGR.. */
+#define <link linkend="V4L2-PIX-FMT-SGBRG10">V4L2_PIX_FMT_SGBRG10</link> v4l2_fourcc('G', 'B', '1', '0') /* 10  GBGB.. RGRG.. */
+#define <link linkend="V4L2-PIX-FMT-SGRBG10">V4L2_PIX_FMT_SGRBG10</link> v4l2_fourcc('B', 'A', '1', '0') /* 10  GRGR.. BGBG.. */
+#define <link linkend="V4L2-PIX-FMT-SRGGB10">V4L2_PIX_FMT_SRGGB10</link> v4l2_fourcc('R', 'G', '1', '0') /* 10  RGRG.. GBGB.. */
         /* 10bit raw bayer DPCM compressed to 8 bits */
 #define <link linkend="V4L2-PIX-FMT-SGRBG10DPCM8">V4L2_PIX_FMT_SGRBG10DPCM8</link> v4l2_fourcc('B', 'D', '1', '0')
         /*
@@ -346,6 +344,7 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
 #define <link linkend="V4L2-PIX-FMT-MPEG">V4L2_PIX_FMT_MPEG</link>     v4l2_fourcc('M', 'P', 'E', 'G') /* MPEG-1/2/4    */
 
 /*  Vendor-specific formats   */
+#define <link linkend="V4L2-PIX-FMT-CPIA1">V4L2_PIX_FMT_CPIA1</link>    v4l2_fourcc('C', 'P', 'I', 'A') /* cpia1 YUV */
 #define <link linkend="V4L2-PIX-FMT-WNVA">V4L2_PIX_FMT_WNVA</link>     v4l2_fourcc('W', 'N', 'V', 'A') /* Winnov hw compress */
 #define <link linkend="V4L2-PIX-FMT-SN9C10X">V4L2_PIX_FMT_SN9C10X</link>  v4l2_fourcc('S', '9', '1', '0') /* SN9C10x compression */
 #define <link linkend="V4L2-PIX-FMT-SN9C20X-I420">V4L2_PIX_FMT_SN9C20X_I420</link> v4l2_fourcc('S', '9', '2', '0') /* SN9C20x YUV 4:2:0 */
@@ -358,12 +357,15 @@ struct <link linkend="v4l2-pix-format">v4l2_pix_format</link> {
 #define <link linkend="V4L2-PIX-FMT-SPCA561">V4L2_PIX_FMT_SPCA561</link>  v4l2_fourcc('S', '5', '6', '1') /* compressed GBRG bayer */
 #define <link linkend="V4L2-PIX-FMT-PAC207">V4L2_PIX_FMT_PAC207</link>   v4l2_fourcc('P', '2', '0', '7') /* compressed BGGR bayer */
 #define <link linkend="V4L2-PIX-FMT-MR97310A">V4L2_PIX_FMT_MR97310A</link> v4l2_fourcc('M', '3', '1', '0') /* compressed BGGR bayer */
+#define <link linkend="V4L2-PIX-FMT-SN9C2028">V4L2_PIX_FMT_SN9C2028</link> v4l2_fourcc('S', 'O', 'N', 'X') /* compressed GBRG bayer */
 #define <link linkend="V4L2-PIX-FMT-SQ905C">V4L2_PIX_FMT_SQ905C</link>   v4l2_fourcc('9', '0', '5', 'C') /* compressed RGGB bayer */
 #define <link linkend="V4L2-PIX-FMT-PJPG">V4L2_PIX_FMT_PJPG</link>     v4l2_fourcc('P', 'J', 'P', 'G') /* Pixart 73xx JPEG */
 #define <link linkend="V4L2-PIX-FMT-OV511">V4L2_PIX_FMT_OV511</link>    v4l2_fourcc('O', '5', '1', '1') /* ov511 JPEG */
 #define <link linkend="V4L2-PIX-FMT-OV518">V4L2_PIX_FMT_OV518</link>    v4l2_fourcc('O', '5', '1', '8') /* ov518 JPEG */
-#define <link linkend="V4L2-PIX-FMT-TM6000">V4L2_PIX_FMT_TM6000</link>   v4l2_fourcc('T', 'M', '6', '0') /* tm5600/tm60x0 */
 #define <link linkend="V4L2-PIX-FMT-STV0680">V4L2_PIX_FMT_STV0680</link>  v4l2_fourcc('S', '6', '8', '0') /* stv0680 bayer */
+#define <link linkend="V4L2-PIX-FMT-TM6000">V4L2_PIX_FMT_TM6000</link>   v4l2_fourcc('T', 'M', '6', '0') /* tm5600/tm60x0 */
+#define <link linkend="V4L2-PIX-FMT-CIT-YYVYUY">V4L2_PIX_FMT_CIT_YYVYUY</link> v4l2_fourcc('C', 'I', 'T', 'V') /* one line of Y then 1 line of VYUY */
+#define <link linkend="V4L2-PIX-FMT-KONICA420">V4L2_PIX_FMT_KONICA420</link>  v4l2_fourcc('K', 'O', 'N', 'I') /* YUV420 planar in blocks of 256 pixels */
 
 /*
  *      F O R M A T   E N U M E R A T I O N
@@ -380,7 +382,7 @@ struct <link linkend="v4l2-fmtdesc">v4l2_fmtdesc</link> {
 #define V4L2_FMT_FLAG_COMPRESSED 0x0001
 #define V4L2_FMT_FLAG_EMULATED   0x0002
 
-#if 1 /*KEEP*/
+#if 1
         /* Experimental Frame Size and frame rate enumeration */
 /*
  *      F R A M E   S I Z E   E N U M E R A T I O N
@@ -544,6 +546,8 @@ struct <link linkend="v4l2-buffer">v4l2_buffer</link> {
 #define V4L2_BUF_FLAG_KEYFRAME  0x0008  /* Image is a keyframe (I-frame) */
 #define V4L2_BUF_FLAG_PFRAME    0x0010  /* Image is a P-frame */
 #define V4L2_BUF_FLAG_BFRAME    0x0020  /* Image is a B-frame */
+/* Buffer is ready, but the data contained within is corrupted. */
+#define V4L2_BUF_FLAG_ERROR     0x0040
 #define V4L2_BUF_FLAG_TIMECODE  0x0100  /* timecode field is valid */
 #define V4L2_BUF_FLAG_INPUT     0x0200  /* input field is valid */
 
@@ -934,6 +938,16 @@ struct <link linkend="v4l2-ext-controls">v4l2_ext_controls</link> {
 #define V4L2_CTRL_ID2CLASS(id)    ((id) &amp; 0x0fff0000UL)
 #define V4L2_CTRL_DRIVER_PRIV(id) (((id) &amp; 0xffff) &gt;= 0x1000)
 
+enum <link linkend="v4l2-ctrl-type">v4l2_ctrl_type</link> {
+        V4L2_CTRL_TYPE_INTEGER       = 1,
+        V4L2_CTRL_TYPE_BOOLEAN       = 2,
+        V4L2_CTRL_TYPE_MENU          = 3,
+        V4L2_CTRL_TYPE_BUTTON        = 4,
+        V4L2_CTRL_TYPE_INTEGER64     = 5,
+        V4L2_CTRL_TYPE_CTRL_CLASS    = 6,
+        V4L2_CTRL_TYPE_STRING        = 7,
+};
+
 /*  Used in the VIDIOC_QUERYCTRL ioctl for querying controls */
 struct <link linkend="v4l2-queryctrl">v4l2_queryctrl</link> {
         __u32                id;
@@ -1018,14 +1032,27 @@ enum <link linkend="v4l2-colorfx">v4l2_colorfx</link> {
         V4L2_COLORFX_NONE       = 0,
         V4L2_COLORFX_BW         = 1,
         V4L2_COLORFX_SEPIA      = 2,
+        V4L2_COLORFX_NEGATIVE = 3,
+        V4L2_COLORFX_EMBOSS = 4,
+        V4L2_COLORFX_SKETCH = 5,
+        V4L2_COLORFX_SKY_BLUE = 6,
+        V4L2_COLORFX_GRASS_GREEN = 7,
+        V4L2_COLORFX_SKIN_WHITEN = 8,
+        V4L2_COLORFX_VIVID = 9,
 };
 #define V4L2_CID_AUTOBRIGHTNESS                 (V4L2_CID_BASE+32)
 #define V4L2_CID_BAND_STOP_FILTER               (V4L2_CID_BASE+33)
 
 #define V4L2_CID_ROTATE                         (V4L2_CID_BASE+34)
 #define V4L2_CID_BG_COLOR                       (V4L2_CID_BASE+35)
+
+#define V4L2_CID_CHROMA_GAIN                    (V4L2_CID_BASE+36)
+
+#define V4L2_CID_ILLUMINATORS_1                 (V4L2_CID_BASE+37)
+#define V4L2_CID_ILLUMINATORS_2                 (V4L2_CID_BASE+38)
+
 /* last CID + 1 */
-#define V4L2_CID_LASTP1                         (V4L2_CID_BASE+36)
+#define V4L2_CID_LASTP1                         (V4L2_CID_BASE+39)
 
 /*  MPEG-class control IDs defined by V4L2 */
 #define V4L2_CID_MPEG_BASE                      (V4L2_CTRL_CLASS_MPEG | 0x900)
@@ -1271,6 +1298,9 @@ enum  <link linkend="v4l2-exposure-auto-type">v4l2_exposure_auto_type</link> {
 
 #define V4L2_CID_PRIVACY                        (V4L2_CID_CAMERA_CLASS_BASE+16)
 
+#define V4L2_CID_IRIS_ABSOLUTE                  (V4L2_CID_CAMERA_CLASS_BASE+17)
+#define V4L2_CID_IRIS_RELATIVE                  (V4L2_CID_CAMERA_CLASS_BASE+18)
+
 /* FM Modulator class control IDs */
 #define V4L2_CID_FM_TX_CLASS_BASE               (V4L2_CTRL_CLASS_FM_TX | 0x900)
 #define V4L2_CID_FM_TX_CLASS                    (V4L2_CTRL_CLASS_FM_TX | 1)
@@ -1339,6 +1369,8 @@ struct <link linkend="v4l2-modulator">v4l2_modulator</link> {
 #define V4L2_TUNER_CAP_SAP              0x0020
 #define V4L2_TUNER_CAP_LANG1            0x0040
 #define V4L2_TUNER_CAP_RDS              0x0080
+#define V4L2_TUNER_CAP_RDS_BLOCK_IO     0x0100
+#define V4L2_TUNER_CAP_RDS_CONTROLS     0x0200
 
 /*  Flags for the 'rxsubchans' field */
 #define V4L2_TUNER_SUB_MONO             0x0001
@@ -1368,7 +1400,8 @@ struct <link linkend="v4l2-hw-freq-seek">v4l2_hw_freq_seek</link> {
         enum <link linkend="v4l2-tuner-type">v4l2_tuner_type</link>  type;
         __u32                 seek_upward;
         __u32                 wrap_around;
-        __u32                 reserved[8];
+        __u32                 spacing;
+        __u32                 reserved[7];
 };
 
 /*
@@ -1423,7 +1456,7 @@ struct <link linkend="v4l2-audioout">v4l2_audioout</link> {
  *
  *      NOTE: EXPERIMENTAL API
  */
-#if 1 /*KEEP*/
+#if 1
 #define V4L2_ENC_IDX_FRAME_I    (0)
 #define V4L2_ENC_IDX_FRAME_P    (1)
 #define V4L2_ENC_IDX_FRAME_B    (2)
@@ -1615,6 +1648,38 @@ struct <link linkend="v4l2-streamparm">v4l2_streamparm</link> {
         } parm;
 };
 
+/*
+ *      E V E N T S
+ */
+
+#define V4L2_EVENT_ALL                          0
+#define V4L2_EVENT_VSYNC                        1
+#define V4L2_EVENT_EOS                          2
+#define V4L2_EVENT_PRIVATE_START                0x08000000
+
+/* Payload for V4L2_EVENT_VSYNC */
+struct <link linkend="v4l2-event-vsync">v4l2_event_vsync</link> {
+        /* Can be V4L2_FIELD_ANY, _NONE, _TOP or _BOTTOM */
+        __u8 field;
+} __attribute__ ((packed));
+
+struct <link linkend="v4l2-event">v4l2_event</link> {
+        __u32                           type;
+        union {
+                struct <link linkend="v4l2-event-vsync">v4l2_event_vsync</link> vsync;
+                __u8                    data[64];
+        } u;
+        __u32                           pending;
+        __u32                           sequence;
+        struct timespec                 timestamp;
+        __u32                           reserved[9];
+};
+
+struct <link linkend="v4l2-event-subscription">v4l2_event_subscription</link> {
+        __u32                           type;
+        __u32                           reserved[7];
+};
+
 /*
  *      A D V A N C E D   D E B U G G I N G
  *
@@ -1710,7 +1775,7 @@ struct <link linkend="v4l2-dbg-chip-ident">v4l2_dbg_chip_ident</link> {
 #define VIDIOC_G_EXT_CTRLS      _IOWR('V', 71, struct <link linkend="v4l2-ext-controls">v4l2_ext_controls</link>)
 #define VIDIOC_S_EXT_CTRLS      _IOWR('V', 72, struct <link linkend="v4l2-ext-controls">v4l2_ext_controls</link>)
 #define VIDIOC_TRY_EXT_CTRLS    _IOWR('V', 73, struct <link linkend="v4l2-ext-controls">v4l2_ext_controls</link>)
-#if 1 /*KEEP*/
+#if 1
 #define VIDIOC_ENUM_FRAMESIZES  _IOWR('V', 74, struct <link linkend="v4l2-frmsizeenum">v4l2_frmsizeenum</link>)
 #define VIDIOC_ENUM_FRAMEINTERVALS _IOWR('V', 75, struct <link linkend="v4l2-frmivalenum">v4l2_frmivalenum</link>)
 #define VIDIOC_G_ENC_INDEX       _IOR('V', 76, struct <link linkend="v4l2-enc-idx">v4l2_enc_idx</link>)
@@ -1718,7 +1783,7 @@ struct <link linkend="v4l2-dbg-chip-ident">v4l2_dbg_chip_ident</link> {
 #define VIDIOC_TRY_ENCODER_CMD  _IOWR('V', 78, struct <link linkend="v4l2-encoder-cmd">v4l2_encoder_cmd</link>)
 #endif
 
-#if 1 /*KEEP*/
+#if 1
 /* Experimental, meant for debugging, testing and internal use.
    Only implemented if CONFIG_VIDEO_ADV_DEBUG is defined.
    You must be root to use these ioctls. Never use these in applications! */
@@ -1737,6 +1802,9 @@ struct <link linkend="v4l2-dbg-chip-ident">v4l2_dbg_chip_ident</link> {
 #define VIDIOC_QUERY_DV_PRESET  _IOR('V',  86, struct <link linkend="v4l2-dv-preset">v4l2_dv_preset</link>)
 #define VIDIOC_S_DV_TIMINGS     _IOWR('V', 87, struct <link linkend="v4l2-dv-timings">v4l2_dv_timings</link>)
 #define VIDIOC_G_DV_TIMINGS     _IOWR('V', 88, struct <link linkend="v4l2-dv-timings">v4l2_dv_timings</link>)
+#define VIDIOC_DQEVENT           _IOR('V', 89, struct <link linkend="v4l2-event">v4l2_event</link>)
+#define VIDIOC_SUBSCRIBE_EVENT   _IOW('V', 90, struct <link linkend="v4l2-event-subscription">v4l2_event_subscription</link>)
+#define VIDIOC_UNSUBSCRIBE_EVENT _IOW('V', 91, struct <link linkend="v4l2-event-subscription">v4l2_event_subscription</link>)
 
 /* Reminder: when adding new ioctls please add support for them to
    drivers/media/video/v4l2-compat-ioctl32.c as well! */

+ 131 - 0
Documentation/DocBook/v4l/vidioc-dqevent.xml

@@ -0,0 +1,131 @@
+<refentry id="vidioc-dqevent">
+  <refmeta>
+    <refentrytitle>ioctl VIDIOC_DQEVENT</refentrytitle>
+    &manvol;
+  </refmeta>
+
+  <refnamediv>
+    <refname>VIDIOC_DQEVENT</refname>
+    <refpurpose>Dequeue event</refpurpose>
+  </refnamediv>
+
+  <refsynopsisdiv>
+    <funcsynopsis>
+      <funcprototype>
+	<funcdef>int <function>ioctl</function></funcdef>
+	<paramdef>int <parameter>fd</parameter></paramdef>
+	<paramdef>int <parameter>request</parameter></paramdef>
+	<paramdef>struct v4l2_event
+*<parameter>argp</parameter></paramdef>
+      </funcprototype>
+    </funcsynopsis>
+  </refsynopsisdiv>
+
+  <refsect1>
+    <title>Arguments</title>
+
+    <variablelist>
+      <varlistentry>
+	<term><parameter>fd</parameter></term>
+	<listitem>
+	  <para>&fd;</para>
+	</listitem>
+      </varlistentry>
+      <varlistentry>
+	<term><parameter>request</parameter></term>
+	<listitem>
+	  <para>VIDIOC_DQEVENT</para>
+	</listitem>
+      </varlistentry>
+      <varlistentry>
+	<term><parameter>argp</parameter></term>
+	<listitem>
+	  <para></para>
+	</listitem>
+      </varlistentry>
+    </variablelist>
+  </refsect1>
+
+  <refsect1>
+    <title>Description</title>
+
+    <para>Dequeue an event from a video device. No input is required
+    for this ioctl. All the fields of the &v4l2-event; structure are
+    filled by the driver. The file handle will also receive exceptions
+    which the application may get by e.g. using the select system
+    call.</para>
+
+    <table frame="none" pgwide="1" id="v4l2-event">
+      <title>struct <structname>v4l2_event</structname></title>
+      <tgroup cols="4">
+	&cs-str;
+	<tbody valign="top">
+	  <row>
+	    <entry>__u32</entry>
+	    <entry><structfield>type</structfield></entry>
+            <entry></entry>
+	    <entry>Type of the event.</entry>
+	  </row>
+	  <row>
+	    <entry>union</entry>
+	    <entry><structfield>u</structfield></entry>
+            <entry></entry>
+	    <entry></entry>
+	  </row>
+	  <row>
+	    <entry></entry>
+	    <entry>&v4l2-event-vsync;</entry>
+            <entry><structfield>vsync</structfield></entry>
+	    <entry>Event data for event V4L2_EVENT_VSYNC.
+            </entry>
+	  </row>
+	  <row>
+	    <entry></entry>
+	    <entry>__u8</entry>
+            <entry><structfield>data</structfield>[64]</entry>
+	    <entry>Event data. Defined by the event type. The union
+            should be used to define easily accessible type for
+            events.</entry>
+	  </row>
+	  <row>
+	    <entry>__u32</entry>
+	    <entry><structfield>pending</structfield></entry>
+            <entry></entry>
+	    <entry>Number of pending events excluding this one.</entry>
+	  </row>
+	  <row>
+	    <entry>__u32</entry>
+	    <entry><structfield>sequence</structfield></entry>
+            <entry></entry>
+	    <entry>Event sequence number. The sequence number is
+	    incremented for every subscribed event that takes place.
+	    If sequence numbers are not contiguous it means that
+	    events have been lost.
+	    </entry>
+	  </row>
+	  <row>
+	    <entry>struct timespec</entry>
+	    <entry><structfield>timestamp</structfield></entry>
+            <entry></entry>
+	    <entry>Event timestamp.</entry>
+	  </row>
+	  <row>
+	    <entry>__u32</entry>
+	    <entry><structfield>reserved</structfield>[9]</entry>
+            <entry></entry>
+	    <entry>Reserved for future extensions. Drivers must set
+	    the array to zero.</entry>
+	  </row>
+	</tbody>
+      </tgroup>
+    </table>
+
+  </refsect1>
+</refentry>
+<!--
+Local Variables:
+mode: sgml
+sgml-parent-document: "v4l2.sgml"
+indent-tabs-mode: nil
+End:
+-->

+ 1 - 1
Documentation/DocBook/v4l/vidioc-enuminput.xml

@@ -283,7 +283,7 @@ input/output interface to linux-media@vger.kernel.org on 19 Oct 2009.
 	    <entry>This input supports setting DV presets by using VIDIOC_S_DV_PRESET.</entry>
 	  </row>
 	  <row>
-	    <entry><constant>V4L2_OUT_CAP_CUSTOM_TIMINGS</constant></entry>
+	    <entry><constant>V4L2_IN_CAP_CUSTOM_TIMINGS</constant></entry>
 	    <entry>0x00000002</entry>
 	    <entry>This input supports setting custom video timings by using VIDIOC_S_DV_TIMINGS.</entry>
 	  </row>

+ 1 - 2
Documentation/DocBook/v4l/vidioc-g-dv-preset.xml

@@ -16,8 +16,7 @@
 	<funcdef>int <function>ioctl</function></funcdef>
 	<paramdef>int <parameter>fd</parameter></paramdef>
 	<paramdef>int <parameter>request</parameter></paramdef>
-	<paramdef>&v4l2-dv-preset;
-*<parameter>argp</parameter></paramdef>
+	<paramdef>struct v4l2_dv_preset *<parameter>argp</parameter></paramdef>
       </funcprototype>
     </funcsynopsis>
   </refsynopsisdiv>

+ 1 - 2
Documentation/DocBook/v4l/vidioc-g-dv-timings.xml

@@ -16,8 +16,7 @@
 	<funcdef>int <function>ioctl</function></funcdef>
 	<paramdef>int <parameter>fd</parameter></paramdef>
 	<paramdef>int <parameter>request</parameter></paramdef>
-	<paramdef>&v4l2-dv-timings;
-*<parameter>argp</parameter></paramdef>
+	<paramdef>struct v4l2_dv_timings *<parameter>argp</parameter></paramdef>
       </funcprototype>
     </funcsynopsis>
   </refsynopsisdiv>

+ 1 - 1
Documentation/DocBook/v4l/vidioc-g-parm.xml

@@ -55,7 +55,7 @@ captured or output, applications can request frame skipping or
 duplicating on the driver side. This is especially useful when using
 the <function>read()</function> or <function>write()</function>, which
 are not augmented by timestamps or sequence counters, and to avoid
-unneccessary data copying.</para>
+unnecessary data copying.</para>
 
     <para>Further these ioctls can be used to determine the number of
 buffers used internally by a driver in read/write mode. For

+ 35 - 19
Documentation/DocBook/v4l/vidioc-qbuf.xml

@@ -54,12 +54,10 @@ to enqueue an empty (capturing) or filled (output) buffer in the
 driver's incoming queue. The semantics depend on the selected I/O
 method.</para>
 
-    <para>To enqueue a <link linkend="mmap">memory mapped</link>
-buffer applications set the <structfield>type</structfield> field of a
-&v4l2-buffer; to the same buffer type as previously &v4l2-format;
-<structfield>type</structfield> and &v4l2-requestbuffers;
-<structfield>type</structfield>, the <structfield>memory</structfield>
-field to <constant>V4L2_MEMORY_MMAP</constant> and the
+    <para>To enqueue a buffer applications set the <structfield>type</structfield>
+field of a &v4l2-buffer; to the same buffer type as was previously used
+with &v4l2-format; <structfield>type</structfield> and &v4l2-requestbuffers;
+<structfield>type</structfield>. Applications must also set the
 <structfield>index</structfield> field. Valid index numbers range from
 zero to the number of buffers allocated with &VIDIOC-REQBUFS;
 (&v4l2-requestbuffers; <structfield>count</structfield>) minus one. The
@@ -70,8 +68,19 @@ intended for output (<structfield>type</structfield> is
 <constant>V4L2_BUF_TYPE_VBI_OUTPUT</constant>) applications must also
 initialize the <structfield>bytesused</structfield>,
 <structfield>field</structfield> and
-<structfield>timestamp</structfield> fields. See <xref
-	linkend="buffer" /> for details. When
+<structfield>timestamp</structfield> fields, see <xref
+linkend="buffer" /> for details.
+Applications must also set <structfield>flags</structfield> to 0. If a driver
+supports capturing from specific video inputs and you want to specify a video
+input, then <structfield>flags</structfield> should be set to
+<constant>V4L2_BUF_FLAG_INPUT</constant> and the field
+<structfield>input</structfield> must be initialized to the desired input.
+The <structfield>reserved</structfield> field must be set to 0.
+</para>
+
+    <para>To enqueue a <link linkend="mmap">memory mapped</link>
+buffer applications set the <structfield>memory</structfield>
+field to <constant>V4L2_MEMORY_MMAP</constant>. When
 <constant>VIDIOC_QBUF</constant> is called with a pointer to this
 structure the driver sets the
 <constant>V4L2_BUF_FLAG_MAPPED</constant> and
@@ -81,14 +90,10 @@ structure the driver sets the
 &EINVAL;.</para>
 
     <para>To enqueue a <link linkend="userp">user pointer</link>
-buffer applications set the <structfield>type</structfield> field of a
-&v4l2-buffer; to the same buffer type as previously &v4l2-format;
-<structfield>type</structfield> and &v4l2-requestbuffers;
-<structfield>type</structfield>, the <structfield>memory</structfield>
-field to <constant>V4L2_MEMORY_USERPTR</constant> and the
+buffer applications set the <structfield>memory</structfield>
+field to <constant>V4L2_MEMORY_USERPTR</constant>, the
 <structfield>m.userptr</structfield> field to the address of the
-buffer and <structfield>length</structfield> to its size. When the
-buffer is intended for output additional fields must be set as above.
+buffer and <structfield>length</structfield> to its size.
 When <constant>VIDIOC_QBUF</constant> is called with a pointer to this
 structure the driver sets the <constant>V4L2_BUF_FLAG_QUEUED</constant>
 flag and clears the <constant>V4L2_BUF_FLAG_MAPPED</constant> and
@@ -96,16 +101,21 @@ flag and clears the <constant>V4L2_BUF_FLAG_MAPPED</constant> and
 <structfield>flags</structfield> field, or it returns an error code.
 This ioctl locks the memory pages of the buffer in physical memory,
 they cannot be swapped out to disk. Buffers remain locked until
-dequeued, until the &VIDIOC-STREAMOFF; or &VIDIOC-REQBUFS; ioctl are
+dequeued, until the &VIDIOC-STREAMOFF; or &VIDIOC-REQBUFS; ioctl is
 called, or until the device is closed.</para>
 
     <para>Applications call the <constant>VIDIOC_DQBUF</constant>
 ioctl to dequeue a filled (capturing) or displayed (output) buffer
 from the driver's outgoing queue. They just set the
-<structfield>type</structfield> and <structfield>memory</structfield>
+<structfield>type</structfield>, <structfield>memory</structfield>
+and <structfield>reserved</structfield>
 fields of a &v4l2-buffer; as above, when <constant>VIDIOC_DQBUF</constant>
 is called with a pointer to this structure the driver fills the
-remaining fields or returns an error code.</para>
+remaining fields or returns an error code. The driver may also set
+<constant>V4L2_BUF_FLAG_ERROR</constant> in the <structfield>flags</structfield>
+field. It indicates a non-critical (recoverable) streaming error. In such case
+the application may continue as normal, but should be aware that data in the
+dequeued buffer might be corrupted.</para>
 
     <para>By default <constant>VIDIOC_DQBUF</constant> blocks when no
 buffer is in the outgoing queue. When the
@@ -152,7 +162,13 @@ enqueue a user pointer buffer.</para>
 	  <para><constant>VIDIOC_DQBUF</constant> failed due to an
 internal error. Can also indicate temporary problems like signal
 loss. Note the driver might dequeue an (empty) buffer despite
-returning an error, or even stop capturing.</para>
+returning an error, or even stop capturing. Reusing such buffer may be unsafe
+though and its details (e.g. <structfield>index</structfield>) may not be
+returned either. It is recommended that drivers indicate recoverable errors
+by setting the <constant>V4L2_BUF_FLAG_ERROR</constant> and returning 0 instead.
+In that case the application should be able to safely reuse the buffer and
+continue streaming.
+	</para>
 	</listitem>
       </varlistentry>
     </variablelist>

+ 5 - 3
Documentation/DocBook/v4l/vidioc-query-dv-preset.xml

@@ -16,7 +16,7 @@ input</refpurpose>
 	<funcdef>int <function>ioctl</function></funcdef>
 	<paramdef>int <parameter>fd</parameter></paramdef>
 	<paramdef>int <parameter>request</parameter></paramdef>
-	<paramdef>&v4l2-dv-preset; *<parameter>argp</parameter></paramdef>
+	<paramdef>struct v4l2_dv_preset *<parameter>argp</parameter></paramdef>
       </funcprototype>
     </funcsynopsis>
   </refsynopsisdiv>
@@ -53,8 +53,10 @@ input</refpurpose>
 automatically, similar to sensing the video standard. To do so, applications
 call <constant> VIDIOC_QUERY_DV_PRESET</constant> with a pointer to a
 &v4l2-dv-preset; type. Once the hardware detects a preset, that preset is
-returned in the preset field of &v4l2-dv-preset;. When detection is not
-possible or fails, the value V4L2_DV_INVALID is returned.</para>
+returned in the preset field of &v4l2-dv-preset;. If the preset could not be
+detected because there was no signal, or the signal was unreliable, or the
+signal did not map to a supported preset, then the value V4L2_DV_INVALID is
+returned.</para>
   </refsect1>
 
   <refsect1>

Some files were not shown because too many files changed in this diff