|
@@ -9,76 +9,23 @@
|
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
|
*
|
|
|
* Changes:
|
|
|
- * J Hadi Salim <hadi@nortel.com> 980914: computation fixes
|
|
|
+ * J Hadi Salim 980914: computation fixes
|
|
|
* Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly.
|
|
|
- * J Hadi Salim <hadi@nortelnetworks.com> 980816: ECN support
|
|
|
+ * J Hadi Salim 980816: ECN support
|
|
|
*/
|
|
|
|
|
|
#include <linux/config.h>
|
|
|
#include <linux/module.h>
|
|
|
-#include <asm/uaccess.h>
|
|
|
-#include <asm/system.h>
|
|
|
-#include <linux/bitops.h>
|
|
|
#include <linux/types.h>
|
|
|
#include <linux/kernel.h>
|
|
|
-#include <linux/sched.h>
|
|
|
-#include <linux/string.h>
|
|
|
-#include <linux/mm.h>
|
|
|
-#include <linux/socket.h>
|
|
|
-#include <linux/sockios.h>
|
|
|
-#include <linux/in.h>
|
|
|
-#include <linux/errno.h>
|
|
|
-#include <linux/interrupt.h>
|
|
|
-#include <linux/if_ether.h>
|
|
|
-#include <linux/inet.h>
|
|
|
#include <linux/netdevice.h>
|
|
|
-#include <linux/etherdevice.h>
|
|
|
-#include <linux/notifier.h>
|
|
|
-#include <net/ip.h>
|
|
|
-#include <net/route.h>
|
|
|
#include <linux/skbuff.h>
|
|
|
-#include <net/sock.h>
|
|
|
#include <net/pkt_sched.h>
|
|
|
#include <net/inet_ecn.h>
|
|
|
-#include <net/dsfield.h>
|
|
|
+#include <net/red.h>
|
|
|
|
|
|
|
|
|
-/* Random Early Detection (RED) algorithm.
|
|
|
- =======================================
|
|
|
-
|
|
|
- Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
|
|
|
- for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
|
|
|
-
|
|
|
- This file codes a "divisionless" version of RED algorithm
|
|
|
- as written down in Fig.17 of the paper.
|
|
|
-
|
|
|
-Short description.
|
|
|
-------------------
|
|
|
-
|
|
|
- When a new packet arrives we calculate the average queue length:
|
|
|
-
|
|
|
- avg = (1-W)*avg + W*current_queue_len,
|
|
|
-
|
|
|
- W is the filter time constant (chosen as 2^(-Wlog)), it controls
|
|
|
- the inertia of the algorithm. To allow larger bursts, W should be
|
|
|
- decreased.
|
|
|
-
|
|
|
- if (avg > th_max) -> packet marked (dropped).
|
|
|
- if (avg < th_min) -> packet passes.
|
|
|
- if (th_min < avg < th_max) we calculate probability:
|
|
|
-
|
|
|
- Pb = max_P * (avg - th_min)/(th_max-th_min)
|
|
|
-
|
|
|
- and mark (drop) packet with this probability.
|
|
|
- Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
|
|
|
- max_P should be small (not 1), usually 0.01..0.02 is good value.
|
|
|
-
|
|
|
- max_P is chosen as a number, so that max_P/(th_max-th_min)
|
|
|
- is a negative power of two in order arithmetics to contain
|
|
|
- only shifts.
|
|
|
-
|
|
|
-
|
|
|
- Parameters, settable by user:
|
|
|
+/* Parameters, settable by user:
|
|
|
-----------------------------
|
|
|
|
|
|
limit - bytes (must be > qth_max + burst)
|
|
@@ -89,243 +36,93 @@ Short description.
|
|
|
arbitrarily high (well, less than ram size)
|
|
|
Really, this limit will never be reached
|
|
|
if RED works correctly.
|
|
|
-
|
|
|
- qth_min - bytes (should be < qth_max/2)
|
|
|
- qth_max - bytes (should be at least 2*qth_min and less limit)
|
|
|
- Wlog - bits (<32) log(1/W).
|
|
|
- Plog - bits (<32)
|
|
|
-
|
|
|
- Plog is related to max_P by formula:
|
|
|
-
|
|
|
- max_P = (qth_max-qth_min)/2^Plog;
|
|
|
-
|
|
|
- F.e. if qth_max=128K and qth_min=32K, then Plog=22
|
|
|
- corresponds to max_P=0.02
|
|
|
-
|
|
|
- Scell_log
|
|
|
- Stab
|
|
|
-
|
|
|
- Lookup table for log((1-W)^(t/t_ave).
|
|
|
-
|
|
|
-
|
|
|
-NOTES:
|
|
|
-
|
|
|
-Upper bound on W.
|
|
|
------------------
|
|
|
-
|
|
|
- If you want to allow bursts of L packets of size S,
|
|
|
- you should choose W:
|
|
|
-
|
|
|
- L + 1 - th_min/S < (1-(1-W)^L)/W
|
|
|
-
|
|
|
- th_min/S = 32 th_min/S = 4
|
|
|
-
|
|
|
- log(W) L
|
|
|
- -1 33
|
|
|
- -2 35
|
|
|
- -3 39
|
|
|
- -4 46
|
|
|
- -5 57
|
|
|
- -6 75
|
|
|
- -7 101
|
|
|
- -8 135
|
|
|
- -9 190
|
|
|
- etc.
|
|
|
*/
|
|
|
|
|
|
struct red_sched_data
|
|
|
{
|
|
|
-/* Parameters */
|
|
|
- u32 limit; /* HARD maximal queue length */
|
|
|
- u32 qth_min; /* Min average length threshold: A scaled */
|
|
|
- u32 qth_max; /* Max average length threshold: A scaled */
|
|
|
- u32 Rmask;
|
|
|
- u32 Scell_max;
|
|
|
- unsigned char flags;
|
|
|
- char Wlog; /* log(W) */
|
|
|
- char Plog; /* random number bits */
|
|
|
- char Scell_log;
|
|
|
- u8 Stab[256];
|
|
|
-
|
|
|
-/* Variables */
|
|
|
- unsigned long qave; /* Average queue length: A scaled */
|
|
|
- int qcount; /* Packets since last random number generation */
|
|
|
- u32 qR; /* Cached random number */
|
|
|
-
|
|
|
- psched_time_t qidlestart; /* Start of idle period */
|
|
|
- struct tc_red_xstats st;
|
|
|
+ u32 limit; /* HARD maximal queue length */
|
|
|
+ unsigned char flags;
|
|
|
+ struct red_parms parms;
|
|
|
+ struct red_stats stats;
|
|
|
};
|
|
|
|
|
|
-static int red_ecn_mark(struct sk_buff *skb)
|
|
|
+static inline int red_use_ecn(struct red_sched_data *q)
|
|
|
{
|
|
|
- if (skb->nh.raw + 20 > skb->tail)
|
|
|
- return 0;
|
|
|
-
|
|
|
- switch (skb->protocol) {
|
|
|
- case __constant_htons(ETH_P_IP):
|
|
|
- if (INET_ECN_is_not_ect(skb->nh.iph->tos))
|
|
|
- return 0;
|
|
|
- IP_ECN_set_ce(skb->nh.iph);
|
|
|
- return 1;
|
|
|
- case __constant_htons(ETH_P_IPV6):
|
|
|
- if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h)))
|
|
|
- return 0;
|
|
|
- IP6_ECN_set_ce(skb->nh.ipv6h);
|
|
|
- return 1;
|
|
|
- default:
|
|
|
- return 0;
|
|
|
- }
|
|
|
+ return q->flags & TC_RED_ECN;
|
|
|
}
|
|
|
|
|
|
-static int
|
|
|
-red_enqueue(struct sk_buff *skb, struct Qdisc* sch)
|
|
|
+static inline int red_use_harddrop(struct red_sched_data *q)
|
|
|
+{
|
|
|
+ return q->flags & TC_RED_HARDDROP;
|
|
|
+}
|
|
|
+
|
|
|
+static int red_enqueue(struct sk_buff *skb, struct Qdisc* sch)
|
|
|
{
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
- psched_time_t now;
|
|
|
+ q->parms.qavg = red_calc_qavg(&q->parms, sch->qstats.backlog);
|
|
|
|
|
|
- if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) {
|
|
|
- long us_idle;
|
|
|
- int shift;
|
|
|
+ if (red_is_idling(&q->parms))
|
|
|
+ red_end_of_idle_period(&q->parms);
|
|
|
|
|
|
- PSCHED_GET_TIME(now);
|
|
|
- us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max);
|
|
|
- PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
+ switch (red_action(&q->parms, q->parms.qavg)) {
|
|
|
+ case RED_DONT_MARK:
|
|
|
+ break;
|
|
|
|
|
|
-/*
|
|
|
- The problem: ideally, average length queue recalcultion should
|
|
|
- be done over constant clock intervals. This is too expensive, so that
|
|
|
- the calculation is driven by outgoing packets.
|
|
|
- When the queue is idle we have to model this clock by hand.
|
|
|
-
|
|
|
- SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth)
|
|
|
- dummy packets as a burst after idle time, i.e.
|
|
|
-
|
|
|
- q->qave *= (1-W)^m
|
|
|
-
|
|
|
- This is an apparently overcomplicated solution (f.e. we have to precompute
|
|
|
- a table to make this calculation in reasonable time)
|
|
|
- I believe that a simpler model may be used here,
|
|
|
- but it is field for experiments.
|
|
|
-*/
|
|
|
- shift = q->Stab[us_idle>>q->Scell_log];
|
|
|
-
|
|
|
- if (shift) {
|
|
|
- q->qave >>= shift;
|
|
|
- } else {
|
|
|
- /* Approximate initial part of exponent
|
|
|
- with linear function:
|
|
|
- (1-W)^m ~= 1-mW + ...
|
|
|
-
|
|
|
- Seems, it is the best solution to
|
|
|
- problem of too coarce exponent tabulation.
|
|
|
- */
|
|
|
-
|
|
|
- us_idle = (q->qave * us_idle)>>q->Scell_log;
|
|
|
- if (us_idle < q->qave/2)
|
|
|
- q->qave -= us_idle;
|
|
|
- else
|
|
|
- q->qave >>= 1;
|
|
|
- }
|
|
|
- } else {
|
|
|
- q->qave += sch->qstats.backlog - (q->qave >> q->Wlog);
|
|
|
- /* NOTE:
|
|
|
- q->qave is fixed point number with point at Wlog.
|
|
|
- The formulae above is equvalent to floating point
|
|
|
- version:
|
|
|
-
|
|
|
- qave = qave*(1-W) + sch->qstats.backlog*W;
|
|
|
- --ANK (980924)
|
|
|
- */
|
|
|
- }
|
|
|
+ case RED_PROB_MARK:
|
|
|
+ sch->qstats.overlimits++;
|
|
|
+ if (!red_use_ecn(q) || !INET_ECN_set_ce(skb)) {
|
|
|
+ q->stats.prob_drop++;
|
|
|
+ goto congestion_drop;
|
|
|
+ }
|
|
|
|
|
|
- if (q->qave < q->qth_min) {
|
|
|
- q->qcount = -1;
|
|
|
-enqueue:
|
|
|
- if (sch->qstats.backlog + skb->len <= q->limit) {
|
|
|
- __skb_queue_tail(&sch->q, skb);
|
|
|
- sch->qstats.backlog += skb->len;
|
|
|
- sch->bstats.bytes += skb->len;
|
|
|
- sch->bstats.packets++;
|
|
|
- return NET_XMIT_SUCCESS;
|
|
|
- } else {
|
|
|
- q->st.pdrop++;
|
|
|
- }
|
|
|
- kfree_skb(skb);
|
|
|
- sch->qstats.drops++;
|
|
|
- return NET_XMIT_DROP;
|
|
|
- }
|
|
|
- if (q->qave >= q->qth_max) {
|
|
|
- q->qcount = -1;
|
|
|
- sch->qstats.overlimits++;
|
|
|
-mark:
|
|
|
- if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) {
|
|
|
- q->st.early++;
|
|
|
- goto drop;
|
|
|
- }
|
|
|
- q->st.marked++;
|
|
|
- goto enqueue;
|
|
|
- }
|
|
|
+ q->stats.prob_mark++;
|
|
|
+ break;
|
|
|
+
|
|
|
+ case RED_HARD_MARK:
|
|
|
+ sch->qstats.overlimits++;
|
|
|
+ if (red_use_harddrop(q) || !red_use_ecn(q) ||
|
|
|
+ !INET_ECN_set_ce(skb)) {
|
|
|
+ q->stats.forced_drop++;
|
|
|
+ goto congestion_drop;
|
|
|
+ }
|
|
|
|
|
|
- if (++q->qcount) {
|
|
|
- /* The formula used below causes questions.
|
|
|
-
|
|
|
- OK. qR is random number in the interval 0..Rmask
|
|
|
- i.e. 0..(2^Plog). If we used floating point
|
|
|
- arithmetics, it would be: (2^Plog)*rnd_num,
|
|
|
- where rnd_num is less 1.
|
|
|
-
|
|
|
- Taking into account, that qave have fixed
|
|
|
- point at Wlog, and Plog is related to max_P by
|
|
|
- max_P = (qth_max-qth_min)/2^Plog; two lines
|
|
|
- below have the following floating point equivalent:
|
|
|
-
|
|
|
- max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount
|
|
|
-
|
|
|
- Any questions? --ANK (980924)
|
|
|
- */
|
|
|
- if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR)
|
|
|
- goto enqueue;
|
|
|
- q->qcount = 0;
|
|
|
- q->qR = net_random()&q->Rmask;
|
|
|
- sch->qstats.overlimits++;
|
|
|
- goto mark;
|
|
|
+ q->stats.forced_mark++;
|
|
|
+ break;
|
|
|
}
|
|
|
- q->qR = net_random()&q->Rmask;
|
|
|
- goto enqueue;
|
|
|
|
|
|
-drop:
|
|
|
- kfree_skb(skb);
|
|
|
- sch->qstats.drops++;
|
|
|
+ if (sch->qstats.backlog + skb->len <= q->limit)
|
|
|
+ return qdisc_enqueue_tail(skb, sch);
|
|
|
+
|
|
|
+ q->stats.pdrop++;
|
|
|
+ return qdisc_drop(skb, sch);
|
|
|
+
|
|
|
+congestion_drop:
|
|
|
+ qdisc_drop(skb, sch);
|
|
|
return NET_XMIT_CN;
|
|
|
}
|
|
|
|
|
|
-static int
|
|
|
-red_requeue(struct sk_buff *skb, struct Qdisc* sch)
|
|
|
+static int red_requeue(struct sk_buff *skb, struct Qdisc* sch)
|
|
|
{
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
- PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
+ if (red_is_idling(&q->parms))
|
|
|
+ red_end_of_idle_period(&q->parms);
|
|
|
|
|
|
- __skb_queue_head(&sch->q, skb);
|
|
|
- sch->qstats.backlog += skb->len;
|
|
|
- sch->qstats.requeues++;
|
|
|
- return 0;
|
|
|
+ return qdisc_requeue(skb, sch);
|
|
|
}
|
|
|
|
|
|
-static struct sk_buff *
|
|
|
-red_dequeue(struct Qdisc* sch)
|
|
|
+static struct sk_buff * red_dequeue(struct Qdisc* sch)
|
|
|
{
|
|
|
struct sk_buff *skb;
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
- skb = __skb_dequeue(&sch->q);
|
|
|
- if (skb) {
|
|
|
- sch->qstats.backlog -= skb->len;
|
|
|
- return skb;
|
|
|
- }
|
|
|
- PSCHED_GET_TIME(q->qidlestart);
|
|
|
- return NULL;
|
|
|
+ skb = qdisc_dequeue_head(sch);
|
|
|
+
|
|
|
+ if (skb == NULL && !red_is_idling(&q->parms))
|
|
|
+ red_start_of_idle_period(&q->parms);
|
|
|
+
|
|
|
+ return skb;
|
|
|
}
|
|
|
|
|
|
static unsigned int red_drop(struct Qdisc* sch)
|
|
@@ -333,16 +130,17 @@ static unsigned int red_drop(struct Qdisc* sch)
|
|
|
struct sk_buff *skb;
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
- skb = __skb_dequeue_tail(&sch->q);
|
|
|
+ skb = qdisc_dequeue_tail(sch);
|
|
|
if (skb) {
|
|
|
unsigned int len = skb->len;
|
|
|
- sch->qstats.backlog -= len;
|
|
|
- sch->qstats.drops++;
|
|
|
- q->st.other++;
|
|
|
- kfree_skb(skb);
|
|
|
+ q->stats.other++;
|
|
|
+ qdisc_drop(skb, sch);
|
|
|
return len;
|
|
|
}
|
|
|
- PSCHED_GET_TIME(q->qidlestart);
|
|
|
+
|
|
|
+ if (!red_is_idling(&q->parms))
|
|
|
+ red_start_of_idle_period(&q->parms);
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -350,43 +148,38 @@ static void red_reset(struct Qdisc* sch)
|
|
|
{
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
|
|
|
- __skb_queue_purge(&sch->q);
|
|
|
- sch->qstats.backlog = 0;
|
|
|
- PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
- q->qave = 0;
|
|
|
- q->qcount = -1;
|
|
|
+ qdisc_reset_queue(sch);
|
|
|
+ red_restart(&q->parms);
|
|
|
}
|
|
|
|
|
|
static int red_change(struct Qdisc *sch, struct rtattr *opt)
|
|
|
{
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
- struct rtattr *tb[TCA_RED_STAB];
|
|
|
+ struct rtattr *tb[TCA_RED_MAX];
|
|
|
struct tc_red_qopt *ctl;
|
|
|
|
|
|
- if (opt == NULL ||
|
|
|
- rtattr_parse_nested(tb, TCA_RED_STAB, opt) ||
|
|
|
- tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 ||
|
|
|
+ if (opt == NULL || rtattr_parse_nested(tb, TCA_RED_MAX, opt))
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ if (tb[TCA_RED_PARMS-1] == NULL ||
|
|
|
RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) ||
|
|
|
- RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256)
|
|
|
+ tb[TCA_RED_STAB-1] == NULL ||
|
|
|
+ RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < RED_STAB_SIZE)
|
|
|
return -EINVAL;
|
|
|
|
|
|
ctl = RTA_DATA(tb[TCA_RED_PARMS-1]);
|
|
|
|
|
|
sch_tree_lock(sch);
|
|
|
q->flags = ctl->flags;
|
|
|
- q->Wlog = ctl->Wlog;
|
|
|
- q->Plog = ctl->Plog;
|
|
|
- q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL;
|
|
|
- q->Scell_log = ctl->Scell_log;
|
|
|
- q->Scell_max = (255<<q->Scell_log);
|
|
|
- q->qth_min = ctl->qth_min<<ctl->Wlog;
|
|
|
- q->qth_max = ctl->qth_max<<ctl->Wlog;
|
|
|
q->limit = ctl->limit;
|
|
|
- memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256);
|
|
|
|
|
|
- q->qcount = -1;
|
|
|
+ red_set_parms(&q->parms, ctl->qth_min, ctl->qth_max, ctl->Wlog,
|
|
|
+ ctl->Plog, ctl->Scell_log,
|
|
|
+ RTA_DATA(tb[TCA_RED_STAB-1]));
|
|
|
+
|
|
|
if (skb_queue_empty(&sch->q))
|
|
|
- PSCHED_SET_PASTPERFECT(q->qidlestart);
|
|
|
+ red_end_of_idle_period(&q->parms);
|
|
|
+
|
|
|
sch_tree_unlock(sch);
|
|
|
return 0;
|
|
|
}
|
|
@@ -399,39 +192,39 @@ static int red_init(struct Qdisc* sch, struct rtattr *opt)
|
|
|
static int red_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
|
{
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
- unsigned char *b = skb->tail;
|
|
|
- struct rtattr *rta;
|
|
|
- struct tc_red_qopt opt;
|
|
|
-
|
|
|
- rta = (struct rtattr*)b;
|
|
|
- RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
|
|
|
- opt.limit = q->limit;
|
|
|
- opt.qth_min = q->qth_min>>q->Wlog;
|
|
|
- opt.qth_max = q->qth_max>>q->Wlog;
|
|
|
- opt.Wlog = q->Wlog;
|
|
|
- opt.Plog = q->Plog;
|
|
|
- opt.Scell_log = q->Scell_log;
|
|
|
- opt.flags = q->flags;
|
|
|
+ struct rtattr *opts = NULL;
|
|
|
+ struct tc_red_qopt opt = {
|
|
|
+ .limit = q->limit,
|
|
|
+ .flags = q->flags,
|
|
|
+ .qth_min = q->parms.qth_min >> q->parms.Wlog,
|
|
|
+ .qth_max = q->parms.qth_max >> q->parms.Wlog,
|
|
|
+ .Wlog = q->parms.Wlog,
|
|
|
+ .Plog = q->parms.Plog,
|
|
|
+ .Scell_log = q->parms.Scell_log,
|
|
|
+ };
|
|
|
+
|
|
|
+ opts = RTA_NEST(skb, TCA_OPTIONS);
|
|
|
RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt);
|
|
|
- rta->rta_len = skb->tail - b;
|
|
|
-
|
|
|
- return skb->len;
|
|
|
+ return RTA_NEST_END(skb, opts);
|
|
|
|
|
|
rtattr_failure:
|
|
|
- skb_trim(skb, b - skb->data);
|
|
|
- return -1;
|
|
|
+ return RTA_NEST_CANCEL(skb, opts);
|
|
|
}
|
|
|
|
|
|
static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
|
{
|
|
|
struct red_sched_data *q = qdisc_priv(sch);
|
|
|
-
|
|
|
- return gnet_stats_copy_app(d, &q->st, sizeof(q->st));
|
|
|
+ struct tc_red_xstats st = {
|
|
|
+ .early = q->stats.prob_drop + q->stats.forced_drop,
|
|
|
+ .pdrop = q->stats.pdrop,
|
|
|
+ .other = q->stats.other,
|
|
|
+ .marked = q->stats.prob_mark + q->stats.forced_mark,
|
|
|
+ };
|
|
|
+
|
|
|
+ return gnet_stats_copy_app(d, &st, sizeof(st));
|
|
|
}
|
|
|
|
|
|
static struct Qdisc_ops red_qdisc_ops = {
|
|
|
- .next = NULL,
|
|
|
- .cl_ops = NULL,
|
|
|
.id = "red",
|
|
|
.priv_size = sizeof(struct red_sched_data),
|
|
|
.enqueue = red_enqueue,
|
|
@@ -450,10 +243,13 @@ static int __init red_module_init(void)
|
|
|
{
|
|
|
return register_qdisc(&red_qdisc_ops);
|
|
|
}
|
|
|
-static void __exit red_module_exit(void)
|
|
|
+
|
|
|
+static void __exit red_module_exit(void)
|
|
|
{
|
|
|
unregister_qdisc(&red_qdisc_ops);
|
|
|
}
|
|
|
+
|
|
|
module_init(red_module_init)
|
|
|
module_exit(red_module_exit)
|
|
|
+
|
|
|
MODULE_LICENSE("GPL");
|