|
@@ -26,8 +26,10 @@ static void key_garbage_collector(struct work_struct *);
|
|
static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
|
|
static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
|
|
static DECLARE_WORK(key_gc_work, key_garbage_collector);
|
|
static DECLARE_WORK(key_gc_work, key_garbage_collector);
|
|
static key_serial_t key_gc_cursor; /* the last key the gc considered */
|
|
static key_serial_t key_gc_cursor; /* the last key the gc considered */
|
|
|
|
+static bool key_gc_again;
|
|
static unsigned long key_gc_executing;
|
|
static unsigned long key_gc_executing;
|
|
static time_t key_gc_next_run = LONG_MAX;
|
|
static time_t key_gc_next_run = LONG_MAX;
|
|
|
|
+static time_t key_gc_new_timer;
|
|
|
|
|
|
/*
|
|
/*
|
|
* Schedule a garbage collection run
|
|
* Schedule a garbage collection run
|
|
@@ -40,9 +42,7 @@ void key_schedule_gc(time_t gc_at)
|
|
|
|
|
|
kenter("%ld", gc_at - now);
|
|
kenter("%ld", gc_at - now);
|
|
|
|
|
|
- gc_at += key_gc_delay;
|
|
|
|
-
|
|
|
|
- if (now >= gc_at) {
|
|
|
|
|
|
+ if (gc_at <= now) {
|
|
schedule_work(&key_gc_work);
|
|
schedule_work(&key_gc_work);
|
|
} else if (gc_at < key_gc_next_run) {
|
|
} else if (gc_at < key_gc_next_run) {
|
|
expires = jiffies + (gc_at - now) * HZ;
|
|
expires = jiffies + (gc_at - now) * HZ;
|
|
@@ -112,16 +112,18 @@ static void key_garbage_collector(struct work_struct *work)
|
|
struct rb_node *rb;
|
|
struct rb_node *rb;
|
|
key_serial_t cursor;
|
|
key_serial_t cursor;
|
|
struct key *key, *xkey;
|
|
struct key *key, *xkey;
|
|
- time_t new_timer = LONG_MAX, limit;
|
|
|
|
|
|
+ time_t new_timer = LONG_MAX, limit, now;
|
|
|
|
|
|
- kenter("");
|
|
|
|
|
|
+ now = current_kernel_time().tv_sec;
|
|
|
|
+ kenter("[%x,%ld]", key_gc_cursor, key_gc_new_timer - now);
|
|
|
|
|
|
if (test_and_set_bit(0, &key_gc_executing)) {
|
|
if (test_and_set_bit(0, &key_gc_executing)) {
|
|
- key_schedule_gc(current_kernel_time().tv_sec);
|
|
|
|
|
|
+ key_schedule_gc(current_kernel_time().tv_sec + 1);
|
|
|
|
+ kleave(" [busy; deferring]");
|
|
return;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
- limit = current_kernel_time().tv_sec;
|
|
|
|
|
|
+ limit = now;
|
|
if (limit > key_gc_delay)
|
|
if (limit > key_gc_delay)
|
|
limit -= key_gc_delay;
|
|
limit -= key_gc_delay;
|
|
else
|
|
else
|
|
@@ -129,12 +131,19 @@ static void key_garbage_collector(struct work_struct *work)
|
|
|
|
|
|
spin_lock(&key_serial_lock);
|
|
spin_lock(&key_serial_lock);
|
|
|
|
|
|
- if (RB_EMPTY_ROOT(&key_serial_tree))
|
|
|
|
- goto reached_the_end;
|
|
|
|
|
|
+ if (unlikely(RB_EMPTY_ROOT(&key_serial_tree))) {
|
|
|
|
+ spin_unlock(&key_serial_lock);
|
|
|
|
+ clear_bit(0, &key_gc_executing);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
|
|
cursor = key_gc_cursor;
|
|
cursor = key_gc_cursor;
|
|
if (cursor < 0)
|
|
if (cursor < 0)
|
|
cursor = 0;
|
|
cursor = 0;
|
|
|
|
+ if (cursor > 0)
|
|
|
|
+ new_timer = key_gc_new_timer;
|
|
|
|
+ else
|
|
|
|
+ key_gc_again = false;
|
|
|
|
|
|
/* find the first key above the cursor */
|
|
/* find the first key above the cursor */
|
|
key = NULL;
|
|
key = NULL;
|
|
@@ -160,35 +169,50 @@ static void key_garbage_collector(struct work_struct *work)
|
|
|
|
|
|
/* trawl through the keys looking for keyrings */
|
|
/* trawl through the keys looking for keyrings */
|
|
for (;;) {
|
|
for (;;) {
|
|
- if (key->expiry > 0 && key->expiry < new_timer)
|
|
|
|
|
|
+ if (key->expiry > now && key->expiry < new_timer) {
|
|
|
|
+ kdebug("will expire %x in %ld",
|
|
|
|
+ key_serial(key), key->expiry - now);
|
|
new_timer = key->expiry;
|
|
new_timer = key->expiry;
|
|
|
|
+ }
|
|
|
|
|
|
if (key->type == &key_type_keyring &&
|
|
if (key->type == &key_type_keyring &&
|
|
- key_gc_keyring(key, limit)) {
|
|
|
|
- /* the gc ate our lock */
|
|
|
|
- schedule_work(&key_gc_work);
|
|
|
|
- goto no_unlock;
|
|
|
|
- }
|
|
|
|
|
|
+ key_gc_keyring(key, limit))
|
|
|
|
+ /* the gc had to release our lock so that the keyring
|
|
|
|
+ * could be modified, so we have to get it again */
|
|
|
|
+ goto gc_released_our_lock;
|
|
|
|
|
|
rb = rb_next(&key->serial_node);
|
|
rb = rb_next(&key->serial_node);
|
|
- if (!rb) {
|
|
|
|
- key_gc_cursor = 0;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
|
|
+ if (!rb)
|
|
|
|
+ goto reached_the_end;
|
|
key = rb_entry(rb, struct key, serial_node);
|
|
key = rb_entry(rb, struct key, serial_node);
|
|
}
|
|
}
|
|
|
|
|
|
-out:
|
|
|
|
- spin_unlock(&key_serial_lock);
|
|
|
|
-no_unlock:
|
|
|
|
|
|
+gc_released_our_lock:
|
|
|
|
+ kdebug("gc_released_our_lock");
|
|
|
|
+ key_gc_new_timer = new_timer;
|
|
|
|
+ key_gc_again = true;
|
|
clear_bit(0, &key_gc_executing);
|
|
clear_bit(0, &key_gc_executing);
|
|
- if (new_timer < LONG_MAX)
|
|
|
|
- key_schedule_gc(new_timer);
|
|
|
|
-
|
|
|
|
- kleave("");
|
|
|
|
|
|
+ schedule_work(&key_gc_work);
|
|
|
|
+ kleave(" [continue]");
|
|
return;
|
|
return;
|
|
|
|
|
|
|
|
+ /* when we reach the end of the run, we set the timer for the next one */
|
|
reached_the_end:
|
|
reached_the_end:
|
|
|
|
+ kdebug("reached_the_end");
|
|
|
|
+ spin_unlock(&key_serial_lock);
|
|
|
|
+ key_gc_new_timer = new_timer;
|
|
key_gc_cursor = 0;
|
|
key_gc_cursor = 0;
|
|
- goto out;
|
|
|
|
|
|
+ clear_bit(0, &key_gc_executing);
|
|
|
|
+
|
|
|
|
+ if (key_gc_again) {
|
|
|
|
+ /* there may have been a key that expired whilst we were
|
|
|
|
+ * scanning, so if we discarded any links we should do another
|
|
|
|
+ * scan */
|
|
|
|
+ new_timer = now + 1;
|
|
|
|
+ key_schedule_gc(new_timer);
|
|
|
|
+ } else if (new_timer < LONG_MAX) {
|
|
|
|
+ new_timer += key_gc_delay;
|
|
|
|
+ key_schedule_gc(new_timer);
|
|
|
|
+ }
|
|
|
|
+ kleave(" [end]");
|
|
}
|
|
}
|