|
@@ -17,10 +17,46 @@
|
|
|
#include <net/ipv6.h>
|
|
|
#include <linux/if_ether.h>
|
|
|
#include <linux/highmem.h>
|
|
|
+#include <linux/cache.h>
|
|
|
#include "net_driver.h"
|
|
|
#include "efx.h"
|
|
|
+#include "io.h"
|
|
|
#include "nic.h"
|
|
|
#include "workarounds.h"
|
|
|
+#include "ef10_regs.h"
|
|
|
+
|
|
|
+#ifdef EFX_USE_PIO
|
|
|
+
|
|
|
+#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
|
|
|
+#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
|
|
|
+unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
|
|
|
+
|
|
|
+#endif /* EFX_USE_PIO */
|
|
|
+
|
|
|
+static inline unsigned int
|
|
|
+efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
|
|
|
+{
|
|
|
+ return tx_queue->insert_count & tx_queue->ptr_mask;
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct efx_tx_buffer *
|
|
|
+__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
|
|
|
+{
|
|
|
+ return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct efx_tx_buffer *
|
|
|
+efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
|
|
|
+{
|
|
|
+ struct efx_tx_buffer *buffer =
|
|
|
+ __efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
+
|
|
|
+ EFX_BUG_ON_PARANOID(buffer->len);
|
|
|
+ EFX_BUG_ON_PARANOID(buffer->flags);
|
|
|
+ EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
|
+
|
|
|
+ return buffer;
|
|
|
+}
|
|
|
|
|
|
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
|
|
struct efx_tx_buffer *buffer,
|
|
@@ -83,8 +119,10 @@ unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
|
|
*/
|
|
|
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
|
|
|
|
|
- /* Possibly one more per segment for the alignment workaround */
|
|
|
- if (EFX_WORKAROUND_5391(efx))
|
|
|
+ /* Possibly one more per segment for the alignment workaround,
|
|
|
+ * or for option descriptors
|
|
|
+ */
|
|
|
+ if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
|
|
max_descs += EFX_TSO_MAX_SEGS;
|
|
|
|
|
|
/* Possibly more for PCIe page boundaries within input fragments */
|
|
@@ -145,6 +183,145 @@ static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+#ifdef EFX_USE_PIO
|
|
|
+
|
|
|
+struct efx_short_copy_buffer {
|
|
|
+ int used;
|
|
|
+ u8 buf[L1_CACHE_BYTES];
|
|
|
+};
|
|
|
+
|
|
|
+/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
|
|
|
+ * Advances piobuf pointer. Leaves additional data in the copy buffer.
|
|
|
+ */
|
|
|
+static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
|
|
|
+ u8 *data, int len,
|
|
|
+ struct efx_short_copy_buffer *copy_buf)
|
|
|
+{
|
|
|
+ int block_len = len & ~(sizeof(copy_buf->buf) - 1);
|
|
|
+
|
|
|
+ memcpy_toio(*piobuf, data, block_len);
|
|
|
+ *piobuf += block_len;
|
|
|
+ len -= block_len;
|
|
|
+
|
|
|
+ if (len) {
|
|
|
+ data += block_len;
|
|
|
+ BUG_ON(copy_buf->used);
|
|
|
+ BUG_ON(len > sizeof(copy_buf->buf));
|
|
|
+ memcpy(copy_buf->buf, data, len);
|
|
|
+ copy_buf->used = len;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
|
|
|
+ * Advances piobuf pointer. Leaves additional data in the copy buffer.
|
|
|
+ */
|
|
|
+static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
|
|
|
+ u8 *data, int len,
|
|
|
+ struct efx_short_copy_buffer *copy_buf)
|
|
|
+{
|
|
|
+ if (copy_buf->used) {
|
|
|
+ /* if the copy buffer is partially full, fill it up and write */
|
|
|
+ int copy_to_buf =
|
|
|
+ min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
|
|
|
+
|
|
|
+ memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
|
|
|
+ copy_buf->used += copy_to_buf;
|
|
|
+
|
|
|
+ /* if we didn't fill it up then we're done for now */
|
|
|
+ if (copy_buf->used < sizeof(copy_buf->buf))
|
|
|
+ return;
|
|
|
+
|
|
|
+ memcpy_toio(*piobuf, copy_buf->buf, sizeof(copy_buf->buf));
|
|
|
+ *piobuf += sizeof(copy_buf->buf);
|
|
|
+ data += copy_to_buf;
|
|
|
+ len -= copy_to_buf;
|
|
|
+ copy_buf->used = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
|
|
|
+}
|
|
|
+
|
|
|
+static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
|
|
|
+ struct efx_short_copy_buffer *copy_buf)
|
|
|
+{
|
|
|
+ /* if there's anything in it, write the whole buffer, including junk */
|
|
|
+ if (copy_buf->used)
|
|
|
+ memcpy_toio(piobuf, copy_buf->buf, sizeof(copy_buf->buf));
|
|
|
+}
|
|
|
+
|
|
|
+/* Traverse skb structure and copy fragments in to PIO buffer.
|
|
|
+ * Advances piobuf pointer.
|
|
|
+ */
|
|
|
+static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
|
|
|
+ u8 __iomem **piobuf,
|
|
|
+ struct efx_short_copy_buffer *copy_buf)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+
|
|
|
+ efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
|
|
|
+ copy_buf);
|
|
|
+
|
|
|
+ for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
|
|
|
+ skb_frag_t *f = &skb_shinfo(skb)->frags[i];
|
|
|
+ u8 *vaddr;
|
|
|
+
|
|
|
+ vaddr = kmap_atomic(skb_frag_page(f));
|
|
|
+
|
|
|
+ efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
|
|
|
+ skb_frag_size(f), copy_buf);
|
|
|
+ kunmap_atomic(vaddr);
|
|
|
+ }
|
|
|
+
|
|
|
+ EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
|
|
|
+}
|
|
|
+
|
|
|
+static struct efx_tx_buffer *
|
|
|
+efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
|
+{
|
|
|
+ struct efx_tx_buffer *buffer =
|
|
|
+ efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
+ u8 __iomem *piobuf = tx_queue->piobuf;
|
|
|
+
|
|
|
+ /* Copy to PIO buffer. Ensure the writes are padded to the end
|
|
|
+ * of a cache line, as this is required for write-combining to be
|
|
|
+ * effective on at least x86.
|
|
|
+ */
|
|
|
+
|
|
|
+ if (skb_shinfo(skb)->nr_frags) {
|
|
|
+ /* The size of the copy buffer will ensure all writes
|
|
|
+ * are the size of a cache line.
|
|
|
+ */
|
|
|
+ struct efx_short_copy_buffer copy_buf;
|
|
|
+
|
|
|
+ copy_buf.used = 0;
|
|
|
+
|
|
|
+ efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
|
|
|
+ &piobuf, ©_buf);
|
|
|
+ efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
|
|
|
+ } else {
|
|
|
+ /* Pad the write to the size of a cache line.
|
|
|
+ * We can do this because we know the skb_shared_info sruct is
|
|
|
+ * after the source, and the destination buffer is big enough.
|
|
|
+ */
|
|
|
+ BUILD_BUG_ON(L1_CACHE_BYTES >
|
|
|
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
|
|
|
+ memcpy_toio(tx_queue->piobuf, skb->data,
|
|
|
+ ALIGN(skb->len, L1_CACHE_BYTES));
|
|
|
+ }
|
|
|
+
|
|
|
+ EFX_POPULATE_QWORD_5(buffer->option,
|
|
|
+ ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
|
+ ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
|
|
|
+ ESF_DZ_TX_PIO_CONT, 0,
|
|
|
+ ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
|
|
|
+ ESF_DZ_TX_PIO_BUF_ADDR,
|
|
|
+ tx_queue->piobuf_offset);
|
|
|
+ ++tx_queue->pio_packets;
|
|
|
+ ++tx_queue->insert_count;
|
|
|
+ return buffer;
|
|
|
+}
|
|
|
+#endif /* EFX_USE_PIO */
|
|
|
+
|
|
|
/*
|
|
|
* Add a socket buffer to a TX queue
|
|
|
*
|
|
@@ -167,7 +344,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
|
struct device *dma_dev = &efx->pci_dev->dev;
|
|
|
struct efx_tx_buffer *buffer;
|
|
|
skb_frag_t *fragment;
|
|
|
- unsigned int len, unmap_len = 0, insert_ptr;
|
|
|
+ unsigned int len, unmap_len = 0;
|
|
|
dma_addr_t dma_addr, unmap_addr = 0;
|
|
|
unsigned int dma_len;
|
|
|
unsigned short dma_flags;
|
|
@@ -189,6 +366,17 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
|
return NETDEV_TX_OK;
|
|
|
}
|
|
|
|
|
|
+ /* Consider using PIO for short packets */
|
|
|
+#ifdef EFX_USE_PIO
|
|
|
+ if (skb->len <= efx_piobuf_size && tx_queue->piobuf &&
|
|
|
+ efx_nic_tx_is_empty(tx_queue) &&
|
|
|
+ efx_nic_tx_is_empty(efx_tx_queue_partner(tx_queue))) {
|
|
|
+ buffer = efx_enqueue_skb_pio(tx_queue, skb);
|
|
|
+ dma_flags = EFX_TX_BUF_OPTION;
|
|
|
+ goto finish_packet;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
/* Map for DMA. Use dma_map_single rather than dma_map_page
|
|
|
* since this is more efficient on machines with sparse
|
|
|
* memory.
|
|
@@ -208,11 +396,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
|
|
|
|
/* Add to TX queue, splitting across DMA boundaries */
|
|
|
do {
|
|
|
- insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
|
|
|
- buffer = &tx_queue->buffer[insert_ptr];
|
|
|
- EFX_BUG_ON_PARANOID(buffer->flags);
|
|
|
- EFX_BUG_ON_PARANOID(buffer->len);
|
|
|
- EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
|
+ buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
|
|
|
dma_len = efx_max_tx_len(efx, dma_addr);
|
|
|
if (likely(dma_len >= len))
|
|
@@ -245,6 +429,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
|
}
|
|
|
|
|
|
/* Transfer ownership of the skb to the final buffer */
|
|
|
+finish_packet:
|
|
|
buffer->skb = skb;
|
|
|
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
|
|
|
|
|
@@ -270,8 +455,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
|
while (tx_queue->insert_count != tx_queue->write_count) {
|
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
|
--tx_queue->insert_count;
|
|
|
- insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
|
|
|
- buffer = &tx_queue->buffer[insert_ptr];
|
|
|
+ buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
|
|
}
|
|
|
|
|
@@ -628,6 +812,9 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
|
|
* @tcp_off: Offset of TCP header
|
|
|
* @header_len: Number of bytes of header
|
|
|
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
|
|
+ * @header_dma_addr: Header DMA address, when using option descriptors
|
|
|
+ * @header_unmap_len: Header DMA mapped length, or 0 if not using option
|
|
|
+ * descriptors
|
|
|
*
|
|
|
* The state used during segmentation. It is put into this data structure
|
|
|
* just to make it easy to pass into inline functions.
|
|
@@ -636,7 +823,7 @@ struct tso_state {
|
|
|
/* Output position */
|
|
|
unsigned out_len;
|
|
|
unsigned seqnum;
|
|
|
- unsigned ipv4_id;
|
|
|
+ u16 ipv4_id;
|
|
|
unsigned packet_space;
|
|
|
|
|
|
/* Input position */
|
|
@@ -651,6 +838,8 @@ struct tso_state {
|
|
|
unsigned int tcp_off;
|
|
|
unsigned header_len;
|
|
|
unsigned int ip_base_len;
|
|
|
+ dma_addr_t header_dma_addr;
|
|
|
+ unsigned int header_unmap_len;
|
|
|
};
|
|
|
|
|
|
|
|
@@ -737,23 +926,18 @@ static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
|
|
|
{
|
|
|
struct efx_tx_buffer *buffer;
|
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
- unsigned dma_len, insert_ptr;
|
|
|
+ unsigned dma_len;
|
|
|
|
|
|
EFX_BUG_ON_PARANOID(len <= 0);
|
|
|
|
|
|
while (1) {
|
|
|
- insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
|
|
|
- buffer = &tx_queue->buffer[insert_ptr];
|
|
|
+ buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
++tx_queue->insert_count;
|
|
|
|
|
|
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
|
|
|
tx_queue->read_count >=
|
|
|
efx->txq_entries);
|
|
|
|
|
|
- EFX_BUG_ON_PARANOID(buffer->len);
|
|
|
- EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
|
- EFX_BUG_ON_PARANOID(buffer->flags);
|
|
|
-
|
|
|
buffer->dma_addr = dma_addr;
|
|
|
|
|
|
dma_len = efx_max_tx_len(efx, dma_addr);
|
|
@@ -814,19 +998,27 @@ static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
|
|
/* Work backwards until we hit the original insert pointer value */
|
|
|
while (tx_queue->insert_count != tx_queue->write_count) {
|
|
|
--tx_queue->insert_count;
|
|
|
- buffer = &tx_queue->buffer[tx_queue->insert_count &
|
|
|
- tx_queue->ptr_mask];
|
|
|
+ buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
/* Parse the SKB header and initialise state. */
|
|
|
-static void tso_start(struct tso_state *st, const struct sk_buff *skb)
|
|
|
+static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
|
|
+ const struct sk_buff *skb)
|
|
|
{
|
|
|
+ bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
|
|
|
+ struct device *dma_dev = &efx->pci_dev->dev;
|
|
|
+ unsigned int header_len, in_len;
|
|
|
+ dma_addr_t dma_addr;
|
|
|
+
|
|
|
st->ip_off = skb_network_header(skb) - skb->data;
|
|
|
st->tcp_off = skb_transport_header(skb) - skb->data;
|
|
|
- st->header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
|
|
+ header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
|
|
+ in_len = skb_headlen(skb) - header_len;
|
|
|
+ st->header_len = header_len;
|
|
|
+ st->in_len = in_len;
|
|
|
if (st->protocol == htons(ETH_P_IP)) {
|
|
|
st->ip_base_len = st->header_len - st->ip_off;
|
|
|
st->ipv4_id = ntohs(ip_hdr(skb)->id);
|
|
@@ -840,9 +1032,34 @@ static void tso_start(struct tso_state *st, const struct sk_buff *skb)
|
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
|
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
|
|
|
|
|
|
- st->out_len = skb->len - st->header_len;
|
|
|
- st->unmap_len = 0;
|
|
|
- st->dma_flags = 0;
|
|
|
+ st->out_len = skb->len - header_len;
|
|
|
+
|
|
|
+ if (!use_options) {
|
|
|
+ st->header_unmap_len = 0;
|
|
|
+
|
|
|
+ if (likely(in_len == 0)) {
|
|
|
+ st->dma_flags = 0;
|
|
|
+ st->unmap_len = 0;
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ dma_addr = dma_map_single(dma_dev, skb->data + header_len,
|
|
|
+ in_len, DMA_TO_DEVICE);
|
|
|
+ st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
|
|
+ st->dma_addr = dma_addr;
|
|
|
+ st->unmap_addr = dma_addr;
|
|
|
+ st->unmap_len = in_len;
|
|
|
+ } else {
|
|
|
+ dma_addr = dma_map_single(dma_dev, skb->data,
|
|
|
+ skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
+ st->header_dma_addr = dma_addr;
|
|
|
+ st->header_unmap_len = skb_headlen(skb);
|
|
|
+ st->dma_flags = 0;
|
|
|
+ st->dma_addr = dma_addr + header_len;
|
|
|
+ st->unmap_len = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
|
|
}
|
|
|
|
|
|
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
@@ -860,24 +1077,6 @@ static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
|
return -ENOMEM;
|
|
|
}
|
|
|
|
|
|
-static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
|
- const struct sk_buff *skb)
|
|
|
-{
|
|
|
- int hl = st->header_len;
|
|
|
- int len = skb_headlen(skb) - hl;
|
|
|
-
|
|
|
- st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
|
|
|
- len, DMA_TO_DEVICE);
|
|
|
- if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
|
|
- st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
|
|
- st->unmap_len = len;
|
|
|
- st->in_len = len;
|
|
|
- st->dma_addr = st->unmap_addr;
|
|
|
- return 0;
|
|
|
- }
|
|
|
- return -ENOMEM;
|
|
|
-}
|
|
|
-
|
|
|
|
|
|
/**
|
|
|
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
|
@@ -944,55 +1143,97 @@ static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|
|
struct tso_state *st)
|
|
|
{
|
|
|
struct efx_tx_buffer *buffer =
|
|
|
- &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
|
|
|
- struct tcphdr *tsoh_th;
|
|
|
- unsigned ip_length;
|
|
|
- u8 *header;
|
|
|
- int rc;
|
|
|
+ efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
+ bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
|
|
+ u8 tcp_flags_clear;
|
|
|
|
|
|
- /* Allocate and insert a DMA-mapped header buffer. */
|
|
|
- header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
|
|
- if (!header)
|
|
|
- return -ENOMEM;
|
|
|
-
|
|
|
- tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
|
|
-
|
|
|
- /* Copy and update the headers. */
|
|
|
- memcpy(header, skb->data, st->header_len);
|
|
|
-
|
|
|
- tsoh_th->seq = htonl(st->seqnum);
|
|
|
- st->seqnum += skb_shinfo(skb)->gso_size;
|
|
|
- if (st->out_len > skb_shinfo(skb)->gso_size) {
|
|
|
- /* This packet will not finish the TSO burst. */
|
|
|
+ if (!is_last) {
|
|
|
st->packet_space = skb_shinfo(skb)->gso_size;
|
|
|
- tsoh_th->fin = 0;
|
|
|
- tsoh_th->psh = 0;
|
|
|
+ tcp_flags_clear = 0x09; /* mask out FIN and PSH */
|
|
|
} else {
|
|
|
- /* This packet will be the last in the TSO burst. */
|
|
|
st->packet_space = st->out_len;
|
|
|
- tsoh_th->fin = tcp_hdr(skb)->fin;
|
|
|
- tsoh_th->psh = tcp_hdr(skb)->psh;
|
|
|
+ tcp_flags_clear = 0x00;
|
|
|
}
|
|
|
- ip_length = st->ip_base_len + st->packet_space;
|
|
|
|
|
|
- if (st->protocol == htons(ETH_P_IP)) {
|
|
|
- struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
|
|
|
+ if (!st->header_unmap_len) {
|
|
|
+ /* Allocate and insert a DMA-mapped header buffer. */
|
|
|
+ struct tcphdr *tsoh_th;
|
|
|
+ unsigned ip_length;
|
|
|
+ u8 *header;
|
|
|
+ int rc;
|
|
|
+
|
|
|
+ header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
|
|
+ if (!header)
|
|
|
+ return -ENOMEM;
|
|
|
|
|
|
- tsoh_iph->tot_len = htons(ip_length);
|
|
|
+ tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
|
|
+
|
|
|
+ /* Copy and update the headers. */
|
|
|
+ memcpy(header, skb->data, st->header_len);
|
|
|
+
|
|
|
+ tsoh_th->seq = htonl(st->seqnum);
|
|
|
+ ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
|
|
|
+
|
|
|
+ ip_length = st->ip_base_len + st->packet_space;
|
|
|
+
|
|
|
+ if (st->protocol == htons(ETH_P_IP)) {
|
|
|
+ struct iphdr *tsoh_iph =
|
|
|
+ (struct iphdr *)(header + st->ip_off);
|
|
|
+
|
|
|
+ tsoh_iph->tot_len = htons(ip_length);
|
|
|
+ tsoh_iph->id = htons(st->ipv4_id);
|
|
|
+ } else {
|
|
|
+ struct ipv6hdr *tsoh_iph =
|
|
|
+ (struct ipv6hdr *)(header + st->ip_off);
|
|
|
+
|
|
|
+ tsoh_iph->payload_len = htons(ip_length);
|
|
|
+ }
|
|
|
|
|
|
- /* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
|
|
- tsoh_iph->id = htons(st->ipv4_id);
|
|
|
- st->ipv4_id++;
|
|
|
+ rc = efx_tso_put_header(tx_queue, buffer, header);
|
|
|
+ if (unlikely(rc))
|
|
|
+ return rc;
|
|
|
} else {
|
|
|
- struct ipv6hdr *tsoh_iph =
|
|
|
- (struct ipv6hdr *)(header + st->ip_off);
|
|
|
+ /* Send the original headers with a TSO option descriptor
|
|
|
+ * in front
|
|
|
+ */
|
|
|
+ u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
|
|
|
|
|
|
- tsoh_iph->payload_len = htons(ip_length);
|
|
|
+ buffer->flags = EFX_TX_BUF_OPTION;
|
|
|
+ buffer->len = 0;
|
|
|
+ buffer->unmap_len = 0;
|
|
|
+ EFX_POPULATE_QWORD_5(buffer->option,
|
|
|
+ ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
|
+ ESF_DZ_TX_OPTION_TYPE,
|
|
|
+ ESE_DZ_TX_OPTION_DESC_TSO,
|
|
|
+ ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
|
|
+ ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
|
|
+ ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
|
|
+ ++tx_queue->insert_count;
|
|
|
+
|
|
|
+ /* We mapped the headers in tso_start(). Unmap them
|
|
|
+ * when the last segment is completed.
|
|
|
+ */
|
|
|
+ buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
+ buffer->dma_addr = st->header_dma_addr;
|
|
|
+ buffer->len = st->header_len;
|
|
|
+ if (is_last) {
|
|
|
+ buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
|
|
+ buffer->unmap_len = st->header_unmap_len;
|
|
|
+ /* Ensure we only unmap them once in case of a
|
|
|
+ * later DMA mapping error and rollback
|
|
|
+ */
|
|
|
+ st->header_unmap_len = 0;
|
|
|
+ } else {
|
|
|
+ buffer->flags = EFX_TX_BUF_CONT;
|
|
|
+ buffer->unmap_len = 0;
|
|
|
+ }
|
|
|
+ ++tx_queue->insert_count;
|
|
|
}
|
|
|
|
|
|
- rc = efx_tso_put_header(tx_queue, buffer, header);
|
|
|
- if (unlikely(rc))
|
|
|
- return rc;
|
|
|
+ st->seqnum += skb_shinfo(skb)->gso_size;
|
|
|
+
|
|
|
+ /* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
|
|
+ ++st->ipv4_id;
|
|
|
|
|
|
++tx_queue->tso_packets;
|
|
|
|
|
@@ -1023,12 +1264,11 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
|
|
|
|
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
|
|
- tso_start(&state, skb);
|
|
|
+ rc = tso_start(&state, efx, skb);
|
|
|
+ if (rc)
|
|
|
+ goto mem_err;
|
|
|
|
|
|
- /* Assume that skb header area contains exactly the headers, and
|
|
|
- * all payload is in the frag list.
|
|
|
- */
|
|
|
- if (skb_headlen(skb) == state.header_len) {
|
|
|
+ if (likely(state.in_len == 0)) {
|
|
|
/* Grab the first payload fragment. */
|
|
|
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
|
|
|
frag_i = 0;
|
|
@@ -1037,9 +1277,7 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
|
if (rc)
|
|
|
goto mem_err;
|
|
|
} else {
|
|
|
- rc = tso_get_head_fragment(&state, efx, skb);
|
|
|
- if (rc)
|
|
|
- goto mem_err;
|
|
|
+ /* Payload starts in the header area. */
|
|
|
frag_i = -1;
|
|
|
}
|
|
|
|
|
@@ -1091,6 +1329,11 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
|
state.unmap_len, DMA_TO_DEVICE);
|
|
|
}
|
|
|
|
|
|
+ /* Free the header DMA mapping, if using option descriptors */
|
|
|
+ if (state.header_unmap_len)
|
|
|
+ dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
|
|
+ state.header_unmap_len, DMA_TO_DEVICE);
|
|
|
+
|
|
|
efx_enqueue_unwind(tx_queue);
|
|
|
return NETDEV_TX_OK;
|
|
|
}
|