Эх сурвалжийг харах

Merge branch 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm

* 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (321 commits)
  KVM: Drop CONFIG_DMAR dependency around kvm_iommu_map_pages
  KVM: Fix signature of kvm_iommu_map_pages stub
  KVM: MCE: Send SRAR SIGBUS directly
  KVM: MCE: Add MCG_SER_P into KVM_MCE_CAP_SUPPORTED
  KVM: fix typo in copyright notice
  KVM: Disable interrupts around get_kernel_ns()
  KVM: MMU: Avoid sign extension in mmu_alloc_direct_roots() pae root address
  KVM: MMU: move access code parsing to FNAME(walk_addr) function
  KVM: MMU: audit: check whether have unsync sps after root sync
  KVM: MMU: audit: introduce audit_printk to cleanup audit code
  KVM: MMU: audit: unregister audit tracepoints before module unloaded
  KVM: MMU: audit: fix vcpu's spte walking
  KVM: MMU: set access bit for direct mapping
  KVM: MMU: cleanup for error mask set while walk guest page table
  KVM: MMU: update 'root_hpa' out of loop in PAE shadow path
  KVM: x86 emulator: Eliminate compilation warning in x86_decode_insn()
  KVM: x86: Fix constant type in kvm_get_time_scale
  KVM: VMX: Add AX to list of registers clobbered by guest switch
  KVM guest: Move a printk that's using the clock before it's ready
  KVM: x86: TSC catchup mode
  ...
Linus Torvalds 14 жил өмнө
parent
commit
1765a1fe5d
73 өөрчлөгдсөн 5354 нэмэгдсэн , 1755 устгасан
  1. 7 1
      Documentation/kernel-parameters.txt
  2. 57 4
      Documentation/kvm/api.txt
  3. 196 0
      Documentation/kvm/ppc-pv.txt
  4. 612 0
      Documentation/kvm/timekeeping.txt
  5. 1 0
      arch/ia64/kvm/lapic.h
  6. 1 0
      arch/powerpc/include/asm/kvm.h
  7. 3 1
      arch/powerpc/include/asm/kvm_asm.h
  8. 16 15
      arch/powerpc/include/asm/kvm_book3s.h
  9. 13 8
      arch/powerpc/include/asm/kvm_host.h
  10. 138 1
      arch/powerpc/include/asm/kvm_para.h
  11. 1 0
      arch/powerpc/include/asm/kvm_ppc.h
  12. 2 0
      arch/powerpc/kernel/Makefile
  13. 21 4
      arch/powerpc/kernel/asm-offsets.c
  14. 6 0
      arch/powerpc/kernel/exceptions-64s.S
  15. 0 6
      arch/powerpc/kernel/head_64.S
  16. 596 0
      arch/powerpc/kernel/kvm.c
  17. 302 0
      arch/powerpc/kernel/kvm_emul.S
  18. 9 1
      arch/powerpc/kvm/44x.c
  19. 5 4
      arch/powerpc/kvm/44x_tlb.c
  20. 181 91
      arch/powerpc/kvm/book3s.c
  21. 67 44
      arch/powerpc/kvm/book3s_32_mmu.c
  22. 43 32
      arch/powerpc/kvm/book3s_32_mmu_host.c
  23. 35 7
      arch/powerpc/kvm/book3s_64_mmu.c
  24. 27 47
      arch/powerpc/kvm/book3s_64_mmu_host.c
  25. 29 44
      arch/powerpc/kvm/book3s_emulate.c
  26. 101 39
      arch/powerpc/kvm/book3s_mmu_hpte.c
  27. 6 5
      arch/powerpc/kvm/book3s_paired_singles.c
  28. 21 11
      arch/powerpc/kvm/book3s_rmhandlers.S
  29. 78 30
      arch/powerpc/kvm/booke.c
  30. 6 4
      arch/powerpc/kvm/booke.h
  31. 7 7
      arch/powerpc/kvm/booke_emulate.c
  32. 2 1
      arch/powerpc/kvm/booke_interrupts.S
  33. 7 0
      arch/powerpc/kvm/e500.c
  34. 9 9
      arch/powerpc/kvm/e500_tlb.c
  35. 1 1
      arch/powerpc/kvm/e500_tlb.h
  36. 24 12
      arch/powerpc/kvm/emulate.c
  37. 87 1
      arch/powerpc/kvm/powerpc.c
  38. 239 0
      arch/powerpc/kvm/trace.h
  39. 10 0
      arch/powerpc/platforms/Kconfig
  40. 1 0
      arch/s390/include/asm/Kbuild
  41. 7 0
      arch/s390/include/asm/kvm_virtio.h
  42. 17 13
      arch/x86/include/asm/kvm_emulate.h
  43. 72 9
      arch/x86/include/asm/kvm_host.h
  44. 6 0
      arch/x86/include/asm/kvm_para.h
  45. 1 0
      arch/x86/include/asm/msr-index.h
  46. 38 0
      arch/x86/include/asm/pvclock.h
  47. 4 2
      arch/x86/kernel/kvmclock.c
  48. 2 1
      arch/x86/kernel/pvclock.c
  49. 7 0
      arch/x86/kvm/Kconfig
  50. 242 747
      arch/x86/kvm/emulate.c
  51. 1 10
      arch/x86/kvm/i8254.c
  52. 15 10
      arch/x86/kvm/i8259.c
  53. 2 7
      arch/x86/kvm/irq.c
  54. 1 1
      arch/x86/kvm/irq.h
  55. 8 1
      arch/x86/kvm/kvm_cache_regs.h
  56. 12 3
      arch/x86/kvm/lapic.c
  57. 452 142
      arch/x86/kvm/mmu.c
  58. 8 1
      arch/x86/kvm/mmu.h
  59. 299 0
      arch/x86/kvm/mmu_audit.c
  60. 19 0
      arch/x86/kvm/mmutrace.h
  61. 164 38
      arch/x86/kvm/paging_tmpl.h
  62. 221 62
      arch/x86/kvm/svm.c
  63. 1 1
      arch/x86/kvm/timer.c
  64. 102 117
      arch/x86/kvm/vmx.c
  65. 505 127
      arch/x86/kvm/x86.c
  66. 8 0
      arch/x86/kvm/x86.h
  67. 60 6
      drivers/s390/kvm/kvm_virtio.c
  68. 12 0
      include/linux/kvm.h
  69. 19 3
      include/linux/kvm_host.h
  70. 2 5
      include/linux/kvm_para.h
  71. 13 0
      mm/util.c
  72. 1 1
      virt/kvm/irq_comm.c
  73. 66 18
      virt/kvm/kvm_main.c

+ 7 - 1
Documentation/kernel-parameters.txt

@@ -1131,9 +1131,13 @@ and is between 256 and 4096 characters. It is defined in the file
 	kvm.oos_shadow=	[KVM] Disable out-of-sync shadow paging.
 			Default is 1 (enabled)
 
-	kvm-amd.nested=	[KVM,AMD] Allow nested virtualization in KVM/SVM.
+	kvm.mmu_audit=	[KVM] This is a R/W parameter which allows audit
+			KVM MMU at runtime.
 			Default is 0 (off)
 
+	kvm-amd.nested=	[KVM,AMD] Allow nested virtualization in KVM/SVM.
+			Default is 1 (enabled)
+
 	kvm-amd.npt=	[KVM,AMD] Disable nested paging (virtualized MMU)
 			for all guests.
 			Default is 1 (enabled) if in 64bit or 32bit-PAE mode
@@ -1698,6 +1702,8 @@ and is between 256 and 4096 characters. It is defined in the file
 
 	nojitter	[IA64] Disables jitter checking for ITC timers.
 
+	no-kvmclock	[X86,KVM] Disable paravirtualized KVM clock driver
+
 	nolapic		[X86-32,APIC] Do not enable or use the local APIC.
 
 	nolapic_timer	[X86-32,APIC] Do not use the local APIC timer.

+ 57 - 4
Documentation/kvm/api.txt

@@ -320,13 +320,13 @@ struct kvm_translation {
 4.15 KVM_INTERRUPT
 
 Capability: basic
-Architectures: x86
+Architectures: x86, ppc
 Type: vcpu ioctl
 Parameters: struct kvm_interrupt (in)
 Returns: 0 on success, -1 on error
 
 Queues a hardware interrupt vector to be injected.  This is only
-useful if in-kernel local APIC is not used.
+useful if in-kernel local APIC or equivalent is not used.
 
 /* for KVM_INTERRUPT */
 struct kvm_interrupt {
@@ -334,8 +334,37 @@ struct kvm_interrupt {
 	__u32 irq;
 };
 
+X86:
+
 Note 'irq' is an interrupt vector, not an interrupt pin or line.
 
+PPC:
+
+Queues an external interrupt to be injected. This ioctl is overleaded
+with 3 different irq values:
+
+a) KVM_INTERRUPT_SET
+
+  This injects an edge type external interrupt into the guest once it's ready
+  to receive interrupts. When injected, the interrupt is done.
+
+b) KVM_INTERRUPT_UNSET
+
+  This unsets any pending interrupt.
+
+  Only available with KVM_CAP_PPC_UNSET_IRQ.
+
+c) KVM_INTERRUPT_SET_LEVEL
+
+  This injects a level type external interrupt into the guest context. The
+  interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
+  is triggered.
+
+  Only available with KVM_CAP_PPC_IRQ_LEVEL.
+
+Note that any value for 'irq' other than the ones stated above is invalid
+and incurs unexpected behavior.
+
 4.16 KVM_DEBUG_GUEST
 
 Capability: basic
@@ -1013,8 +1042,9 @@ number is just right, the 'nent' field is adjusted to the number of valid
 entries in the 'entries' array, which is then filled.
 
 The entries returned are the host cpuid as returned by the cpuid instruction,
-with unknown or unsupported features masked out.  The fields in each entry
-are defined as follows:
+with unknown or unsupported features masked out.  Some features (for example,
+x2apic), may not be present in the host cpu, but are exposed by kvm if it can
+emulate them efficiently. The fields in each entry are defined as follows:
 
   function: the eax value used to obtain the entry
   index: the ecx value used to obtain the entry (for entries that are
@@ -1032,6 +1062,29 @@ are defined as follows:
    eax, ebx, ecx, edx: the values returned by the cpuid instruction for
          this function/index combination
 
+4.46 KVM_PPC_GET_PVINFO
+
+Capability: KVM_CAP_PPC_GET_PVINFO
+Architectures: ppc
+Type: vm ioctl
+Parameters: struct kvm_ppc_pvinfo (out)
+Returns: 0 on success, !0 on error
+
+struct kvm_ppc_pvinfo {
+	__u32 flags;
+	__u32 hcall[4];
+	__u8  pad[108];
+};
+
+This ioctl fetches PV specific information that need to be passed to the guest
+using the device tree or other means from vm context.
+
+For now the only implemented piece of information distributed here is an array
+of 4 instructions that make up a hypercall.
+
+If any additional field gets added to this structure later on, a bit for that
+additional piece of information will be set in the flags bitmap.
+
 5. The kvm_run structure
 
 Application code obtains a pointer to the kvm_run structure by

+ 196 - 0
Documentation/kvm/ppc-pv.txt

@@ -0,0 +1,196 @@
+The PPC KVM paravirtual interface
+=================================
+
+The basic execution principle by which KVM on PowerPC works is to run all kernel
+space code in PR=1 which is user space. This way we trap all privileged
+instructions and can emulate them accordingly.
+
+Unfortunately that is also the downfall. There are quite some privileged
+instructions that needlessly return us to the hypervisor even though they
+could be handled differently.
+
+This is what the PPC PV interface helps with. It takes privileged instructions
+and transforms them into unprivileged ones with some help from the hypervisor.
+This cuts down virtualization costs by about 50% on some of my benchmarks.
+
+The code for that interface can be found in arch/powerpc/kernel/kvm*
+
+Querying for existence
+======================
+
+To find out if we're running on KVM or not, we leverage the device tree. When
+Linux is running on KVM, a node /hypervisor exists. That node contains a
+compatible property with the value "linux,kvm".
+
+Once you determined you're running under a PV capable KVM, you can now use
+hypercalls as described below.
+
+KVM hypercalls
+==============
+
+Inside the device tree's /hypervisor node there's a property called
+'hypercall-instructions'. This property contains at most 4 opcodes that make
+up the hypercall. To call a hypercall, just call these instructions.
+
+The parameters are as follows:
+
+	Register	IN			OUT
+
+	r0		-			volatile
+	r3		1st parameter		Return code
+	r4		2nd parameter		1st output value
+	r5		3rd parameter		2nd output value
+	r6		4th parameter		3rd output value
+	r7		5th parameter		4th output value
+	r8		6th parameter		5th output value
+	r9		7th parameter		6th output value
+	r10		8th parameter		7th output value
+	r11		hypercall number	8th output value
+	r12		-			volatile
+
+Hypercall definitions are shared in generic code, so the same hypercall numbers
+apply for x86 and powerpc alike with the exception that each KVM hypercall
+also needs to be ORed with the KVM vendor code which is (42 << 16).
+
+Return codes can be as follows:
+
+	Code		Meaning
+
+	0		Success
+	12		Hypercall not implemented
+	<0		Error
+
+The magic page
+==============
+
+To enable communication between the hypervisor and guest there is a new shared
+page that contains parts of supervisor visible register state. The guest can
+map this shared page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE.
+
+With this hypercall issued the guest always gets the magic page mapped at the
+desired location in effective and physical address space. For now, we always
+map the page to -4096. This way we can access it using absolute load and store
+functions. The following instruction reads the first field of the magic page:
+
+	ld	rX, -4096(0)
+
+The interface is designed to be extensible should there be need later to add
+additional registers to the magic page. If you add fields to the magic page,
+also define a new hypercall feature to indicate that the host can give you more
+registers. Only if the host supports the additional features, make use of them.
+
+The magic page has the following layout as described in
+arch/powerpc/include/asm/kvm_para.h:
+
+struct kvm_vcpu_arch_shared {
+	__u64 scratch1;
+	__u64 scratch2;
+	__u64 scratch3;
+	__u64 critical;		/* Guest may not get interrupts if == r1 */
+	__u64 sprg0;
+	__u64 sprg1;
+	__u64 sprg2;
+	__u64 sprg3;
+	__u64 srr0;
+	__u64 srr1;
+	__u64 dar;
+	__u64 msr;
+	__u32 dsisr;
+	__u32 int_pending;	/* Tells the guest if we have an interrupt */
+};
+
+Additions to the page must only occur at the end. Struct fields are always 32
+or 64 bit aligned, depending on them being 32 or 64 bit wide respectively.
+
+Magic page features
+===================
+
+When mapping the magic page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE,
+a second return value is passed to the guest. This second return value contains
+a bitmap of available features inside the magic page.
+
+The following enhancements to the magic page are currently available:
+
+  KVM_MAGIC_FEAT_SR		Maps SR registers r/w in the magic page
+
+For enhanced features in the magic page, please check for the existence of the
+feature before using them!
+
+MSR bits
+========
+
+The MSR contains bits that require hypervisor intervention and bits that do
+not require direct hypervisor intervention because they only get interpreted
+when entering the guest or don't have any impact on the hypervisor's behavior.
+
+The following bits are safe to be set inside the guest:
+
+  MSR_EE
+  MSR_RI
+  MSR_CR
+  MSR_ME
+
+If any other bit changes in the MSR, please still use mtmsr(d).
+
+Patched instructions
+====================
+
+The "ld" and "std" instructions are transormed to "lwz" and "stw" instructions
+respectively on 32 bit systems with an added offset of 4 to accomodate for big
+endianness.
+
+The following is a list of mapping the Linux kernel performs when running as
+guest. Implementing any of those mappings is optional, as the instruction traps
+also act on the shared page. So calling privileged instructions still works as
+before.
+
+From			To
+====			==
+
+mfmsr	rX		ld	rX, magic_page->msr
+mfsprg	rX, 0		ld	rX, magic_page->sprg0
+mfsprg	rX, 1		ld	rX, magic_page->sprg1
+mfsprg	rX, 2		ld	rX, magic_page->sprg2
+mfsprg	rX, 3		ld	rX, magic_page->sprg3
+mfsrr0	rX		ld	rX, magic_page->srr0
+mfsrr1	rX		ld	rX, magic_page->srr1
+mfdar	rX		ld	rX, magic_page->dar
+mfdsisr	rX		lwz	rX, magic_page->dsisr
+
+mtmsr	rX		std	rX, magic_page->msr
+mtsprg	0, rX		std	rX, magic_page->sprg0
+mtsprg	1, rX		std	rX, magic_page->sprg1
+mtsprg	2, rX		std	rX, magic_page->sprg2
+mtsprg	3, rX		std	rX, magic_page->sprg3
+mtsrr0	rX		std	rX, magic_page->srr0
+mtsrr1	rX		std	rX, magic_page->srr1
+mtdar	rX		std	rX, magic_page->dar
+mtdsisr	rX		stw	rX, magic_page->dsisr
+
+tlbsync			nop
+
+mtmsrd	rX, 0		b	<special mtmsr section>
+mtmsr	rX		b	<special mtmsr section>
+
+mtmsrd	rX, 1		b	<special mtmsrd section>
+
+[Book3S only]
+mtsrin	rX, rY		b	<special mtsrin section>
+
+[BookE only]
+wrteei	[0|1]		b	<special wrteei section>
+
+
+Some instructions require more logic to determine what's going on than a load
+or store instruction can deliver. To enable patching of those, we keep some
+RAM around where we can live translate instructions to. What happens is the
+following:
+
+	1) copy emulation code to memory
+	2) patch that code to fit the emulated instruction
+	3) patch that code to return to the original pc + 4
+	4) patch the original instruction to branch to the new code
+
+That way we can inject an arbitrary amount of code as replacement for a single
+instruction. This allows us to check for pending interrupts when setting EE=1
+for example.

+ 612 - 0
Documentation/kvm/timekeeping.txt

@@ -0,0 +1,612 @@
+
+	Timekeeping Virtualization for X86-Based Architectures
+
+	Zachary Amsden <zamsden@redhat.com>
+	Copyright (c) 2010, Red Hat.  All rights reserved.
+
+1) Overview
+2) Timing Devices
+3) TSC Hardware
+4) Virtualization Problems
+
+=========================================================================
+
+1) Overview
+
+One of the most complicated parts of the X86 platform, and specifically,
+the virtualization of this platform is the plethora of timing devices available
+and the complexity of emulating those devices.  In addition, virtualization of
+time introduces a new set of challenges because it introduces a multiplexed
+division of time beyond the control of the guest CPU.
+
+First, we will describe the various timekeeping hardware available, then
+present some of the problems which arise and solutions available, giving
+specific recommendations for certain classes of KVM guests.
+
+The purpose of this document is to collect data and information relevant to
+timekeeping which may be difficult to find elsewhere, specifically,
+information relevant to KVM and hardware-based virtualization.
+
+=========================================================================
+
+2) Timing Devices
+
+First we discuss the basic hardware devices available.  TSC and the related
+KVM clock are special enough to warrant a full exposition and are described in
+the following section.
+
+2.1) i8254 - PIT
+
+One of the first timer devices available is the programmable interrupt timer,
+or PIT.  The PIT has a fixed frequency 1.193182 MHz base clock and three
+channels which can be programmed to deliver periodic or one-shot interrupts.
+These three channels can be configured in different modes and have individual
+counters.  Channel 1 and 2 were not available for general use in the original
+IBM PC, and historically were connected to control RAM refresh and the PC
+speaker.  Now the PIT is typically integrated as part of an emulated chipset
+and a separate physical PIT is not used.
+
+The PIT uses I/O ports 0x40 - 0x43.  Access to the 16-bit counters is done
+using single or multiple byte access to the I/O ports.  There are 6 modes
+available, but not all modes are available to all timers, as only timer 2
+has a connected gate input, required for modes 1 and 5.  The gate line is
+controlled by port 61h, bit 0, as illustrated in the following diagram.
+
+ --------------             ----------------
+|              |           |                |
+|  1.1932 MHz  |---------->| CLOCK      OUT | ---------> IRQ 0
+|    Clock     |   |       |                |
+ --------------    |    +->| GATE  TIMER 0  |
+                   |        ----------------
+                   |
+                   |        ----------------
+                   |       |                |
+                   |------>| CLOCK      OUT | ---------> 66.3 KHZ DRAM
+                   |       |                |            (aka /dev/null)
+                   |    +->| GATE  TIMER 1  |
+                   |        ----------------
+                   |
+                   |        ----------------
+                   |       |                |
+                   |------>| CLOCK      OUT | ---------> Port 61h, bit 5
+                           |                |      |
+Port 61h, bit 0 ---------->| GATE  TIMER 2  |       \_.----   ____
+                            ----------------         _|    )--|LPF|---Speaker
+                                                    / *----   \___/
+Port 61h, bit 1 -----------------------------------/
+
+The timer modes are now described.
+
+Mode 0: Single Timeout.   This is a one-shot software timeout that counts down
+ when the gate is high (always true for timers 0 and 1).  When the count
+ reaches zero, the output goes high.
+
+Mode 1: Triggered One-shot.  The output is intially set high.  When the gate
+ line is set high, a countdown is initiated (which does not stop if the gate is
+ lowered), during which the output is set low.  When the count reaches zero,
+ the output goes high.
+
+Mode 2: Rate Generator.  The output is initially set high.  When the countdown
+ reaches 1, the output goes low for one count and then returns high.  The value
+ is reloaded and the countdown automatically resumes.  If the gate line goes
+ low, the count is halted.  If the output is low when the gate is lowered, the
+ output automatically goes high (this only affects timer 2).
+
+Mode 3: Square Wave.   This generates a high / low square wave.  The count
+ determines the length of the pulse, which alternates between high and low
+ when zero is reached.  The count only proceeds when gate is high and is
+ automatically reloaded on reaching zero.  The count is decremented twice at
+ each clock to generate a full high / low cycle at the full periodic rate.
+ If the count is even, the clock remains high for N/2 counts and low for N/2
+ counts; if the clock is odd, the clock is high for (N+1)/2 counts and low
+ for (N-1)/2 counts.  Only even values are latched by the counter, so odd
+ values are not observed when reading.  This is the intended mode for timer 2,
+ which generates sine-like tones by low-pass filtering the square wave output.
+
+Mode 4: Software Strobe.  After programming this mode and loading the counter,
+ the output remains high until the counter reaches zero.  Then the output
+ goes low for 1 clock cycle and returns high.  The counter is not reloaded.
+ Counting only occurs when gate is high.
+
+Mode 5: Hardware Strobe.  After programming and loading the counter, the
+ output remains high.  When the gate is raised, a countdown is initiated
+ (which does not stop if the gate is lowered).  When the counter reaches zero,
+ the output goes low for 1 clock cycle and then returns high.  The counter is
+ not reloaded.
+
+In addition to normal binary counting, the PIT supports BCD counting.  The
+command port, 0x43 is used to set the counter and mode for each of the three
+timers.
+
+PIT commands, issued to port 0x43, using the following bit encoding:
+
+Bit 7-4: Command (See table below)
+Bit 3-1: Mode (000 = Mode 0, 101 = Mode 5, 11X = undefined)
+Bit 0  : Binary (0) / BCD (1)
+
+Command table:
+
+0000 - Latch Timer 0 count for port 0x40
+	sample and hold the count to be read in port 0x40;
+	additional commands ignored until counter is read;
+	mode bits ignored.
+
+0001 - Set Timer 0 LSB mode for port 0x40
+	set timer to read LSB only and force MSB to zero;
+	mode bits set timer mode
+
+0010 - Set Timer 0 MSB mode for port 0x40
+	set timer to read MSB only and force LSB to zero;
+	mode bits set timer mode
+
+0011 - Set Timer 0 16-bit mode for port 0x40
+	set timer to read / write LSB first, then MSB;
+	mode bits set timer mode
+
+0100 - Latch Timer 1 count for port 0x41 - as described above
+0101 - Set Timer 1 LSB mode for port 0x41 - as described above
+0110 - Set Timer 1 MSB mode for port 0x41 - as described above
+0111 - Set Timer 1 16-bit mode for port 0x41 - as described above
+
+1000 - Latch Timer 2 count for port 0x42 - as described above
+1001 - Set Timer 2 LSB mode for port 0x42 - as described above
+1010 - Set Timer 2 MSB mode for port 0x42 - as described above
+1011 - Set Timer 2 16-bit mode for port 0x42 as described above
+
+1101 - General counter latch
+	Latch combination of counters into corresponding ports
+	Bit 3 = Counter 2
+	Bit 2 = Counter 1
+	Bit 1 = Counter 0
+	Bit 0 = Unused
+
+1110 - Latch timer status
+	Latch combination of counter mode into corresponding ports
+	Bit 3 = Counter 2
+	Bit 2 = Counter 1
+	Bit 1 = Counter 0
+
+	The output of ports 0x40-0x42 following this command will be:
+
+	Bit 7 = Output pin
+	Bit 6 = Count loaded (0 if timer has expired)
+	Bit 5-4 = Read / Write mode
+	    01 = MSB only
+	    10 = LSB only
+	    11 = LSB / MSB (16-bit)
+	Bit 3-1 = Mode
+	Bit 0 = Binary (0) / BCD mode (1)
+
+2.2) RTC
+
+The second device which was available in the original PC was the MC146818 real
+time clock.  The original device is now obsolete, and usually emulated by the
+system chipset, sometimes by an HPET and some frankenstein IRQ routing.
+
+The RTC is accessed through CMOS variables, which uses an index register to
+control which bytes are read.  Since there is only one index register, read
+of the CMOS and read of the RTC require lock protection (in addition, it is
+dangerous to allow userspace utilities such as hwclock to have direct RTC
+access, as they could corrupt kernel reads and writes of CMOS memory).
+
+The RTC generates an interrupt which is usually routed to IRQ 8.  The interrupt
+can function as a periodic timer, an additional once a day alarm, and can issue
+interrupts after an update of the CMOS registers by the MC146818 is complete.
+The type of interrupt is signalled in the RTC status registers.
+
+The RTC will update the current time fields by battery power even while the
+system is off.  The current time fields should not be read while an update is
+in progress, as indicated in the status register.
+
+The clock uses a 32.768kHz crystal, so bits 6-4 of register A should be
+programmed to a 32kHz divider if the RTC is to count seconds.
+
+This is the RAM map originally used for the RTC/CMOS:
+
+Location    Size    Description
+------------------------------------------
+00h         byte    Current second (BCD)
+01h         byte    Seconds alarm (BCD)
+02h         byte    Current minute (BCD)
+03h         byte    Minutes alarm (BCD)
+04h         byte    Current hour (BCD)
+05h         byte    Hours alarm (BCD)
+06h         byte    Current day of week (BCD)
+07h         byte    Current day of month (BCD)
+08h         byte    Current month (BCD)
+09h         byte    Current year (BCD)
+0Ah         byte    Register A
+                       bit 7   = Update in progress
+                       bit 6-4 = Divider for clock
+                                  000 = 4.194 MHz
+                                  001 = 1.049 MHz
+                                  010 = 32 kHz
+                                  10X = test modes
+                                  110 = reset / disable
+                                  111 = reset / disable
+                       bit 3-0 = Rate selection for periodic interrupt
+                                  000 = periodic timer disabled
+                                  001 = 3.90625 uS
+                                  010 = 7.8125 uS
+                                  011 = .122070 mS
+                                  100 = .244141 mS
+                                     ...
+                                 1101 = 125 mS
+                                 1110 = 250 mS
+                                 1111 = 500 mS
+0Bh         byte    Register B
+                       bit 7   = Run (0) / Halt (1)
+                       bit 6   = Periodic interrupt enable
+                       bit 5   = Alarm interrupt enable
+                       bit 4   = Update-ended interrupt enable
+                       bit 3   = Square wave interrupt enable
+                       bit 2   = BCD calendar (0) / Binary (1)
+                       bit 1   = 12-hour mode (0) / 24-hour mode (1)
+                       bit 0   = 0 (DST off) / 1 (DST enabled)
+OCh         byte    Register C (read only)
+                       bit 7   = interrupt request flag (IRQF)
+                       bit 6   = periodic interrupt flag (PF)
+                       bit 5   = alarm interrupt flag (AF)
+                       bit 4   = update interrupt flag (UF)
+                       bit 3-0 = reserved
+ODh         byte    Register D (read only)
+                       bit 7   = RTC has power
+                       bit 6-0 = reserved
+32h         byte    Current century BCD (*)
+  (*) location vendor specific and now determined from ACPI global tables
+
+2.3) APIC
+
+On Pentium and later processors, an on-board timer is available to each CPU
+as part of the Advanced Programmable Interrupt Controller.  The APIC is
+accessed through memory-mapped registers and provides interrupt service to each
+CPU, used for IPIs and local timer interrupts.
+
+Although in theory the APIC is a safe and stable source for local interrupts,
+in practice, many bugs and glitches have occurred due to the special nature of
+the APIC CPU-local memory-mapped hardware.  Beware that CPU errata may affect
+the use of the APIC and that workarounds may be required.  In addition, some of
+these workarounds pose unique constraints for virtualization - requiring either
+extra overhead incurred from extra reads of memory-mapped I/O or additional
+functionality that may be more computationally expensive to implement.
+
+Since the APIC is documented quite well in the Intel and AMD manuals, we will
+avoid repetition of the detail here.  It should be pointed out that the APIC
+timer is programmed through the LVT (local vector timer) register, is capable
+of one-shot or periodic operation, and is based on the bus clock divided down
+by the programmable divider register.
+
+2.4) HPET
+
+HPET is quite complex, and was originally intended to replace the PIT / RTC
+support of the X86 PC.  It remains to be seen whether that will be the case, as
+the de facto standard of PC hardware is to emulate these older devices.  Some
+systems designated as legacy free may support only the HPET as a hardware timer
+device.
+
+The HPET spec is rather loose and vague, requiring at least 3 hardware timers,
+but allowing implementation freedom to support many more.  It also imposes no
+fixed rate on the timer frequency, but does impose some extremal values on
+frequency, error and slew.
+
+In general, the HPET is recommended as a high precision (compared to PIT /RTC)
+time source which is independent of local variation (as there is only one HPET
+in any given system).  The HPET is also memory-mapped, and its presence is
+indicated through ACPI tables by the BIOS.
+
+Detailed specification of the HPET is beyond the current scope of this
+document, as it is also very well documented elsewhere.
+
+2.5) Offboard Timers
+
+Several cards, both proprietary (watchdog boards) and commonplace (e1000) have
+timing chips built into the cards which may have registers which are accessible
+to kernel or user drivers.  To the author's knowledge, using these to generate
+a clocksource for a Linux or other kernel has not yet been attempted and is in
+general frowned upon as not playing by the agreed rules of the game.  Such a
+timer device would require additional support to be virtualized properly and is
+not considered important at this time as no known operating system does this.
+
+=========================================================================
+
+3) TSC Hardware
+
+The TSC or time stamp counter is relatively simple in theory; it counts
+instruction cycles issued by the processor, which can be used as a measure of
+time.  In practice, due to a number of problems, it is the most complicated
+timekeeping device to use.
+
+The TSC is represented internally as a 64-bit MSR which can be read with the
+RDMSR, RDTSC, or RDTSCP (when available) instructions.  In the past, hardware
+limitations made it possible to write the TSC, but generally on old hardware it
+was only possible to write the low 32-bits of the 64-bit counter, and the upper
+32-bits of the counter were cleared.  Now, however, on Intel processors family
+0Fh, for models 3, 4 and 6, and family 06h, models e and f, this restriction
+has been lifted and all 64-bits are writable.  On AMD systems, the ability to
+write the TSC MSR is not an architectural guarantee.
+
+The TSC is accessible from CPL-0 and conditionally, for CPL > 0 software by
+means of the CR4.TSD bit, which when enabled, disables CPL > 0 TSC access.
+
+Some vendors have implemented an additional instruction, RDTSCP, which returns
+atomically not just the TSC, but an indicator which corresponds to the
+processor number.  This can be used to index into an array of TSC variables to
+determine offset information in SMP systems where TSCs are not synchronized.
+The presence of this instruction must be determined by consulting CPUID feature
+bits.
+
+Both VMX and SVM provide extension fields in the virtualization hardware which
+allows the guest visible TSC to be offset by a constant.  Newer implementations
+promise to allow the TSC to additionally be scaled, but this hardware is not
+yet widely available.
+
+3.1) TSC synchronization
+
+The TSC is a CPU-local clock in most implementations.  This means, on SMP
+platforms, the TSCs of different CPUs may start at different times depending
+on when the CPUs are powered on.  Generally, CPUs on the same die will share
+the same clock, however, this is not always the case.
+
+The BIOS may attempt to resynchronize the TSCs during the poweron process and
+the operating system or other system software may attempt to do this as well.
+Several hardware limitations make the problem worse - if it is not possible to
+write the full 64-bits of the TSC, it may be impossible to match the TSC in
+newly arriving CPUs to that of the rest of the system, resulting in
+unsynchronized TSCs.  This may be done by BIOS or system software, but in
+practice, getting a perfectly synchronized TSC will not be possible unless all
+values are read from the same clock, which generally only is possible on single
+socket systems or those with special hardware support.
+
+3.2) TSC and CPU hotplug
+
+As touched on already, CPUs which arrive later than the boot time of the system
+may not have a TSC value that is synchronized with the rest of the system.
+Either system software, BIOS, or SMM code may actually try to establish the TSC
+to a value matching the rest of the system, but a perfect match is usually not
+a guarantee.  This can have the effect of bringing a system from a state where
+TSC is synchronized back to a state where TSC synchronization flaws, however
+small, may be exposed to the OS and any virtualization environment.
+
+3.3) TSC and multi-socket / NUMA
+
+Multi-socket systems, especially large multi-socket systems are likely to have
+individual clocksources rather than a single, universally distributed clock.
+Since these clocks are driven by different crystals, they will not have
+perfectly matched frequency, and temperature and electrical variations will
+cause the CPU clocks, and thus the TSCs to drift over time.  Depending on the
+exact clock and bus design, the drift may or may not be fixed in absolute
+error, and may accumulate over time.
+
+In addition, very large systems may deliberately slew the clocks of individual
+cores.  This technique, known as spread-spectrum clocking, reduces EMI at the
+clock frequency and harmonics of it, which may be required to pass FCC
+standards for telecommunications and computer equipment.
+
+It is recommended not to trust the TSCs to remain synchronized on NUMA or
+multiple socket systems for these reasons.
+
+3.4) TSC and C-states
+
+C-states, or idling states of the processor, especially C1E and deeper sleep
+states may be problematic for TSC as well.  The TSC may stop advancing in such
+a state, resulting in a TSC which is behind that of other CPUs when execution
+is resumed.  Such CPUs must be detected and flagged by the operating system
+based on CPU and chipset identifications.
+
+The TSC in such a case may be corrected by catching it up to a known external
+clocksource.
+
+3.5) TSC frequency change / P-states
+
+To make things slightly more interesting, some CPUs may change frequency.  They
+may or may not run the TSC at the same rate, and because the frequency change
+may be staggered or slewed, at some points in time, the TSC rate may not be
+known other than falling within a range of values.  In this case, the TSC will
+not be a stable time source, and must be calibrated against a known, stable,
+external clock to be a usable source of time.
+
+Whether the TSC runs at a constant rate or scales with the P-state is model
+dependent and must be determined by inspecting CPUID, chipset or vendor
+specific MSR fields.
+
+In addition, some vendors have known bugs where the P-state is actually
+compensated for properly during normal operation, but when the processor is
+inactive, the P-state may be raised temporarily to service cache misses from
+other processors.  In such cases, the TSC on halted CPUs could advance faster
+than that of non-halted processors.  AMD Turion processors are known to have
+this problem.
+
+3.6) TSC and STPCLK / T-states
+
+External signals given to the processor may also have the effect of stopping
+the TSC.  This is typically done for thermal emergency power control to prevent
+an overheating condition, and typically, there is no way to detect that this
+condition has happened.
+
+3.7) TSC virtualization - VMX
+
+VMX provides conditional trapping of RDTSC, RDMSR, WRMSR and RDTSCP
+instructions, which is enough for full virtualization of TSC in any manner.  In
+addition, VMX allows passing through the host TSC plus an additional TSC_OFFSET
+field specified in the VMCS.  Special instructions must be used to read and
+write the VMCS field.
+
+3.8) TSC virtualization - SVM
+
+SVM provides conditional trapping of RDTSC, RDMSR, WRMSR and RDTSCP
+instructions, which is enough for full virtualization of TSC in any manner.  In
+addition, SVM allows passing through the host TSC plus an additional offset
+field specified in the SVM control block.
+
+3.9) TSC feature bits in Linux
+
+In summary, there is no way to guarantee the TSC remains in perfect
+synchronization unless it is explicitly guaranteed by the architecture.  Even
+if so, the TSCs in multi-sockets or NUMA systems may still run independently
+despite being locally consistent.
+
+The following feature bits are used by Linux to signal various TSC attributes,
+but they can only be taken to be meaningful for UP or single node systems.
+
+X86_FEATURE_TSC 		: The TSC is available in hardware
+X86_FEATURE_RDTSCP		: The RDTSCP instruction is available
+X86_FEATURE_CONSTANT_TSC 	: The TSC rate is unchanged with P-states
+X86_FEATURE_NONSTOP_TSC		: The TSC does not stop in C-states
+X86_FEATURE_TSC_RELIABLE	: TSC sync checks are skipped (VMware)
+
+4) Virtualization Problems
+
+Timekeeping is especially problematic for virtualization because a number of
+challenges arise.  The most obvious problem is that time is now shared between
+the host and, potentially, a number of virtual machines.  Thus the virtual
+operating system does not run with 100% usage of the CPU, despite the fact that
+it may very well make that assumption.  It may expect it to remain true to very
+exacting bounds when interrupt sources are disabled, but in reality only its
+virtual interrupt sources are disabled, and the machine may still be preempted
+at any time.  This causes problems as the passage of real time, the injection
+of machine interrupts and the associated clock sources are no longer completely
+synchronized with real time.
+
+This same problem can occur on native harware to a degree, as SMM mode may
+steal cycles from the naturally on X86 systems when SMM mode is used by the
+BIOS, but not in such an extreme fashion.  However, the fact that SMM mode may
+cause similar problems to virtualization makes it a good justification for
+solving many of these problems on bare metal.
+
+4.1) Interrupt clocking
+
+One of the most immediate problems that occurs with legacy operating systems
+is that the system timekeeping routines are often designed to keep track of
+time by counting periodic interrupts.  These interrupts may come from the PIT
+or the RTC, but the problem is the same: the host virtualization engine may not
+be able to deliver the proper number of interrupts per second, and so guest
+time may fall behind.  This is especially problematic if a high interrupt rate
+is selected, such as 1000 HZ, which is unfortunately the default for many Linux
+guests.
+
+There are three approaches to solving this problem; first, it may be possible
+to simply ignore it.  Guests which have a separate time source for tracking
+'wall clock' or 'real time' may not need any adjustment of their interrupts to
+maintain proper time.  If this is not sufficient, it may be necessary to inject
+additional interrupts into the guest in order to increase the effective
+interrupt rate.  This approach leads to complications in extreme conditions,
+where host load or guest lag is too much to compensate for, and thus another
+solution to the problem has risen: the guest may need to become aware of lost
+ticks and compensate for them internally.  Although promising in theory, the
+implementation of this policy in Linux has been extremely error prone, and a
+number of buggy variants of lost tick compensation are distributed across
+commonly used Linux systems.
+
+Windows uses periodic RTC clocking as a means of keeping time internally, and
+thus requires interrupt slewing to keep proper time.  It does use a low enough
+rate (ed: is it 18.2 Hz?) however that it has not yet been a problem in
+practice.
+
+4.2) TSC sampling and serialization
+
+As the highest precision time source available, the cycle counter of the CPU
+has aroused much interest from developers.  As explained above, this timer has
+many problems unique to its nature as a local, potentially unstable and
+potentially unsynchronized source.  One issue which is not unique to the TSC,
+but is highlighted because of its very precise nature is sampling delay.  By
+definition, the counter, once read is already old.  However, it is also
+possible for the counter to be read ahead of the actual use of the result.
+This is a consequence of the superscalar execution of the instruction stream,
+which may execute instructions out of order.  Such execution is called
+non-serialized.  Forcing serialized execution is necessary for precise
+measurement with the TSC, and requires a serializing instruction, such as CPUID
+or an MSR read.
+
+Since CPUID may actually be virtualized by a trap and emulate mechanism, this
+serialization can pose a performance issue for hardware virtualization.  An
+accurate time stamp counter reading may therefore not always be available, and
+it may be necessary for an implementation to guard against "backwards" reads of
+the TSC as seen from other CPUs, even in an otherwise perfectly synchronized
+system.
+
+4.3) Timespec aliasing
+
+Additionally, this lack of serialization from the TSC poses another challenge
+when using results of the TSC when measured against another time source.  As
+the TSC is much higher precision, many possible values of the TSC may be read
+while another clock is still expressing the same value.
+
+That is, you may read (T,T+10) while external clock C maintains the same value.
+Due to non-serialized reads, you may actually end up with a range which
+fluctuates - from (T-1.. T+10).  Thus, any time calculated from a TSC, but
+calibrated against an external value may have a range of valid values.
+Re-calibrating this computation may actually cause time, as computed after the
+calibration, to go backwards, compared with time computed before the
+calibration.
+
+This problem is particularly pronounced with an internal time source in Linux,
+the kernel time, which is expressed in the theoretically high resolution
+timespec - but which advances in much larger granularity intervals, sometimes
+at the rate of jiffies, and possibly in catchup modes, at a much larger step.
+
+This aliasing requires care in the computation and recalibration of kvmclock
+and any other values derived from TSC computation (such as TSC virtualization
+itself).
+
+4.4) Migration
+
+Migration of a virtual machine raises problems for timekeeping in two ways.
+First, the migration itself may take time, during which interrupts cannot be
+delivered, and after which, the guest time may need to be caught up.  NTP may
+be able to help to some degree here, as the clock correction required is
+typically small enough to fall in the NTP-correctable window.
+
+An additional concern is that timers based off the TSC (or HPET, if the raw bus
+clock is exposed) may now be running at different rates, requiring compensation
+in some way in the hypervisor by virtualizing these timers.  In addition,
+migrating to a faster machine may preclude the use of a passthrough TSC, as a
+faster clock cannot be made visible to a guest without the potential of time
+advancing faster than usual.  A slower clock is less of a problem, as it can
+always be caught up to the original rate.  KVM clock avoids these problems by
+simply storing multipliers and offsets against the TSC for the guest to convert
+back into nanosecond resolution values.
+
+4.5) Scheduling
+
+Since scheduling may be based on precise timing and firing of interrupts, the
+scheduling algorithms of an operating system may be adversely affected by
+virtualization.  In theory, the effect is random and should be universally
+distributed, but in contrived as well as real scenarios (guest device access,
+causes of virtualization exits, possible context switch), this may not always
+be the case.  The effect of this has not been well studied.
+
+In an attempt to work around this, several implementations have provided a
+paravirtualized scheduler clock, which reveals the true amount of CPU time for
+which a virtual machine has been running.
+
+4.6) Watchdogs
+
+Watchdog timers, such as the lock detector in Linux may fire accidentally when
+running under hardware virtualization due to timer interrupts being delayed or
+misinterpretation of the passage of real time.  Usually, these warnings are
+spurious and can be ignored, but in some circumstances it may be necessary to
+disable such detection.
+
+4.7) Delays and precision timing
+
+Precise timing and delays may not be possible in a virtualized system.  This
+can happen if the system is controlling physical hardware, or issues delays to
+compensate for slower I/O to and from devices.  The first issue is not solvable
+in general for a virtualized system; hardware control software can't be
+adequately virtualized without a full real-time operating system, which would
+require an RT aware virtualization platform.
+
+The second issue may cause performance problems, but this is unlikely to be a
+significant issue.  In many cases these delays may be eliminated through
+configuration or paravirtualization.
+
+4.8) Covert channels and leaks
+
+In addition to the above problems, time information will inevitably leak to the
+guest about the host in anything but a perfect implementation of virtualized
+time.  This may allow the guest to infer the presence of a hypervisor (as in a
+red-pill type detection), and it may allow information to leak between guests
+by using CPU utilization itself as a signalling channel.  Preventing such
+problems would require completely isolated virtual time which may not track
+real time any longer.  This may be useful in certain security or QA contexts,
+but in general isn't recommended for real-world deployment scenarios.

+ 1 - 0
arch/ia64/kvm/lapic.h

@@ -25,5 +25,6 @@ int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2);
 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq);
 #define kvm_apic_present(x) (true)
+#define kvm_lapic_enabled(x) (true)
 
 #endif

+ 1 - 0
arch/powerpc/include/asm/kvm.h

@@ -86,5 +86,6 @@ struct kvm_guest_debug_arch {
 
 #define KVM_INTERRUPT_SET	-1U
 #define KVM_INTERRUPT_UNSET	-2U
+#define KVM_INTERRUPT_SET_LEVEL	-3U
 
 #endif /* __LINUX_KVM_POWERPC_H */

+ 3 - 1
arch/powerpc/include/asm/kvm_asm.h

@@ -58,6 +58,7 @@
 #define BOOK3S_INTERRUPT_INST_STORAGE	0x400
 #define BOOK3S_INTERRUPT_INST_SEGMENT	0x480
 #define BOOK3S_INTERRUPT_EXTERNAL	0x500
+#define BOOK3S_INTERRUPT_EXTERNAL_LEVEL	0x501
 #define BOOK3S_INTERRUPT_ALIGNMENT	0x600
 #define BOOK3S_INTERRUPT_PROGRAM	0x700
 #define BOOK3S_INTERRUPT_FP_UNAVAIL	0x800
@@ -84,7 +85,8 @@
 #define BOOK3S_IRQPRIO_EXTERNAL			13
 #define BOOK3S_IRQPRIO_DECREMENTER		14
 #define BOOK3S_IRQPRIO_PERFORMANCE_MONITOR	15
-#define BOOK3S_IRQPRIO_MAX			16
+#define BOOK3S_IRQPRIO_EXTERNAL_LEVEL		16
+#define BOOK3S_IRQPRIO_MAX			17
 
 #define BOOK3S_HFLAG_DCBZ32			0x1
 #define BOOK3S_HFLAG_SLB			0x2

+ 16 - 15
arch/powerpc/include/asm/kvm_book3s.h

@@ -38,15 +38,6 @@ struct kvmppc_slb {
 	bool class	: 1;
 };
 
-struct kvmppc_sr {
-	u32 raw;
-	u32 vsid;
-	bool Ks		: 1;
-	bool Kp		: 1;
-	bool nx		: 1;
-	bool valid	: 1;
-};
-
 struct kvmppc_bat {
 	u64 raw;
 	u32 bepi;
@@ -69,6 +60,13 @@ struct kvmppc_sid_map {
 #define SID_MAP_NUM     (1 << SID_MAP_BITS)
 #define SID_MAP_MASK    (SID_MAP_NUM - 1)
 
+#ifdef CONFIG_PPC_BOOK3S_64
+#define SID_CONTEXTS	1
+#else
+#define SID_CONTEXTS	128
+#define VSID_POOL_SIZE	(SID_CONTEXTS * 16)
+#endif
+
 struct kvmppc_vcpu_book3s {
 	struct kvm_vcpu vcpu;
 	struct kvmppc_book3s_shadow_vcpu *shadow_vcpu;
@@ -79,20 +77,22 @@ struct kvmppc_vcpu_book3s {
 		u64 vsid;
 	} slb_shadow[64];
 	u8 slb_shadow_max;
-	struct kvmppc_sr sr[16];
 	struct kvmppc_bat ibat[8];
 	struct kvmppc_bat dbat[8];
 	u64 hid[6];
 	u64 gqr[8];
 	int slb_nr;
-	u32 dsisr;
 	u64 sdr1;
 	u64 hior;
 	u64 msr_mask;
-	u64 vsid_first;
 	u64 vsid_next;
+#ifdef CONFIG_PPC_BOOK3S_32
+	u32 vsid_pool[VSID_POOL_SIZE];
+#else
+	u64 vsid_first;
 	u64 vsid_max;
-	int context_id;
+#endif
+	int context_id[SID_CONTEXTS];
 	ulong prog_flags; /* flags to inject when giving a 700 trap */
 };
 
@@ -131,9 +131,10 @@ extern void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat,
 			   bool upper, u32 val);
 extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr);
 extern int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu);
+extern pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
 
-extern u32 kvmppc_trampoline_lowmem;
-extern u32 kvmppc_trampoline_enter;
+extern ulong kvmppc_trampoline_lowmem;
+extern ulong kvmppc_trampoline_enter;
 extern void kvmppc_rmcall(ulong srr0, ulong srr1);
 extern void kvmppc_load_up_fpu(void);
 extern void kvmppc_load_up_altivec(void);

+ 13 - 8
arch/powerpc/include/asm/kvm_host.h

@@ -25,6 +25,7 @@
 #include <linux/interrupt.h>
 #include <linux/types.h>
 #include <linux/kvm_types.h>
+#include <linux/kvm_para.h>
 #include <asm/kvm_asm.h>
 
 #define KVM_MAX_VCPUS 1
@@ -41,12 +42,17 @@
 
 #define HPTEG_CACHE_NUM			(1 << 15)
 #define HPTEG_HASH_BITS_PTE		13
+#define HPTEG_HASH_BITS_PTE_LONG	12
 #define HPTEG_HASH_BITS_VPTE		13
 #define HPTEG_HASH_BITS_VPTE_LONG	5
 #define HPTEG_HASH_NUM_PTE		(1 << HPTEG_HASH_BITS_PTE)
+#define HPTEG_HASH_NUM_PTE_LONG		(1 << HPTEG_HASH_BITS_PTE_LONG)
 #define HPTEG_HASH_NUM_VPTE		(1 << HPTEG_HASH_BITS_VPTE)
 #define HPTEG_HASH_NUM_VPTE_LONG	(1 << HPTEG_HASH_BITS_VPTE_LONG)
 
+/* Physical Address Mask - allowed range of real mode RAM access */
+#define KVM_PAM			0x0fffffffffffffffULL
+
 struct kvm;
 struct kvm_run;
 struct kvm_vcpu;
@@ -159,8 +165,10 @@ struct kvmppc_mmu {
 
 struct hpte_cache {
 	struct hlist_node list_pte;
+	struct hlist_node list_pte_long;
 	struct hlist_node list_vpte;
 	struct hlist_node list_vpte_long;
+	struct rcu_head rcu_head;
 	u64 host_va;
 	u64 pfn;
 	ulong slot;
@@ -210,28 +218,20 @@ struct kvm_vcpu_arch {
 	u32 cr;
 #endif
 
-	ulong msr;
 #ifdef CONFIG_PPC_BOOK3S
 	ulong shadow_msr;
 	ulong hflags;
 	ulong guest_owned_ext;
 #endif
 	u32 mmucr;
-	ulong sprg0;
-	ulong sprg1;
-	ulong sprg2;
-	ulong sprg3;
 	ulong sprg4;
 	ulong sprg5;
 	ulong sprg6;
 	ulong sprg7;
-	ulong srr0;
-	ulong srr1;
 	ulong csrr0;
 	ulong csrr1;
 	ulong dsrr0;
 	ulong dsrr1;
-	ulong dear;
 	ulong esr;
 	u32 dec;
 	u32 decar;
@@ -290,12 +290,17 @@ struct kvm_vcpu_arch {
 	struct tasklet_struct tasklet;
 	u64 dec_jiffies;
 	unsigned long pending_exceptions;
+	struct kvm_vcpu_arch_shared *shared;
+	unsigned long magic_page_pa; /* phys addr to map the magic page to */
+	unsigned long magic_page_ea; /* effect. addr to map the magic page to */
 
 #ifdef CONFIG_PPC_BOOK3S
 	struct hlist_head hpte_hash_pte[HPTEG_HASH_NUM_PTE];
+	struct hlist_head hpte_hash_pte_long[HPTEG_HASH_NUM_PTE_LONG];
 	struct hlist_head hpte_hash_vpte[HPTEG_HASH_NUM_VPTE];
 	struct hlist_head hpte_hash_vpte_long[HPTEG_HASH_NUM_VPTE_LONG];
 	int hpte_cache_count;
+	spinlock_t mmu_lock;
 #endif
 };
 

+ 138 - 1
arch/powerpc/include/asm/kvm_para.h

@@ -20,16 +20,153 @@
 #ifndef __POWERPC_KVM_PARA_H__
 #define __POWERPC_KVM_PARA_H__
 
+#include <linux/types.h>
+
+struct kvm_vcpu_arch_shared {
+	__u64 scratch1;
+	__u64 scratch2;
+	__u64 scratch3;
+	__u64 critical;		/* Guest may not get interrupts if == r1 */
+	__u64 sprg0;
+	__u64 sprg1;
+	__u64 sprg2;
+	__u64 sprg3;
+	__u64 srr0;
+	__u64 srr1;
+	__u64 dar;
+	__u64 msr;
+	__u32 dsisr;
+	__u32 int_pending;	/* Tells the guest if we have an interrupt */
+	__u32 sr[16];
+};
+
+#define KVM_SC_MAGIC_R0		0x4b564d21 /* "KVM!" */
+#define HC_VENDOR_KVM		(42 << 16)
+#define HC_EV_SUCCESS		0
+#define HC_EV_UNIMPLEMENTED	12
+
+#define KVM_FEATURE_MAGIC_PAGE	1
+
+#define KVM_MAGIC_FEAT_SR	(1 << 0)
+
 #ifdef __KERNEL__
 
+#ifdef CONFIG_KVM_GUEST
+
+#include <linux/of.h>
+
+static inline int kvm_para_available(void)
+{
+	struct device_node *hyper_node;
+
+	hyper_node = of_find_node_by_path("/hypervisor");
+	if (!hyper_node)
+		return 0;
+
+	if (!of_device_is_compatible(hyper_node, "linux,kvm"))
+		return 0;
+
+	return 1;
+}
+
+extern unsigned long kvm_hypercall(unsigned long *in,
+				   unsigned long *out,
+				   unsigned long nr);
+
+#else
+
 static inline int kvm_para_available(void)
 {
 	return 0;
 }
 
+static unsigned long kvm_hypercall(unsigned long *in,
+				   unsigned long *out,
+				   unsigned long nr)
+{
+	return HC_EV_UNIMPLEMENTED;
+}
+
+#endif
+
+static inline long kvm_hypercall0_1(unsigned int nr, unsigned long *r2)
+{
+	unsigned long in[8];
+	unsigned long out[8];
+	unsigned long r;
+
+	r = kvm_hypercall(in, out, nr | HC_VENDOR_KVM);
+	*r2 = out[0];
+
+	return r;
+}
+
+static inline long kvm_hypercall0(unsigned int nr)
+{
+	unsigned long in[8];
+	unsigned long out[8];
+
+	return kvm_hypercall(in, out, nr | HC_VENDOR_KVM);
+}
+
+static inline long kvm_hypercall1(unsigned int nr, unsigned long p1)
+{
+	unsigned long in[8];
+	unsigned long out[8];
+
+	in[0] = p1;
+	return kvm_hypercall(in, out, nr | HC_VENDOR_KVM);
+}
+
+static inline long kvm_hypercall2(unsigned int nr, unsigned long p1,
+				  unsigned long p2)
+{
+	unsigned long in[8];
+	unsigned long out[8];
+
+	in[0] = p1;
+	in[1] = p2;
+	return kvm_hypercall(in, out, nr | HC_VENDOR_KVM);
+}
+
+static inline long kvm_hypercall3(unsigned int nr, unsigned long p1,
+				  unsigned long p2, unsigned long p3)
+{
+	unsigned long in[8];
+	unsigned long out[8];
+
+	in[0] = p1;
+	in[1] = p2;
+	in[2] = p3;
+	return kvm_hypercall(in, out, nr | HC_VENDOR_KVM);
+}
+
+static inline long kvm_hypercall4(unsigned int nr, unsigned long p1,
+				  unsigned long p2, unsigned long p3,
+				  unsigned long p4)
+{
+	unsigned long in[8];
+	unsigned long out[8];
+
+	in[0] = p1;
+	in[1] = p2;
+	in[2] = p3;
+	in[3] = p4;
+	return kvm_hypercall(in, out, nr | HC_VENDOR_KVM);
+}
+
+
 static inline unsigned int kvm_arch_para_features(void)
 {
-	return 0;
+	unsigned long r;
+
+	if (!kvm_para_available())
+		return 0;
+
+	if(kvm_hypercall0_1(KVM_HC_FEATURES, &r))
+		return 0;
+
+	return r;
 }
 
 #endif /* __KERNEL__ */

+ 1 - 0
arch/powerpc/include/asm/kvm_ppc.h

@@ -107,6 +107,7 @@ extern int kvmppc_booke_init(void);
 extern void kvmppc_booke_exit(void);
 
 extern void kvmppc_core_destroy_mmu(struct kvm_vcpu *vcpu);
+extern int kvmppc_kvm_pv(struct kvm_vcpu *vcpu);
 
 /*
  * Cuts out inst bits with ordering according to spec.

+ 2 - 0
arch/powerpc/kernel/Makefile

@@ -129,6 +129,8 @@ ifneq ($(CONFIG_XMON)$(CONFIG_KEXEC),)
 obj-y				+= ppc_save_regs.o
 endif
 
+obj-$(CONFIG_KVM_GUEST)		+= kvm.o kvm_emul.o
+
 # Disable GCOV in odd or sensitive code
 GCOV_PROFILE_prom_init.o := n
 GCOV_PROFILE_ftrace.o := n

+ 21 - 4
arch/powerpc/kernel/asm-offsets.c

@@ -48,11 +48,11 @@
 #ifdef CONFIG_PPC_ISERIES
 #include <asm/iseries/alpaca.h>
 #endif
-#ifdef CONFIG_KVM
+#if defined(CONFIG_KVM) || defined(CONFIG_KVM_GUEST)
 #include <linux/kvm_host.h>
-#ifndef CONFIG_BOOKE
-#include <asm/kvm_book3s.h>
 #endif
+#if defined(CONFIG_KVM) && defined(CONFIG_PPC_BOOK3S)
+#include <asm/kvm_book3s.h>
 #endif
 
 #ifdef CONFIG_PPC32
@@ -396,12 +396,13 @@ int main(void)
 	DEFINE(VCPU_HOST_STACK, offsetof(struct kvm_vcpu, arch.host_stack));
 	DEFINE(VCPU_HOST_PID, offsetof(struct kvm_vcpu, arch.host_pid));
 	DEFINE(VCPU_GPRS, offsetof(struct kvm_vcpu, arch.gpr));
-	DEFINE(VCPU_MSR, offsetof(struct kvm_vcpu, arch.msr));
 	DEFINE(VCPU_SPRG4, offsetof(struct kvm_vcpu, arch.sprg4));
 	DEFINE(VCPU_SPRG5, offsetof(struct kvm_vcpu, arch.sprg5));
 	DEFINE(VCPU_SPRG6, offsetof(struct kvm_vcpu, arch.sprg6));
 	DEFINE(VCPU_SPRG7, offsetof(struct kvm_vcpu, arch.sprg7));
 	DEFINE(VCPU_SHADOW_PID, offsetof(struct kvm_vcpu, arch.shadow_pid));
+	DEFINE(VCPU_SHARED, offsetof(struct kvm_vcpu, arch.shared));
+	DEFINE(VCPU_SHARED_MSR, offsetof(struct kvm_vcpu_arch_shared, msr));
 
 	/* book3s */
 #ifdef CONFIG_PPC_BOOK3S
@@ -466,6 +467,22 @@ int main(void)
 	DEFINE(VCPU_FAULT_ESR, offsetof(struct kvm_vcpu, arch.fault_esr));
 #endif /* CONFIG_PPC_BOOK3S */
 #endif
+
+#ifdef CONFIG_KVM_GUEST
+	DEFINE(KVM_MAGIC_SCRATCH1, offsetof(struct kvm_vcpu_arch_shared,
+					    scratch1));
+	DEFINE(KVM_MAGIC_SCRATCH2, offsetof(struct kvm_vcpu_arch_shared,
+					    scratch2));
+	DEFINE(KVM_MAGIC_SCRATCH3, offsetof(struct kvm_vcpu_arch_shared,
+					    scratch3));
+	DEFINE(KVM_MAGIC_INT, offsetof(struct kvm_vcpu_arch_shared,
+				       int_pending));
+	DEFINE(KVM_MAGIC_MSR, offsetof(struct kvm_vcpu_arch_shared, msr));
+	DEFINE(KVM_MAGIC_CRITICAL, offsetof(struct kvm_vcpu_arch_shared,
+					    critical));
+	DEFINE(KVM_MAGIC_SR, offsetof(struct kvm_vcpu_arch_shared, sr));
+#endif
+
 #ifdef CONFIG_44x
 	DEFINE(PGD_T_LOG2, PGD_T_LOG2);
 	DEFINE(PTE_T_LOG2, PTE_T_LOG2);

+ 6 - 0
arch/powerpc/kernel/exceptions-64s.S

@@ -299,6 +299,12 @@ slb_miss_user_pseries:
 	b	.				/* prevent spec. execution */
 #endif /* __DISABLED__ */
 
+/* KVM's trampoline code needs to be close to the interrupt handlers */
+
+#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
+#include "../kvm/book3s_rmhandlers.S"
+#endif
+
 	.align	7
 	.globl	__end_interrupts
 __end_interrupts:

+ 0 - 6
arch/powerpc/kernel/head_64.S

@@ -166,12 +166,6 @@ exception_marker:
 #include "exceptions-64s.S"
 #endif
 
-/* KVM trampoline code needs to be close to the interrupt handlers */
-
-#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
-#include "../kvm/book3s_rmhandlers.S"
-#endif
-
 _GLOBAL(generic_secondary_thread_init)
 	mr	r24,r3
 

+ 596 - 0
arch/powerpc/kernel/kvm.c

@@ -0,0 +1,596 @@
+/*
+ * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ *     Alexander Graf <agraf@suse.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/init.h>
+#include <linux/kvm_para.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+
+#include <asm/reg.h>
+#include <asm/sections.h>
+#include <asm/cacheflush.h>
+#include <asm/disassemble.h>
+
+#define KVM_MAGIC_PAGE		(-4096L)
+#define magic_var(x) KVM_MAGIC_PAGE + offsetof(struct kvm_vcpu_arch_shared, x)
+
+#define KVM_INST_LWZ		0x80000000
+#define KVM_INST_STW		0x90000000
+#define KVM_INST_LD		0xe8000000
+#define KVM_INST_STD		0xf8000000
+#define KVM_INST_NOP		0x60000000
+#define KVM_INST_B		0x48000000
+#define KVM_INST_B_MASK		0x03ffffff
+#define KVM_INST_B_MAX		0x01ffffff
+
+#define KVM_MASK_RT		0x03e00000
+#define KVM_RT_30		0x03c00000
+#define KVM_MASK_RB		0x0000f800
+#define KVM_INST_MFMSR		0x7c0000a6
+#define KVM_INST_MFSPR_SPRG0	0x7c1042a6
+#define KVM_INST_MFSPR_SPRG1	0x7c1142a6
+#define KVM_INST_MFSPR_SPRG2	0x7c1242a6
+#define KVM_INST_MFSPR_SPRG3	0x7c1342a6
+#define KVM_INST_MFSPR_SRR0	0x7c1a02a6
+#define KVM_INST_MFSPR_SRR1	0x7c1b02a6
+#define KVM_INST_MFSPR_DAR	0x7c1302a6
+#define KVM_INST_MFSPR_DSISR	0x7c1202a6
+
+#define KVM_INST_MTSPR_SPRG0	0x7c1043a6
+#define KVM_INST_MTSPR_SPRG1	0x7c1143a6
+#define KVM_INST_MTSPR_SPRG2	0x7c1243a6
+#define KVM_INST_MTSPR_SPRG3	0x7c1343a6
+#define KVM_INST_MTSPR_SRR0	0x7c1a03a6
+#define KVM_INST_MTSPR_SRR1	0x7c1b03a6
+#define KVM_INST_MTSPR_DAR	0x7c1303a6
+#define KVM_INST_MTSPR_DSISR	0x7c1203a6
+
+#define KVM_INST_TLBSYNC	0x7c00046c
+#define KVM_INST_MTMSRD_L0	0x7c000164
+#define KVM_INST_MTMSRD_L1	0x7c010164
+#define KVM_INST_MTMSR		0x7c000124
+
+#define KVM_INST_WRTEEI_0	0x7c000146
+#define KVM_INST_WRTEEI_1	0x7c008146
+
+#define KVM_INST_MTSRIN		0x7c0001e4
+
+static bool kvm_patching_worked = true;
+static char kvm_tmp[1024 * 1024];
+static int kvm_tmp_index;
+
+static inline void kvm_patch_ins(u32 *inst, u32 new_inst)
+{
+	*inst = new_inst;
+	flush_icache_range((ulong)inst, (ulong)inst + 4);
+}
+
+static void kvm_patch_ins_ll(u32 *inst, long addr, u32 rt)
+{
+#ifdef CONFIG_64BIT
+	kvm_patch_ins(inst, KVM_INST_LD | rt | (addr & 0x0000fffc));
+#else
+	kvm_patch_ins(inst, KVM_INST_LWZ | rt | (addr & 0x0000fffc));
+#endif
+}
+
+static void kvm_patch_ins_ld(u32 *inst, long addr, u32 rt)
+{
+#ifdef CONFIG_64BIT
+	kvm_patch_ins(inst, KVM_INST_LD | rt | (addr & 0x0000fffc));
+#else
+	kvm_patch_ins(inst, KVM_INST_LWZ | rt | ((addr + 4) & 0x0000fffc));
+#endif
+}
+
+static void kvm_patch_ins_lwz(u32 *inst, long addr, u32 rt)
+{
+	kvm_patch_ins(inst, KVM_INST_LWZ | rt | (addr & 0x0000ffff));
+}
+
+static void kvm_patch_ins_std(u32 *inst, long addr, u32 rt)
+{
+#ifdef CONFIG_64BIT
+	kvm_patch_ins(inst, KVM_INST_STD | rt | (addr & 0x0000fffc));
+#else
+	kvm_patch_ins(inst, KVM_INST_STW | rt | ((addr + 4) & 0x0000fffc));
+#endif
+}
+
+static void kvm_patch_ins_stw(u32 *inst, long addr, u32 rt)
+{
+	kvm_patch_ins(inst, KVM_INST_STW | rt | (addr & 0x0000fffc));
+}
+
+static void kvm_patch_ins_nop(u32 *inst)
+{
+	kvm_patch_ins(inst, KVM_INST_NOP);
+}
+
+static void kvm_patch_ins_b(u32 *inst, int addr)
+{
+#ifdef CONFIG_RELOCATABLE
+	/* On relocatable kernels interrupts handlers and our code
+	   can be in different regions, so we don't patch them */
+
+	extern u32 __end_interrupts;
+	if ((ulong)inst < (ulong)&__end_interrupts)
+		return;
+#endif
+
+	kvm_patch_ins(inst, KVM_INST_B | (addr & KVM_INST_B_MASK));
+}
+
+static u32 *kvm_alloc(int len)
+{
+	u32 *p;
+
+	if ((kvm_tmp_index + len) > ARRAY_SIZE(kvm_tmp)) {
+		printk(KERN_ERR "KVM: No more space (%d + %d)\n",
+				kvm_tmp_index, len);
+		kvm_patching_worked = false;
+		return NULL;
+	}
+
+	p = (void*)&kvm_tmp[kvm_tmp_index];
+	kvm_tmp_index += len;
+
+	return p;
+}
+
+extern u32 kvm_emulate_mtmsrd_branch_offs;
+extern u32 kvm_emulate_mtmsrd_reg_offs;
+extern u32 kvm_emulate_mtmsrd_orig_ins_offs;
+extern u32 kvm_emulate_mtmsrd_len;
+extern u32 kvm_emulate_mtmsrd[];
+
+static void kvm_patch_ins_mtmsrd(u32 *inst, u32 rt)
+{
+	u32 *p;
+	int distance_start;
+	int distance_end;
+	ulong next_inst;
+
+	p = kvm_alloc(kvm_emulate_mtmsrd_len * 4);
+	if (!p)
+		return;
+
+	/* Find out where we are and put everything there */
+	distance_start = (ulong)p - (ulong)inst;
+	next_inst = ((ulong)inst + 4);
+	distance_end = next_inst - (ulong)&p[kvm_emulate_mtmsrd_branch_offs];
+
+	/* Make sure we only write valid b instructions */
+	if (distance_start > KVM_INST_B_MAX) {
+		kvm_patching_worked = false;
+		return;
+	}
+
+	/* Modify the chunk to fit the invocation */
+	memcpy(p, kvm_emulate_mtmsrd, kvm_emulate_mtmsrd_len * 4);
+	p[kvm_emulate_mtmsrd_branch_offs] |= distance_end & KVM_INST_B_MASK;
+	switch (get_rt(rt)) {
+	case 30:
+		kvm_patch_ins_ll(&p[kvm_emulate_mtmsrd_reg_offs],
+				 magic_var(scratch2), KVM_RT_30);
+		break;
+	case 31:
+		kvm_patch_ins_ll(&p[kvm_emulate_mtmsrd_reg_offs],
+				 magic_var(scratch1), KVM_RT_30);
+		break;
+	default:
+		p[kvm_emulate_mtmsrd_reg_offs] |= rt;
+		break;
+	}
+
+	p[kvm_emulate_mtmsrd_orig_ins_offs] = *inst;
+	flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtmsrd_len * 4);
+
+	/* Patch the invocation */
+	kvm_patch_ins_b(inst, distance_start);
+}
+
+extern u32 kvm_emulate_mtmsr_branch_offs;
+extern u32 kvm_emulate_mtmsr_reg1_offs;
+extern u32 kvm_emulate_mtmsr_reg2_offs;
+extern u32 kvm_emulate_mtmsr_orig_ins_offs;
+extern u32 kvm_emulate_mtmsr_len;
+extern u32 kvm_emulate_mtmsr[];
+
+static void kvm_patch_ins_mtmsr(u32 *inst, u32 rt)
+{
+	u32 *p;
+	int distance_start;
+	int distance_end;
+	ulong next_inst;
+
+	p = kvm_alloc(kvm_emulate_mtmsr_len * 4);
+	if (!p)
+		return;
+
+	/* Find out where we are and put everything there */
+	distance_start = (ulong)p - (ulong)inst;
+	next_inst = ((ulong)inst + 4);
+	distance_end = next_inst - (ulong)&p[kvm_emulate_mtmsr_branch_offs];
+
+	/* Make sure we only write valid b instructions */
+	if (distance_start > KVM_INST_B_MAX) {
+		kvm_patching_worked = false;
+		return;
+	}
+
+	/* Modify the chunk to fit the invocation */
+	memcpy(p, kvm_emulate_mtmsr, kvm_emulate_mtmsr_len * 4);
+	p[kvm_emulate_mtmsr_branch_offs] |= distance_end & KVM_INST_B_MASK;
+
+	/* Make clobbered registers work too */
+	switch (get_rt(rt)) {
+	case 30:
+		kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg1_offs],
+				 magic_var(scratch2), KVM_RT_30);
+		kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg2_offs],
+				 magic_var(scratch2), KVM_RT_30);
+		break;
+	case 31:
+		kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg1_offs],
+				 magic_var(scratch1), KVM_RT_30);
+		kvm_patch_ins_ll(&p[kvm_emulate_mtmsr_reg2_offs],
+				 magic_var(scratch1), KVM_RT_30);
+		break;
+	default:
+		p[kvm_emulate_mtmsr_reg1_offs] |= rt;
+		p[kvm_emulate_mtmsr_reg2_offs] |= rt;
+		break;
+	}
+
+	p[kvm_emulate_mtmsr_orig_ins_offs] = *inst;
+	flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtmsr_len * 4);
+
+	/* Patch the invocation */
+	kvm_patch_ins_b(inst, distance_start);
+}
+
+#ifdef CONFIG_BOOKE
+
+extern u32 kvm_emulate_wrteei_branch_offs;
+extern u32 kvm_emulate_wrteei_ee_offs;
+extern u32 kvm_emulate_wrteei_len;
+extern u32 kvm_emulate_wrteei[];
+
+static void kvm_patch_ins_wrteei(u32 *inst)
+{
+	u32 *p;
+	int distance_start;
+	int distance_end;
+	ulong next_inst;
+
+	p = kvm_alloc(kvm_emulate_wrteei_len * 4);
+	if (!p)
+		return;
+
+	/* Find out where we are and put everything there */
+	distance_start = (ulong)p - (ulong)inst;
+	next_inst = ((ulong)inst + 4);
+	distance_end = next_inst - (ulong)&p[kvm_emulate_wrteei_branch_offs];
+
+	/* Make sure we only write valid b instructions */
+	if (distance_start > KVM_INST_B_MAX) {
+		kvm_patching_worked = false;
+		return;
+	}
+
+	/* Modify the chunk to fit the invocation */
+	memcpy(p, kvm_emulate_wrteei, kvm_emulate_wrteei_len * 4);
+	p[kvm_emulate_wrteei_branch_offs] |= distance_end & KVM_INST_B_MASK;
+	p[kvm_emulate_wrteei_ee_offs] |= (*inst & MSR_EE);
+	flush_icache_range((ulong)p, (ulong)p + kvm_emulate_wrteei_len * 4);
+
+	/* Patch the invocation */
+	kvm_patch_ins_b(inst, distance_start);
+}
+
+#endif
+
+#ifdef CONFIG_PPC_BOOK3S_32
+
+extern u32 kvm_emulate_mtsrin_branch_offs;
+extern u32 kvm_emulate_mtsrin_reg1_offs;
+extern u32 kvm_emulate_mtsrin_reg2_offs;
+extern u32 kvm_emulate_mtsrin_orig_ins_offs;
+extern u32 kvm_emulate_mtsrin_len;
+extern u32 kvm_emulate_mtsrin[];
+
+static void kvm_patch_ins_mtsrin(u32 *inst, u32 rt, u32 rb)
+{
+	u32 *p;
+	int distance_start;
+	int distance_end;
+	ulong next_inst;
+
+	p = kvm_alloc(kvm_emulate_mtsrin_len * 4);
+	if (!p)
+		return;
+
+	/* Find out where we are and put everything there */
+	distance_start = (ulong)p - (ulong)inst;
+	next_inst = ((ulong)inst + 4);
+	distance_end = next_inst - (ulong)&p[kvm_emulate_mtsrin_branch_offs];
+
+	/* Make sure we only write valid b instructions */
+	if (distance_start > KVM_INST_B_MAX) {
+		kvm_patching_worked = false;
+		return;
+	}
+
+	/* Modify the chunk to fit the invocation */
+	memcpy(p, kvm_emulate_mtsrin, kvm_emulate_mtsrin_len * 4);
+	p[kvm_emulate_mtsrin_branch_offs] |= distance_end & KVM_INST_B_MASK;
+	p[kvm_emulate_mtsrin_reg1_offs] |= (rb << 10);
+	p[kvm_emulate_mtsrin_reg2_offs] |= rt;
+	p[kvm_emulate_mtsrin_orig_ins_offs] = *inst;
+	flush_icache_range((ulong)p, (ulong)p + kvm_emulate_mtsrin_len * 4);
+
+	/* Patch the invocation */
+	kvm_patch_ins_b(inst, distance_start);
+}
+
+#endif
+
+static void kvm_map_magic_page(void *data)
+{
+	u32 *features = data;
+
+	ulong in[8];
+	ulong out[8];
+
+	in[0] = KVM_MAGIC_PAGE;
+	in[1] = KVM_MAGIC_PAGE;
+
+	kvm_hypercall(in, out, HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE);
+
+	*features = out[0];
+}
+
+static void kvm_check_ins(u32 *inst, u32 features)
+{
+	u32 _inst = *inst;
+	u32 inst_no_rt = _inst & ~KVM_MASK_RT;
+	u32 inst_rt = _inst & KVM_MASK_RT;
+
+	switch (inst_no_rt) {
+	/* Loads */
+	case KVM_INST_MFMSR:
+		kvm_patch_ins_ld(inst, magic_var(msr), inst_rt);
+		break;
+	case KVM_INST_MFSPR_SPRG0:
+		kvm_patch_ins_ld(inst, magic_var(sprg0), inst_rt);
+		break;
+	case KVM_INST_MFSPR_SPRG1:
+		kvm_patch_ins_ld(inst, magic_var(sprg1), inst_rt);
+		break;
+	case KVM_INST_MFSPR_SPRG2:
+		kvm_patch_ins_ld(inst, magic_var(sprg2), inst_rt);
+		break;
+	case KVM_INST_MFSPR_SPRG3:
+		kvm_patch_ins_ld(inst, magic_var(sprg3), inst_rt);
+		break;
+	case KVM_INST_MFSPR_SRR0:
+		kvm_patch_ins_ld(inst, magic_var(srr0), inst_rt);
+		break;
+	case KVM_INST_MFSPR_SRR1:
+		kvm_patch_ins_ld(inst, magic_var(srr1), inst_rt);
+		break;
+	case KVM_INST_MFSPR_DAR:
+		kvm_patch_ins_ld(inst, magic_var(dar), inst_rt);
+		break;
+	case KVM_INST_MFSPR_DSISR:
+		kvm_patch_ins_lwz(inst, magic_var(dsisr), inst_rt);
+		break;
+
+	/* Stores */
+	case KVM_INST_MTSPR_SPRG0:
+		kvm_patch_ins_std(inst, magic_var(sprg0), inst_rt);
+		break;
+	case KVM_INST_MTSPR_SPRG1:
+		kvm_patch_ins_std(inst, magic_var(sprg1), inst_rt);
+		break;
+	case KVM_INST_MTSPR_SPRG2:
+		kvm_patch_ins_std(inst, magic_var(sprg2), inst_rt);
+		break;
+	case KVM_INST_MTSPR_SPRG3:
+		kvm_patch_ins_std(inst, magic_var(sprg3), inst_rt);
+		break;
+	case KVM_INST_MTSPR_SRR0:
+		kvm_patch_ins_std(inst, magic_var(srr0), inst_rt);
+		break;
+	case KVM_INST_MTSPR_SRR1:
+		kvm_patch_ins_std(inst, magic_var(srr1), inst_rt);
+		break;
+	case KVM_INST_MTSPR_DAR:
+		kvm_patch_ins_std(inst, magic_var(dar), inst_rt);
+		break;
+	case KVM_INST_MTSPR_DSISR:
+		kvm_patch_ins_stw(inst, magic_var(dsisr), inst_rt);
+		break;
+
+	/* Nops */
+	case KVM_INST_TLBSYNC:
+		kvm_patch_ins_nop(inst);
+		break;
+
+	/* Rewrites */
+	case KVM_INST_MTMSRD_L1:
+		kvm_patch_ins_mtmsrd(inst, inst_rt);
+		break;
+	case KVM_INST_MTMSR:
+	case KVM_INST_MTMSRD_L0:
+		kvm_patch_ins_mtmsr(inst, inst_rt);
+		break;
+	}
+
+	switch (inst_no_rt & ~KVM_MASK_RB) {
+#ifdef CONFIG_PPC_BOOK3S_32
+	case KVM_INST_MTSRIN:
+		if (features & KVM_MAGIC_FEAT_SR) {
+			u32 inst_rb = _inst & KVM_MASK_RB;
+			kvm_patch_ins_mtsrin(inst, inst_rt, inst_rb);
+		}
+		break;
+		break;
+#endif
+	}
+
+	switch (_inst) {
+#ifdef CONFIG_BOOKE
+	case KVM_INST_WRTEEI_0:
+	case KVM_INST_WRTEEI_1:
+		kvm_patch_ins_wrteei(inst);
+		break;
+#endif
+	}
+}
+
+static void kvm_use_magic_page(void)
+{
+	u32 *p;
+	u32 *start, *end;
+	u32 tmp;
+	u32 features;
+
+	/* Tell the host to map the magic page to -4096 on all CPUs */
+	on_each_cpu(kvm_map_magic_page, &features, 1);
+
+	/* Quick self-test to see if the mapping works */
+	if (__get_user(tmp, (u32*)KVM_MAGIC_PAGE)) {
+		kvm_patching_worked = false;
+		return;
+	}
+
+	/* Now loop through all code and find instructions */
+	start = (void*)_stext;
+	end = (void*)_etext;
+
+	for (p = start; p < end; p++)
+		kvm_check_ins(p, features);
+
+	printk(KERN_INFO "KVM: Live patching for a fast VM %s\n",
+			 kvm_patching_worked ? "worked" : "failed");
+}
+
+unsigned long kvm_hypercall(unsigned long *in,
+			    unsigned long *out,
+			    unsigned long nr)
+{
+	unsigned long register r0 asm("r0");
+	unsigned long register r3 asm("r3") = in[0];
+	unsigned long register r4 asm("r4") = in[1];
+	unsigned long register r5 asm("r5") = in[2];
+	unsigned long register r6 asm("r6") = in[3];
+	unsigned long register r7 asm("r7") = in[4];
+	unsigned long register r8 asm("r8") = in[5];
+	unsigned long register r9 asm("r9") = in[6];
+	unsigned long register r10 asm("r10") = in[7];
+	unsigned long register r11 asm("r11") = nr;
+	unsigned long register r12 asm("r12");
+
+	asm volatile("bl	kvm_hypercall_start"
+		     : "=r"(r0), "=r"(r3), "=r"(r4), "=r"(r5), "=r"(r6),
+		       "=r"(r7), "=r"(r8), "=r"(r9), "=r"(r10), "=r"(r11),
+		       "=r"(r12)
+		     : "r"(r3), "r"(r4), "r"(r5), "r"(r6), "r"(r7), "r"(r8),
+		       "r"(r9), "r"(r10), "r"(r11)
+		     : "memory", "cc", "xer", "ctr", "lr");
+
+	out[0] = r4;
+	out[1] = r5;
+	out[2] = r6;
+	out[3] = r7;
+	out[4] = r8;
+	out[5] = r9;
+	out[6] = r10;
+	out[7] = r11;
+
+	return r3;
+}
+EXPORT_SYMBOL_GPL(kvm_hypercall);
+
+static int kvm_para_setup(void)
+{
+	extern u32 kvm_hypercall_start;
+	struct device_node *hyper_node;
+	u32 *insts;
+	int len, i;
+
+	hyper_node = of_find_node_by_path("/hypervisor");
+	if (!hyper_node)
+		return -1;
+
+	insts = (u32*)of_get_property(hyper_node, "hcall-instructions", &len);
+	if (len % 4)
+		return -1;
+	if (len > (4 * 4))
+		return -1;
+
+	for (i = 0; i < (len / 4); i++)
+		kvm_patch_ins(&(&kvm_hypercall_start)[i], insts[i]);
+
+	return 0;
+}
+
+static __init void kvm_free_tmp(void)
+{
+	unsigned long start, end;
+
+	start = (ulong)&kvm_tmp[kvm_tmp_index + (PAGE_SIZE - 1)] & PAGE_MASK;
+	end = (ulong)&kvm_tmp[ARRAY_SIZE(kvm_tmp)] & PAGE_MASK;
+
+	/* Free the tmp space we don't need */
+	for (; start < end; start += PAGE_SIZE) {
+		ClearPageReserved(virt_to_page(start));
+		init_page_count(virt_to_page(start));
+		free_page(start);
+		totalram_pages++;
+	}
+}
+
+static int __init kvm_guest_init(void)
+{
+	if (!kvm_para_available())
+		goto free_tmp;
+
+	if (kvm_para_setup())
+		goto free_tmp;
+
+	if (kvm_para_has_feature(KVM_FEATURE_MAGIC_PAGE))
+		kvm_use_magic_page();
+
+#ifdef CONFIG_PPC_BOOK3S_64
+	/* Enable napping */
+	powersave_nap = 1;
+#endif
+
+free_tmp:
+	kvm_free_tmp();
+
+	return 0;
+}
+
+postcore_initcall(kvm_guest_init);

+ 302 - 0
arch/powerpc/kernel/kvm_emul.S

@@ -0,0 +1,302 @@
+/*
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
+ *
+ * Copyright SUSE Linux Products GmbH 2010
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/page.h>
+#include <asm/asm-offsets.h>
+
+/* Hypercall entry point. Will be patched with device tree instructions. */
+
+.global kvm_hypercall_start
+kvm_hypercall_start:
+	li	r3, -1
+	nop
+	nop
+	nop
+	blr
+
+#define KVM_MAGIC_PAGE		(-4096)
+
+#ifdef CONFIG_64BIT
+#define LL64(reg, offs, reg2)	ld	reg, (offs)(reg2)
+#define STL64(reg, offs, reg2)	std	reg, (offs)(reg2)
+#else
+#define LL64(reg, offs, reg2)	lwz	reg, (offs + 4)(reg2)
+#define STL64(reg, offs, reg2)	stw	reg, (offs + 4)(reg2)
+#endif
+
+#define SCRATCH_SAVE							\
+	/* Enable critical section. We are critical if			\
+	   shared->critical == r1 */					\
+	STL64(r1, KVM_MAGIC_PAGE + KVM_MAGIC_CRITICAL, 0);		\
+									\
+	/* Save state */						\
+	PPC_STL	r31, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH1)(0);		\
+	PPC_STL	r30, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH2)(0);		\
+	mfcr	r31;							\
+	stw	r31, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH3)(0);
+
+#define SCRATCH_RESTORE							\
+	/* Restore state */						\
+	PPC_LL	r31, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH1)(0);		\
+	lwz	r30, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH3)(0);		\
+	mtcr	r30;							\
+	PPC_LL	r30, (KVM_MAGIC_PAGE + KVM_MAGIC_SCRATCH2)(0);		\
+									\
+	/* Disable critical section. We are critical if			\
+	   shared->critical == r1 and r2 is always != r1 */		\
+	STL64(r2, KVM_MAGIC_PAGE + KVM_MAGIC_CRITICAL, 0);
+
+.global kvm_emulate_mtmsrd
+kvm_emulate_mtmsrd:
+
+	SCRATCH_SAVE
+
+	/* Put MSR & ~(MSR_EE|MSR_RI) in r31 */
+	LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+	lis	r30, (~(MSR_EE | MSR_RI))@h
+	ori	r30, r30, (~(MSR_EE | MSR_RI))@l
+	and	r31, r31, r30
+
+	/* OR the register's (MSR_EE|MSR_RI) on MSR */
+kvm_emulate_mtmsrd_reg:
+	ori	r30, r0, 0
+	andi.	r30, r30, (MSR_EE|MSR_RI)
+	or	r31, r31, r30
+
+	/* Put MSR back into magic page */
+	STL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+
+	/* Check if we have to fetch an interrupt */
+	lwz	r31, (KVM_MAGIC_PAGE + KVM_MAGIC_INT)(0)
+	cmpwi	r31, 0
+	beq+	no_check
+
+	/* Check if we may trigger an interrupt */
+	andi.	r30, r30, MSR_EE
+	beq	no_check
+
+	SCRATCH_RESTORE
+
+	/* Nag hypervisor */
+kvm_emulate_mtmsrd_orig_ins:
+	tlbsync
+
+	b	kvm_emulate_mtmsrd_branch
+
+no_check:
+
+	SCRATCH_RESTORE
+
+	/* Go back to caller */
+kvm_emulate_mtmsrd_branch:
+	b	.
+kvm_emulate_mtmsrd_end:
+
+.global kvm_emulate_mtmsrd_branch_offs
+kvm_emulate_mtmsrd_branch_offs:
+	.long (kvm_emulate_mtmsrd_branch - kvm_emulate_mtmsrd) / 4
+
+.global kvm_emulate_mtmsrd_reg_offs
+kvm_emulate_mtmsrd_reg_offs:
+	.long (kvm_emulate_mtmsrd_reg - kvm_emulate_mtmsrd) / 4
+
+.global kvm_emulate_mtmsrd_orig_ins_offs
+kvm_emulate_mtmsrd_orig_ins_offs:
+	.long (kvm_emulate_mtmsrd_orig_ins - kvm_emulate_mtmsrd) / 4
+
+.global kvm_emulate_mtmsrd_len
+kvm_emulate_mtmsrd_len:
+	.long (kvm_emulate_mtmsrd_end - kvm_emulate_mtmsrd) / 4
+
+
+#define MSR_SAFE_BITS (MSR_EE | MSR_CE | MSR_ME | MSR_RI)
+#define MSR_CRITICAL_BITS ~MSR_SAFE_BITS
+
+.global kvm_emulate_mtmsr
+kvm_emulate_mtmsr:
+
+	SCRATCH_SAVE
+
+	/* Fetch old MSR in r31 */
+	LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+
+	/* Find the changed bits between old and new MSR */
+kvm_emulate_mtmsr_reg1:
+	ori	r30, r0, 0
+	xor	r31, r30, r31
+
+	/* Check if we need to really do mtmsr */
+	LOAD_REG_IMMEDIATE(r30, MSR_CRITICAL_BITS)
+	and.	r31, r31, r30
+
+	/* No critical bits changed? Maybe we can stay in the guest. */
+	beq	maybe_stay_in_guest
+
+do_mtmsr:
+
+	SCRATCH_RESTORE
+
+	/* Just fire off the mtmsr if it's critical */
+kvm_emulate_mtmsr_orig_ins:
+	mtmsr	r0
+
+	b	kvm_emulate_mtmsr_branch
+
+maybe_stay_in_guest:
+
+	/* Get the target register in r30 */
+kvm_emulate_mtmsr_reg2:
+	ori	r30, r0, 0
+
+	/* Check if we have to fetch an interrupt */
+	lwz	r31, (KVM_MAGIC_PAGE + KVM_MAGIC_INT)(0)
+	cmpwi	r31, 0
+	beq+	no_mtmsr
+
+	/* Check if we may trigger an interrupt */
+	andi.	r31, r30, MSR_EE
+	beq	no_mtmsr
+
+	b	do_mtmsr
+
+no_mtmsr:
+
+	/* Put MSR into magic page because we don't call mtmsr */
+	STL64(r30, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+
+	SCRATCH_RESTORE
+
+	/* Go back to caller */
+kvm_emulate_mtmsr_branch:
+	b	.
+kvm_emulate_mtmsr_end:
+
+.global kvm_emulate_mtmsr_branch_offs
+kvm_emulate_mtmsr_branch_offs:
+	.long (kvm_emulate_mtmsr_branch - kvm_emulate_mtmsr) / 4
+
+.global kvm_emulate_mtmsr_reg1_offs
+kvm_emulate_mtmsr_reg1_offs:
+	.long (kvm_emulate_mtmsr_reg1 - kvm_emulate_mtmsr) / 4
+
+.global kvm_emulate_mtmsr_reg2_offs
+kvm_emulate_mtmsr_reg2_offs:
+	.long (kvm_emulate_mtmsr_reg2 - kvm_emulate_mtmsr) / 4
+
+.global kvm_emulate_mtmsr_orig_ins_offs
+kvm_emulate_mtmsr_orig_ins_offs:
+	.long (kvm_emulate_mtmsr_orig_ins - kvm_emulate_mtmsr) / 4
+
+.global kvm_emulate_mtmsr_len
+kvm_emulate_mtmsr_len:
+	.long (kvm_emulate_mtmsr_end - kvm_emulate_mtmsr) / 4
+
+
+
+.global kvm_emulate_wrteei
+kvm_emulate_wrteei:
+
+	SCRATCH_SAVE
+
+	/* Fetch old MSR in r31 */
+	LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+
+	/* Remove MSR_EE from old MSR */
+	li	r30, 0
+	ori	r30, r30, MSR_EE
+	andc	r31, r31, r30
+
+	/* OR new MSR_EE onto the old MSR */
+kvm_emulate_wrteei_ee:
+	ori	r31, r31, 0
+
+	/* Write new MSR value back */
+	STL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+
+	SCRATCH_RESTORE
+
+	/* Go back to caller */
+kvm_emulate_wrteei_branch:
+	b	.
+kvm_emulate_wrteei_end:
+
+.global kvm_emulate_wrteei_branch_offs
+kvm_emulate_wrteei_branch_offs:
+	.long (kvm_emulate_wrteei_branch - kvm_emulate_wrteei) / 4
+
+.global kvm_emulate_wrteei_ee_offs
+kvm_emulate_wrteei_ee_offs:
+	.long (kvm_emulate_wrteei_ee - kvm_emulate_wrteei) / 4
+
+.global kvm_emulate_wrteei_len
+kvm_emulate_wrteei_len:
+	.long (kvm_emulate_wrteei_end - kvm_emulate_wrteei) / 4
+
+
+.global kvm_emulate_mtsrin
+kvm_emulate_mtsrin:
+
+	SCRATCH_SAVE
+
+	LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
+	andi.	r31, r31, MSR_DR | MSR_IR
+	beq	kvm_emulate_mtsrin_reg1
+
+	SCRATCH_RESTORE
+
+kvm_emulate_mtsrin_orig_ins:
+	nop
+	b	kvm_emulate_mtsrin_branch
+
+kvm_emulate_mtsrin_reg1:
+	/* rX >> 26 */
+	rlwinm  r30,r0,6,26,29
+
+kvm_emulate_mtsrin_reg2:
+	stw	r0, (KVM_MAGIC_PAGE + KVM_MAGIC_SR)(r30)
+
+	SCRATCH_RESTORE
+
+	/* Go back to caller */
+kvm_emulate_mtsrin_branch:
+	b	.
+kvm_emulate_mtsrin_end:
+
+.global kvm_emulate_mtsrin_branch_offs
+kvm_emulate_mtsrin_branch_offs:
+	.long (kvm_emulate_mtsrin_branch - kvm_emulate_mtsrin) / 4
+
+.global kvm_emulate_mtsrin_reg1_offs
+kvm_emulate_mtsrin_reg1_offs:
+	.long (kvm_emulate_mtsrin_reg1 - kvm_emulate_mtsrin) / 4
+
+.global kvm_emulate_mtsrin_reg2_offs
+kvm_emulate_mtsrin_reg2_offs:
+	.long (kvm_emulate_mtsrin_reg2 - kvm_emulate_mtsrin) / 4
+
+.global kvm_emulate_mtsrin_orig_ins_offs
+kvm_emulate_mtsrin_orig_ins_offs:
+	.long (kvm_emulate_mtsrin_orig_ins - kvm_emulate_mtsrin) / 4
+
+.global kvm_emulate_mtsrin_len
+kvm_emulate_mtsrin_len:
+	.long (kvm_emulate_mtsrin_end - kvm_emulate_mtsrin) / 4

+ 9 - 1
arch/powerpc/kvm/44x.c

@@ -43,7 +43,7 @@ int kvmppc_core_check_processor_compat(void)
 {
 	int r;
 
-	if (strcmp(cur_cpu_spec->platform, "ppc440") == 0)
+	if (strncmp(cur_cpu_spec->platform, "ppc440", 6) == 0)
 		r = 0;
 	else
 		r = -ENOTSUPP;
@@ -72,6 +72,7 @@ int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
 	/* Since the guest can directly access the timebase, it must know the
 	 * real timebase frequency. Accordingly, it must see the state of
 	 * CCR1[TCS]. */
+	/* XXX CCR1 doesn't exist on all 440 SoCs. */
 	vcpu->arch.ccr1 = mfspr(SPRN_CCR1);
 
 	for (i = 0; i < ARRAY_SIZE(vcpu_44x->shadow_refs); i++)
@@ -123,8 +124,14 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 	if (err)
 		goto free_vcpu;
 
+	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
+	if (!vcpu->arch.shared)
+		goto uninit_vcpu;
+
 	return vcpu;
 
+uninit_vcpu:
+	kvm_vcpu_uninit(vcpu);
 free_vcpu:
 	kmem_cache_free(kvm_vcpu_cache, vcpu_44x);
 out:
@@ -135,6 +142,7 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
 {
 	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
 
+	free_page((unsigned long)vcpu->arch.shared);
 	kvm_vcpu_uninit(vcpu);
 	kmem_cache_free(kvm_vcpu_cache, vcpu_44x);
 }

+ 5 - 4
arch/powerpc/kvm/44x_tlb.c

@@ -47,6 +47,7 @@
 #ifdef DEBUG
 void kvmppc_dump_tlbs(struct kvm_vcpu *vcpu)
 {
+	struct kvmppc_vcpu_44x *vcpu_44x = to_44x(vcpu);
 	struct kvmppc_44x_tlbe *tlbe;
 	int i;
 
@@ -221,14 +222,14 @@ gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int gtlb_index,
 
 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
 {
-	unsigned int as = !!(vcpu->arch.msr & MSR_IS);
+	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
 
 	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
 }
 
 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
 {
-	unsigned int as = !!(vcpu->arch.msr & MSR_DS);
+	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
 
 	return kvmppc_44x_tlb_index(vcpu, eaddr, vcpu->arch.pid, as);
 }
@@ -354,7 +355,7 @@ void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 gvaddr, gpa_t gpaddr,
 
 	stlbe.word1 = (hpaddr & 0xfffffc00) | ((hpaddr >> 32) & 0xf);
 	stlbe.word2 = kvmppc_44x_tlb_shadow_attrib(flags,
-	                                            vcpu->arch.msr & MSR_PR);
+	                                            vcpu->arch.shared->msr & MSR_PR);
 	stlbe.tid = !(asid & 0xff);
 
 	/* Keep track of the reference so we can properly release it later. */
@@ -423,7 +424,7 @@ static int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
 
 	/* Does it match current guest AS? */
 	/* XXX what about IS != DS? */
-	if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS))
+	if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS))
 		return 0;
 
 	gpa = get_tlb_raddr(tlbe);

+ 181 - 91
arch/powerpc/kvm/book3s.c

@@ -17,6 +17,7 @@
 #include <linux/kvm_host.h>
 #include <linux/err.h>
 #include <linux/slab.h>
+#include "trace.h"
 
 #include <asm/reg.h>
 #include <asm/cputable.h>
@@ -35,7 +36,6 @@
 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
 
 /* #define EXIT_DEBUG */
-/* #define EXIT_DEBUG_SIMPLE */
 /* #define DEBUG_EXT */
 
 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
@@ -105,65 +105,71 @@ void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
 	kvmppc_giveup_ext(vcpu, MSR_VSX);
 }
 
-#if defined(EXIT_DEBUG)
-static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu)
-{
-	u64 jd = mftb() - vcpu->arch.dec_jiffies;
-	return vcpu->arch.dec - jd;
-}
-#endif
-
 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
 {
-	vcpu->arch.shadow_msr = vcpu->arch.msr;
+	ulong smsr = vcpu->arch.shared->msr;
+
 	/* Guest MSR values */
-	vcpu->arch.shadow_msr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE |
-				 MSR_BE | MSR_DE;
+	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_DE;
 	/* Process MSR values */
-	vcpu->arch.shadow_msr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR |
-				 MSR_EE;
+	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
 	/* External providers the guest reserved */
-	vcpu->arch.shadow_msr |= (vcpu->arch.msr & vcpu->arch.guest_owned_ext);
+	smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
 	/* 64-bit Process MSR values */
 #ifdef CONFIG_PPC_BOOK3S_64
-	vcpu->arch.shadow_msr |= MSR_ISF | MSR_HV;
+	smsr |= MSR_ISF | MSR_HV;
 #endif
+	vcpu->arch.shadow_msr = smsr;
 }
 
 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
 {
-	ulong old_msr = vcpu->arch.msr;
+	ulong old_msr = vcpu->arch.shared->msr;
 
 #ifdef EXIT_DEBUG
 	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
 #endif
 
 	msr &= to_book3s(vcpu)->msr_mask;
-	vcpu->arch.msr = msr;
+	vcpu->arch.shared->msr = msr;
 	kvmppc_recalc_shadow_msr(vcpu);
 
-	if (msr & (MSR_WE|MSR_POW)) {
+	if (msr & MSR_POW) {
 		if (!vcpu->arch.pending_exceptions) {
 			kvm_vcpu_block(vcpu);
 			vcpu->stat.halt_wakeup++;
+
+			/* Unset POW bit after we woke up */
+			msr &= ~MSR_POW;
+			vcpu->arch.shared->msr = msr;
 		}
 	}
 
-	if ((vcpu->arch.msr & (MSR_PR|MSR_IR|MSR_DR)) !=
+	if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
 		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
 		kvmppc_mmu_flush_segments(vcpu);
 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
+
+		/* Preload magic page segment when in kernel mode */
+		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
+			struct kvm_vcpu_arch *a = &vcpu->arch;
+
+			if (msr & MSR_DR)
+				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
+			else
+				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
+		}
 	}
 
 	/* Preload FPU if it's enabled */
-	if (vcpu->arch.msr & MSR_FP)
+	if (vcpu->arch.shared->msr & MSR_FP)
 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
 }
 
 void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
 {
-	vcpu->arch.srr0 = kvmppc_get_pc(vcpu);
-	vcpu->arch.srr1 = vcpu->arch.msr | flags;
+	vcpu->arch.shared->srr0 = kvmppc_get_pc(vcpu);
+	vcpu->arch.shared->srr1 = vcpu->arch.shared->msr | flags;
 	kvmppc_set_pc(vcpu, to_book3s(vcpu)->hior + vec);
 	vcpu->arch.mmu.reset_msr(vcpu);
 }
@@ -180,6 +186,7 @@ static int kvmppc_book3s_vec2irqprio(unsigned int vec)
 	case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE;		break;
 	case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT;		break;
 	case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL;		break;
+	case 0x501: prio = BOOK3S_IRQPRIO_EXTERNAL_LEVEL;	break;
 	case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT;		break;
 	case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM;		break;
 	case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL;		break;
@@ -199,6 +206,9 @@ static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
 {
 	clear_bit(kvmppc_book3s_vec2irqprio(vec),
 		  &vcpu->arch.pending_exceptions);
+
+	if (!vcpu->arch.pending_exceptions)
+		vcpu->arch.shared->int_pending = 0;
 }
 
 void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
@@ -237,13 +247,19 @@ void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
 void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
                                 struct kvm_interrupt *irq)
 {
-	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+	unsigned int vec = BOOK3S_INTERRUPT_EXTERNAL;
+
+	if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
+		vec = BOOK3S_INTERRUPT_EXTERNAL_LEVEL;
+
+	kvmppc_book3s_queue_irqprio(vcpu, vec);
 }
 
 void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu,
                                   struct kvm_interrupt *irq)
 {
 	kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+	kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL_LEVEL);
 }
 
 int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
@@ -251,14 +267,29 @@ int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
 	int deliver = 1;
 	int vec = 0;
 	ulong flags = 0ULL;
+	ulong crit_raw = vcpu->arch.shared->critical;
+	ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
+	bool crit;
+
+	/* Truncate crit indicators in 32 bit mode */
+	if (!(vcpu->arch.shared->msr & MSR_SF)) {
+		crit_raw &= 0xffffffff;
+		crit_r1 &= 0xffffffff;
+	}
+
+	/* Critical section when crit == r1 */
+	crit = (crit_raw == crit_r1);
+	/* ... and we're in supervisor mode */
+	crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
 
 	switch (priority) {
 	case BOOK3S_IRQPRIO_DECREMENTER:
-		deliver = vcpu->arch.msr & MSR_EE;
+		deliver = (vcpu->arch.shared->msr & MSR_EE) && !crit;
 		vec = BOOK3S_INTERRUPT_DECREMENTER;
 		break;
 	case BOOK3S_IRQPRIO_EXTERNAL:
-		deliver = vcpu->arch.msr & MSR_EE;
+	case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
+		deliver = (vcpu->arch.shared->msr & MSR_EE) && !crit;
 		vec = BOOK3S_INTERRUPT_EXTERNAL;
 		break;
 	case BOOK3S_IRQPRIO_SYSTEM_RESET:
@@ -320,9 +351,27 @@ int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
 	return deliver;
 }
 
+/*
+ * This function determines if an irqprio should be cleared once issued.
+ */
+static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
+{
+	switch (priority) {
+		case BOOK3S_IRQPRIO_DECREMENTER:
+			/* DEC interrupts get cleared by mtdec */
+			return false;
+		case BOOK3S_IRQPRIO_EXTERNAL_LEVEL:
+			/* External interrupts get cleared by userspace */
+			return false;
+	}
+
+	return true;
+}
+
 void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
 {
 	unsigned long *pending = &vcpu->arch.pending_exceptions;
+	unsigned long old_pending = vcpu->arch.pending_exceptions;
 	unsigned int priority;
 
 #ifdef EXIT_DEBUG
@@ -332,8 +381,7 @@ void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
 	priority = __ffs(*pending);
 	while (priority < BOOK3S_IRQPRIO_MAX) {
 		if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
-		    (priority != BOOK3S_IRQPRIO_DECREMENTER)) {
-			/* DEC interrupts get cleared by mtdec */
+		    clear_irqprio(vcpu, priority)) {
 			clear_bit(priority, &vcpu->arch.pending_exceptions);
 			break;
 		}
@@ -342,6 +390,12 @@ void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
 					 BITS_PER_BYTE * sizeof(*pending),
 					 priority + 1);
 	}
+
+	/* Tell the guest about our interrupt status */
+	if (*pending)
+		vcpu->arch.shared->int_pending = 1;
+	else if (old_pending)
+		vcpu->arch.shared->int_pending = 0;
 }
 
 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
@@ -398,6 +452,25 @@ void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
 	}
 }
 
+pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
+{
+	ulong mp_pa = vcpu->arch.magic_page_pa;
+
+	/* Magic page override */
+	if (unlikely(mp_pa) &&
+	    unlikely(((gfn << PAGE_SHIFT) & KVM_PAM) ==
+		     ((mp_pa & PAGE_MASK) & KVM_PAM))) {
+		ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
+		pfn_t pfn;
+
+		pfn = (pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT;
+		get_page(pfn_to_page(pfn));
+		return pfn;
+	}
+
+	return gfn_to_pfn(vcpu->kvm, gfn);
+}
+
 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
  * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
  * emulate 32 bytes dcbz length.
@@ -415,8 +488,10 @@ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
 	int i;
 
 	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
-	if (is_error_page(hpage))
+	if (is_error_page(hpage)) {
+		kvm_release_page_clean(hpage);
 		return;
+	}
 
 	hpage_offset = pte->raddr & ~PAGE_MASK;
 	hpage_offset &= ~0xFFFULL;
@@ -437,14 +512,14 @@ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
 static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data,
 			 struct kvmppc_pte *pte)
 {
-	int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR));
+	int relocated = (vcpu->arch.shared->msr & (data ? MSR_DR : MSR_IR));
 	int r;
 
 	if (relocated) {
 		r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data);
 	} else {
 		pte->eaddr = eaddr;
-		pte->raddr = eaddr & 0xffffffff;
+		pte->raddr = eaddr & KVM_PAM;
 		pte->vpage = VSID_REAL | eaddr >> 12;
 		pte->may_read = true;
 		pte->may_write = true;
@@ -533,6 +608,13 @@ mmio:
 
 static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 {
+	ulong mp_pa = vcpu->arch.magic_page_pa;
+
+	if (unlikely(mp_pa) &&
+	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
+		return 1;
+	}
+
 	return kvm_is_visible_gfn(vcpu->kvm, gfn);
 }
 
@@ -545,8 +627,8 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	int page_found = 0;
 	struct kvmppc_pte pte;
 	bool is_mmio = false;
-	bool dr = (vcpu->arch.msr & MSR_DR) ? true : false;
-	bool ir = (vcpu->arch.msr & MSR_IR) ? true : false;
+	bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
+	bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
 	u64 vsid;
 
 	relocated = data ? dr : ir;
@@ -558,12 +640,12 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		pte.may_execute = true;
 		pte.may_read = true;
 		pte.may_write = true;
-		pte.raddr = eaddr & 0xffffffff;
+		pte.raddr = eaddr & KVM_PAM;
 		pte.eaddr = eaddr;
 		pte.vpage = eaddr >> 12;
 	}
 
-	switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
+	switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
 	case 0:
 		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
 		break;
@@ -571,7 +653,7 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	case MSR_IR:
 		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
 
-		if ((vcpu->arch.msr & (MSR_DR|MSR_IR)) == MSR_DR)
+		if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
 			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
 		else
 			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
@@ -594,20 +676,23 @@ int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
 
 	if (page_found == -ENOENT) {
 		/* Page not found in guest PTE entries */
-		vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
-		to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr;
-		vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
+		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
+		vcpu->arch.shared->dsisr = to_svcpu(vcpu)->fault_dsisr;
+		vcpu->arch.shared->msr |=
+			(to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
 		kvmppc_book3s_queue_irqprio(vcpu, vec);
 	} else if (page_found == -EPERM) {
 		/* Storage protection */
-		vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
-		to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE;
-		to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT;
-		vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
+		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
+		vcpu->arch.shared->dsisr =
+			to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE;
+		vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
+		vcpu->arch.shared->msr |=
+			(to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
 		kvmppc_book3s_queue_irqprio(vcpu, vec);
 	} else if (page_found == -EINVAL) {
 		/* Page not found in guest SLB */
-		vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
+		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
 		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
 	} else if (!is_mmio &&
 		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
@@ -695,9 +780,11 @@ static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
 
 	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
 	if (ret == -ENOENT) {
-		vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 33, 1);
-		vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 34, 36, 0);
-		vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0);
+		ulong msr = vcpu->arch.shared->msr;
+
+		msr = kvmppc_set_field(msr, 33, 33, 1);
+		msr = kvmppc_set_field(msr, 34, 36, 0);
+		vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
 		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
 		return EMULATE_AGAIN;
 	}
@@ -736,7 +823,7 @@ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
 	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
 		return RESUME_GUEST;
 
-	if (!(vcpu->arch.msr & msr)) {
+	if (!(vcpu->arch.shared->msr & msr)) {
 		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
 		return RESUME_GUEST;
 	}
@@ -796,16 +883,8 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 
 	run->exit_reason = KVM_EXIT_UNKNOWN;
 	run->ready_for_interrupt_injection = 1;
-#ifdef EXIT_DEBUG
-	printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n",
-		exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu),
-		kvmppc_get_dec(vcpu), to_svcpu(vcpu)->shadow_srr1);
-#elif defined (EXIT_DEBUG_SIMPLE)
-	if ((exit_nr != 0x900) && (exit_nr != 0x500))
-		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n",
-			exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu),
-			vcpu->arch.msr);
-#endif
+
+	trace_kvm_book3s_exit(exit_nr, vcpu);
 	kvm_resched(vcpu);
 	switch (exit_nr) {
 	case BOOK3S_INTERRUPT_INST_STORAGE:
@@ -836,9 +915,9 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
 			r = RESUME_GUEST;
 		} else {
-			vcpu->arch.msr |= to_svcpu(vcpu)->shadow_srr1 & 0x58000000;
+			vcpu->arch.shared->msr |=
+				to_svcpu(vcpu)->shadow_srr1 & 0x58000000;
 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
-			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
 			r = RESUME_GUEST;
 		}
 		break;
@@ -861,17 +940,16 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		if (to_svcpu(vcpu)->fault_dsisr & DSISR_NOHPTE) {
 			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
 		} else {
-			vcpu->arch.dear = dar;
-			to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr;
+			vcpu->arch.shared->dar = dar;
+			vcpu->arch.shared->dsisr = to_svcpu(vcpu)->fault_dsisr;
 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
-			kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFUL);
 			r = RESUME_GUEST;
 		}
 		break;
 	}
 	case BOOK3S_INTERRUPT_DATA_SEGMENT:
 		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
-			vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
+			vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
 			kvmppc_book3s_queue_irqprio(vcpu,
 				BOOK3S_INTERRUPT_DATA_SEGMENT);
 		}
@@ -904,7 +982,7 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 program_interrupt:
 		flags = to_svcpu(vcpu)->shadow_srr1 & 0x1f0000ull;
 
-		if (vcpu->arch.msr & MSR_PR) {
+		if (vcpu->arch.shared->msr & MSR_PR) {
 #ifdef EXIT_DEBUG
 			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
 #endif
@@ -941,10 +1019,10 @@ program_interrupt:
 		break;
 	}
 	case BOOK3S_INTERRUPT_SYSCALL:
-		// XXX make user settable
 		if (vcpu->arch.osi_enabled &&
 		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
 		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
+			/* MOL hypercalls */
 			u64 *gprs = run->osi.gprs;
 			int i;
 
@@ -953,8 +1031,13 @@ program_interrupt:
 				gprs[i] = kvmppc_get_gpr(vcpu, i);
 			vcpu->arch.osi_needed = 1;
 			r = RESUME_HOST_NV;
-
+		} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
+		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
+			/* KVM PV hypercalls */
+			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
+			r = RESUME_GUEST;
 		} else {
+			/* Guest syscalls */
 			vcpu->stat.syscall_exits++;
 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
 			r = RESUME_GUEST;
@@ -989,9 +1072,9 @@ program_interrupt:
 	}
 	case BOOK3S_INTERRUPT_ALIGNMENT:
 		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
-			to_book3s(vcpu)->dsisr = kvmppc_alignment_dsisr(vcpu,
+			vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
 				kvmppc_get_last_inst(vcpu));
-			vcpu->arch.dear = kvmppc_alignment_dar(vcpu,
+			vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
 				kvmppc_get_last_inst(vcpu));
 			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
 		}
@@ -1031,9 +1114,7 @@ program_interrupt:
 		}
 	}
 
-#ifdef EXIT_DEBUG
-	printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, kvmppc_get_pc(vcpu), r);
-#endif
+	trace_kvm_book3s_reenter(r, vcpu);
 
 	return r;
 }
@@ -1052,14 +1133,14 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 	regs->ctr = kvmppc_get_ctr(vcpu);
 	regs->lr = kvmppc_get_lr(vcpu);
 	regs->xer = kvmppc_get_xer(vcpu);
-	regs->msr = vcpu->arch.msr;
-	regs->srr0 = vcpu->arch.srr0;
-	regs->srr1 = vcpu->arch.srr1;
+	regs->msr = vcpu->arch.shared->msr;
+	regs->srr0 = vcpu->arch.shared->srr0;
+	regs->srr1 = vcpu->arch.shared->srr1;
 	regs->pid = vcpu->arch.pid;
-	regs->sprg0 = vcpu->arch.sprg0;
-	regs->sprg1 = vcpu->arch.sprg1;
-	regs->sprg2 = vcpu->arch.sprg2;
-	regs->sprg3 = vcpu->arch.sprg3;
+	regs->sprg0 = vcpu->arch.shared->sprg0;
+	regs->sprg1 = vcpu->arch.shared->sprg1;
+	regs->sprg2 = vcpu->arch.shared->sprg2;
+	regs->sprg3 = vcpu->arch.shared->sprg3;
 	regs->sprg5 = vcpu->arch.sprg4;
 	regs->sprg6 = vcpu->arch.sprg5;
 	regs->sprg7 = vcpu->arch.sprg6;
@@ -1080,12 +1161,12 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 	kvmppc_set_lr(vcpu, regs->lr);
 	kvmppc_set_xer(vcpu, regs->xer);
 	kvmppc_set_msr(vcpu, regs->msr);
-	vcpu->arch.srr0 = regs->srr0;
-	vcpu->arch.srr1 = regs->srr1;
-	vcpu->arch.sprg0 = regs->sprg0;
-	vcpu->arch.sprg1 = regs->sprg1;
-	vcpu->arch.sprg2 = regs->sprg2;
-	vcpu->arch.sprg3 = regs->sprg3;
+	vcpu->arch.shared->srr0 = regs->srr0;
+	vcpu->arch.shared->srr1 = regs->srr1;
+	vcpu->arch.shared->sprg0 = regs->sprg0;
+	vcpu->arch.shared->sprg1 = regs->sprg1;
+	vcpu->arch.shared->sprg2 = regs->sprg2;
+	vcpu->arch.shared->sprg3 = regs->sprg3;
 	vcpu->arch.sprg5 = regs->sprg4;
 	vcpu->arch.sprg6 = regs->sprg5;
 	vcpu->arch.sprg7 = regs->sprg6;
@@ -1111,10 +1192,9 @@ int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 			sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv;
 		}
 	} else {
-		for (i = 0; i < 16; i++) {
-			sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
-			sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
-		}
+		for (i = 0; i < 16; i++)
+			sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
+
 		for (i = 0; i < 8; i++) {
 			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
 			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
@@ -1225,6 +1305,7 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 	struct kvmppc_vcpu_book3s *vcpu_book3s;
 	struct kvm_vcpu *vcpu;
 	int err = -ENOMEM;
+	unsigned long p;
 
 	vcpu_book3s = vmalloc(sizeof(struct kvmppc_vcpu_book3s));
 	if (!vcpu_book3s)
@@ -1242,6 +1323,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 	if (err)
 		goto free_shadow_vcpu;
 
+	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
+	/* the real shared page fills the last 4k of our page */
+	vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096);
+	if (!p)
+		goto uninit_vcpu;
+
 	vcpu->arch.host_retip = kvm_return_point;
 	vcpu->arch.host_msr = mfmsr();
 #ifdef CONFIG_PPC_BOOK3S_64
@@ -1268,10 +1355,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 
 	err = kvmppc_mmu_init(vcpu);
 	if (err < 0)
-		goto free_shadow_vcpu;
+		goto uninit_vcpu;
 
 	return vcpu;
 
+uninit_vcpu:
+	kvm_vcpu_uninit(vcpu);
 free_shadow_vcpu:
 	kfree(vcpu_book3s->shadow_vcpu);
 free_vcpu:
@@ -1284,6 +1373,7 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
 {
 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
 
+	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
 	kvm_vcpu_uninit(vcpu);
 	kfree(vcpu_book3s->shadow_vcpu);
 	vfree(vcpu_book3s);
@@ -1346,7 +1436,7 @@ int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
 	local_irq_enable();
 
 	/* Preload FPU if it's enabled */
-	if (vcpu->arch.msr & MSR_FP)
+	if (vcpu->arch.shared->msr & MSR_FP)
 		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
 
 	ret = __kvmppc_vcpu_entry(kvm_run, vcpu);

+ 67 - 44
arch/powerpc/kvm/book3s_32_mmu.c

@@ -58,14 +58,39 @@ static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
 #endif
 }
 
+static inline u32 sr_vsid(u32 sr_raw)
+{
+	return sr_raw & 0x0fffffff;
+}
+
+static inline bool sr_valid(u32 sr_raw)
+{
+	return (sr_raw & 0x80000000) ? false : true;
+}
+
+static inline bool sr_ks(u32 sr_raw)
+{
+	return (sr_raw & 0x40000000) ? true: false;
+}
+
+static inline bool sr_kp(u32 sr_raw)
+{
+	return (sr_raw & 0x20000000) ? true: false;
+}
+
+static inline bool sr_nx(u32 sr_raw)
+{
+	return (sr_raw & 0x10000000) ? true: false;
+}
+
 static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
 					  struct kvmppc_pte *pte, bool data);
 static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 					     u64 *vsid);
 
-static struct kvmppc_sr *find_sr(struct kvmppc_vcpu_book3s *vcpu_book3s, gva_t eaddr)
+static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr)
 {
-	return &vcpu_book3s->sr[(eaddr >> 28) & 0xf];
+	return vcpu->arch.shared->sr[(eaddr >> 28) & 0xf];
 }
 
 static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
@@ -87,7 +112,7 @@ static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu)
 }
 
 static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3s,
-				      struct kvmppc_sr *sre, gva_t eaddr,
+				      u32 sre, gva_t eaddr,
 				      bool primary)
 {
 	u32 page, hash, pteg, htabmask;
@@ -96,7 +121,7 @@ static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3
 	page = (eaddr & 0x0FFFFFFF) >> 12;
 	htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
 
-	hash = ((sre->vsid ^ page) << 6);
+	hash = ((sr_vsid(sre) ^ page) << 6);
 	if (!primary)
 		hash = ~hash;
 	hash &= htabmask;
@@ -104,8 +129,8 @@ static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3
 	pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
 
 	dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
-		vcpu_book3s->vcpu.arch.pc, eaddr, vcpu_book3s->sdr1, pteg,
-		sre->vsid);
+		kvmppc_get_pc(&vcpu_book3s->vcpu), eaddr, vcpu_book3s->sdr1, pteg,
+		sr_vsid(sre));
 
 	r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT);
 	if (kvm_is_error_hva(r))
@@ -113,10 +138,9 @@ static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3
 	return r | (pteg & ~PAGE_MASK);
 }
 
-static u32 kvmppc_mmu_book3s_32_get_ptem(struct kvmppc_sr *sre, gva_t eaddr,
-				    bool primary)
+static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary)
 {
-	return ((eaddr & 0x0fffffff) >> 22) | (sre->vsid << 7) |
+	return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) |
 	       (primary ? 0 : 0x40) | 0x80000000;
 }
 
@@ -133,7 +157,7 @@ static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
 		else
 			bat = &vcpu_book3s->ibat[i];
 
-		if (vcpu->arch.msr & MSR_PR) {
+		if (vcpu->arch.shared->msr & MSR_PR) {
 			if (!bat->vp)
 				continue;
 		} else {
@@ -180,17 +204,17 @@ static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
 				     bool primary)
 {
 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
-	struct kvmppc_sr *sre;
+	u32 sre;
 	hva_t ptegp;
 	u32 pteg[16];
 	u32 ptem = 0;
 	int i;
 	int found = 0;
 
-	sre = find_sr(vcpu_book3s, eaddr);
+	sre = find_sr(vcpu, eaddr);
 
 	dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
-		    sre->vsid, sre->raw);
+		    sr_vsid(sre), sre);
 
 	pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
 
@@ -214,8 +238,8 @@ static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
 			pte->raddr = (pteg[i+1] & ~(0xFFFULL)) | (eaddr & 0xFFF);
 			pp = pteg[i+1] & 3;
 
-			if ((sre->Kp &&  (vcpu->arch.msr & MSR_PR)) ||
-			    (sre->Ks && !(vcpu->arch.msr & MSR_PR)))
+			if ((sr_kp(sre) &&  (vcpu->arch.shared->msr & MSR_PR)) ||
+			    (sr_ks(sre) && !(vcpu->arch.shared->msr & MSR_PR)))
 				pp |= 4;
 
 			pte->may_write = false;
@@ -269,7 +293,7 @@ no_page_found:
 		dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
 			    to_book3s(vcpu)->sdr1, ptegp);
 		for (i=0; i<16; i+=2) {
-			dprintk_pte("   %02d: 0x%x - 0x%x (0x%llx)\n",
+			dprintk_pte("   %02d: 0x%x - 0x%x (0x%x)\n",
 				    i, pteg[i], pteg[i+1], ptem);
 		}
 	}
@@ -281,8 +305,24 @@ static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 				      struct kvmppc_pte *pte, bool data)
 {
 	int r;
+	ulong mp_ea = vcpu->arch.magic_page_ea;
 
 	pte->eaddr = eaddr;
+
+	/* Magic page override */
+	if (unlikely(mp_ea) &&
+	    unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
+	    !(vcpu->arch.shared->msr & MSR_PR)) {
+		pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
+		pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff);
+		pte->raddr &= KVM_PAM;
+		pte->may_execute = true;
+		pte->may_read = true;
+		pte->may_write = true;
+
+		return 0;
+	}
+
 	r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data);
 	if (r < 0)
 	       r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, true);
@@ -295,30 +335,13 @@ static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 
 static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
 {
-	return to_book3s(vcpu)->sr[srnum].raw;
+	return vcpu->arch.shared->sr[srnum];
 }
 
 static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
 					ulong value)
 {
-	struct kvmppc_sr *sre;
-
-	sre = &to_book3s(vcpu)->sr[srnum];
-
-	/* Flush any left-over shadows from the previous SR */
-
-	/* XXX Not necessary? */
-	/* kvmppc_mmu_pte_flush(vcpu, ((u64)sre->vsid) << 28, 0xf0000000ULL); */
-
-	/* And then put in the new SR */
-	sre->raw = value;
-	sre->vsid = (value & 0x0fffffff);
-	sre->valid = (value & 0x80000000) ? false : true;
-	sre->Ks = (value & 0x40000000) ? true : false;
-	sre->Kp = (value & 0x20000000) ? true : false;
-	sre->nx = (value & 0x10000000) ? true : false;
-
-	/* Map the new segment */
+	vcpu->arch.shared->sr[srnum] = value;
 	kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
 }
 
@@ -331,19 +354,19 @@ static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 					     u64 *vsid)
 {
 	ulong ea = esid << SID_SHIFT;
-	struct kvmppc_sr *sr;
+	u32 sr;
 	u64 gvsid = esid;
 
-	if (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
-		sr = find_sr(to_book3s(vcpu), ea);
-		if (sr->valid)
-			gvsid = sr->vsid;
+	if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
+		sr = find_sr(vcpu, ea);
+		if (sr_valid(sr))
+			gvsid = sr_vsid(sr);
 	}
 
 	/* In case we only have one of MSR_IR or MSR_DR set, let's put
 	   that in the real-mode context (and hope RM doesn't access
 	   high memory) */
-	switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
+	switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
 	case 0:
 		*vsid = VSID_REAL | esid;
 		break;
@@ -354,8 +377,8 @@ static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 		*vsid = VSID_REAL_DR | gvsid;
 		break;
 	case MSR_DR|MSR_IR:
-		if (sr->valid)
-			*vsid = sr->vsid;
+		if (sr_valid(sr))
+			*vsid = sr_vsid(sr);
 		else
 			*vsid = VSID_BAT | gvsid;
 		break;
@@ -363,7 +386,7 @@ static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 		BUG();
 	}
 
-	if (vcpu->arch.msr & MSR_PR)
+	if (vcpu->arch.shared->msr & MSR_PR)
 		*vsid |= VSID_PR;
 
 	return 0;

+ 43 - 32
arch/powerpc/kvm/book3s_32_mmu_host.c

@@ -19,7 +19,6 @@
  */
 
 #include <linux/kvm_host.h>
-#include <linux/hash.h>
 
 #include <asm/kvm_ppc.h>
 #include <asm/kvm_book3s.h>
@@ -77,7 +76,14 @@ void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  * a hash, so we don't waste cycles on looping */
 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
 {
-	return hash_64(gvsid, SID_MAP_BITS);
+	return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
 }
 
 
@@ -86,7 +92,7 @@ static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
 	struct kvmppc_sid_map *map;
 	u16 sid_map_mask;
 
-	if (vcpu->arch.msr & MSR_PR)
+	if (vcpu->arch.shared->msr & MSR_PR)
 		gvsid |= VSID_PR;
 
 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
@@ -147,8 +153,8 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
 	struct hpte_cache *pte;
 
 	/* Get host physical address for gpa */
-	hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
-	if (kvm_is_error_hva(hpaddr)) {
+	hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
+	if (is_error_pfn(hpaddr)) {
 		printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n",
 				 orig_pte->eaddr);
 		return -EINVAL;
@@ -253,7 +259,7 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
 	u16 sid_map_mask;
 	static int backwards_map = 0;
 
-	if (vcpu->arch.msr & MSR_PR)
+	if (vcpu->arch.shared->msr & MSR_PR)
 		gvsid |= VSID_PR;
 
 	/* We might get collisions that trap in preceding order, so let's
@@ -269,18 +275,15 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
 	backwards_map = !backwards_map;
 
 	/* Uh-oh ... out of mappings. Let's flush! */
-	if (vcpu_book3s->vsid_next >= vcpu_book3s->vsid_max) {
-		vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
+	if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) {
+		vcpu_book3s->vsid_next = 0;
 		memset(vcpu_book3s->sid_map, 0,
 		       sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
 		kvmppc_mmu_flush_segments(vcpu);
 	}
-	map->host_vsid = vcpu_book3s->vsid_next;
-
-	/* Would have to be 111 to be completely aligned with the rest of
-	   Linux, but that is just way too little space! */
-	vcpu_book3s->vsid_next+=1;
+	map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next];
+	vcpu_book3s->vsid_next++;
 
 	map->guest_vsid = gvsid;
 	map->valid = true;
@@ -327,40 +330,38 @@ void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
 
 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
 {
+	int i;
+
 	kvmppc_mmu_hpte_destroy(vcpu);
 	preempt_disable();
-	__destroy_context(to_book3s(vcpu)->context_id);
+	for (i = 0; i < SID_CONTEXTS; i++)
+		__destroy_context(to_book3s(vcpu)->context_id[i]);
 	preempt_enable();
 }
 
 /* From mm/mmu_context_hash32.c */
-#define CTX_TO_VSID(ctx) (((ctx) * (897 * 16)) & 0xffffff)
+#define CTX_TO_VSID(c, id)	((((c) * (897 * 16)) + (id * 0x111)) & 0xffffff)
 
 int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
 {
 	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
 	int err;
 	ulong sdr1;
+	int i;
+	int j;
 
-	err = __init_new_context();
-	if (err < 0)
-		return -1;
-	vcpu3s->context_id = err;
-
-	vcpu3s->vsid_max = CTX_TO_VSID(vcpu3s->context_id + 1) - 1;
-	vcpu3s->vsid_first = CTX_TO_VSID(vcpu3s->context_id);
-
-#if 0 /* XXX still doesn't guarantee uniqueness */
-	/* We could collide with the Linux vsid space because the vsid
-	 * wraps around at 24 bits. We're safe if we do our own space
-	 * though, so let's always set the highest bit. */
+	for (i = 0; i < SID_CONTEXTS; i++) {
+		err = __init_new_context();
+		if (err < 0)
+			goto init_fail;
+		vcpu3s->context_id[i] = err;
 
-	vcpu3s->vsid_max |= 0x00800000;
-	vcpu3s->vsid_first |= 0x00800000;
-#endif
-	BUG_ON(vcpu3s->vsid_max < vcpu3s->vsid_first);
+		/* Remember context id for this combination */
+		for (j = 0; j < 16; j++)
+			vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j);
+	}
 
-	vcpu3s->vsid_next = vcpu3s->vsid_first;
+	vcpu3s->vsid_next = 0;
 
 	/* Remember where the HTAB is */
 	asm ( "mfsdr1 %0" : "=r"(sdr1) );
@@ -370,4 +371,14 @@ int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
 	kvmppc_mmu_hpte_init(vcpu);
 
 	return 0;
+
+init_fail:
+	for (j = 0; j < i; j++) {
+		if (!vcpu3s->context_id[j])
+			continue;
+
+		__destroy_context(to_book3s(vcpu)->context_id[j]);
+	}
+
+	return -1;
 }

+ 35 - 7
arch/powerpc/kvm/book3s_64_mmu.c

@@ -163,6 +163,22 @@ static int kvmppc_mmu_book3s_64_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 	bool found = false;
 	bool perm_err = false;
 	int second = 0;
+	ulong mp_ea = vcpu->arch.magic_page_ea;
+
+	/* Magic page override */
+	if (unlikely(mp_ea) &&
+	    unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
+	    !(vcpu->arch.shared->msr & MSR_PR)) {
+		gpte->eaddr = eaddr;
+		gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data);
+		gpte->raddr = vcpu->arch.magic_page_pa | (gpte->raddr & 0xfff);
+		gpte->raddr &= KVM_PAM;
+		gpte->may_execute = true;
+		gpte->may_read = true;
+		gpte->may_write = true;
+
+		return 0;
+	}
 
 	slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu_book3s, eaddr);
 	if (!slbe)
@@ -180,9 +196,9 @@ do_second:
 		goto no_page_found;
 	}
 
-	if ((vcpu->arch.msr & MSR_PR) && slbe->Kp)
+	if ((vcpu->arch.shared->msr & MSR_PR) && slbe->Kp)
 		key = 4;
-	else if (!(vcpu->arch.msr & MSR_PR) && slbe->Ks)
+	else if (!(vcpu->arch.shared->msr & MSR_PR) && slbe->Ks)
 		key = 4;
 
 	for (i=0; i<16; i+=2) {
@@ -381,7 +397,7 @@ static void kvmppc_mmu_book3s_64_slbia(struct kvm_vcpu *vcpu)
 	for (i = 1; i < vcpu_book3s->slb_nr; i++)
 		vcpu_book3s->slb[i].valid = false;
 
-	if (vcpu->arch.msr & MSR_IR) {
+	if (vcpu->arch.shared->msr & MSR_IR) {
 		kvmppc_mmu_flush_segments(vcpu);
 		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
 	}
@@ -445,14 +461,15 @@ static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 	ulong ea = esid << SID_SHIFT;
 	struct kvmppc_slb *slb;
 	u64 gvsid = esid;
+	ulong mp_ea = vcpu->arch.magic_page_ea;
 
-	if (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
+	if (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
 		slb = kvmppc_mmu_book3s_64_find_slbe(to_book3s(vcpu), ea);
 		if (slb)
 			gvsid = slb->vsid;
 	}
 
-	switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
+	switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
 	case 0:
 		*vsid = VSID_REAL | esid;
 		break;
@@ -464,7 +481,7 @@ static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 		break;
 	case MSR_DR|MSR_IR:
 		if (!slb)
-			return -ENOENT;
+			goto no_slb;
 
 		*vsid = gvsid;
 		break;
@@ -473,10 +490,21 @@ static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 		break;
 	}
 
-	if (vcpu->arch.msr & MSR_PR)
+	if (vcpu->arch.shared->msr & MSR_PR)
 		*vsid |= VSID_PR;
 
 	return 0;
+
+no_slb:
+	/* Catch magic page case */
+	if (unlikely(mp_ea) &&
+	    unlikely(esid == (mp_ea >> SID_SHIFT)) &&
+	    !(vcpu->arch.shared->msr & MSR_PR)) {
+		*vsid = VSID_REAL | esid;
+		return 0;
+	}
+
+	return -EINVAL;
 }
 
 static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu)

+ 27 - 47
arch/powerpc/kvm/book3s_64_mmu_host.c

@@ -20,7 +20,6 @@
  */
 
 #include <linux/kvm_host.h>
-#include <linux/hash.h>
 
 #include <asm/kvm_ppc.h>
 #include <asm/kvm_book3s.h>
@@ -28,24 +27,9 @@
 #include <asm/machdep.h>
 #include <asm/mmu_context.h>
 #include <asm/hw_irq.h>
+#include "trace.h"
 
 #define PTE_SIZE 12
-#define VSID_ALL 0
-
-/* #define DEBUG_MMU */
-/* #define DEBUG_SLB */
-
-#ifdef DEBUG_MMU
-#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
-#else
-#define dprintk_mmu(a, ...) do { } while(0)
-#endif
-
-#ifdef DEBUG_SLB
-#define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__)
-#else
-#define dprintk_slb(a, ...) do { } while(0)
-#endif
 
 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
 {
@@ -58,34 +42,39 @@ void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  * a hash, so we don't waste cycles on looping */
 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
 {
-	return hash_64(gvsid, SID_MAP_BITS);
+	return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
+		     ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
 }
 
+
 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
 {
 	struct kvmppc_sid_map *map;
 	u16 sid_map_mask;
 
-	if (vcpu->arch.msr & MSR_PR)
+	if (vcpu->arch.shared->msr & MSR_PR)
 		gvsid |= VSID_PR;
 
 	sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
 	map = &to_book3s(vcpu)->sid_map[sid_map_mask];
-	if (map->guest_vsid == gvsid) {
-		dprintk_slb("SLB: Searching: 0x%llx -> 0x%llx\n",
-			    gvsid, map->host_vsid);
+	if (map->valid && (map->guest_vsid == gvsid)) {
+		trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
 		return map;
 	}
 
 	map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
-	if (map->guest_vsid == gvsid) {
-		dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n",
-			    gvsid, map->host_vsid);
+	if (map->valid && (map->guest_vsid == gvsid)) {
+		trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
 		return map;
 	}
 
-	dprintk_slb("SLB: Searching %d/%d: 0x%llx -> not found\n",
-		    sid_map_mask, SID_MAP_MASK - sid_map_mask, gvsid);
+	trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
 	return NULL;
 }
 
@@ -101,18 +90,13 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
 	struct kvmppc_sid_map *map;
 
 	/* Get host physical address for gpa */
-	hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
-	if (kvm_is_error_hva(hpaddr)) {
+	hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
+	if (is_error_pfn(hpaddr)) {
 		printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
 		return -EINVAL;
 	}
 	hpaddr <<= PAGE_SHIFT;
-#if PAGE_SHIFT == 12
-#elif PAGE_SHIFT == 16
-	hpaddr |= orig_pte->raddr & 0xf000;
-#else
-#error Unknown page size
-#endif
+	hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
 
 	/* and write the mapping ea -> hpa into the pt */
 	vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
@@ -161,10 +145,7 @@ map_again:
 	} else {
 		struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu);
 
-		dprintk_mmu("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx\n",
-			    ((rflags & HPTE_R_PP) == 3) ? '-' : 'w',
-			    (rflags & HPTE_R_N) ? '-' : 'x',
-			    orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr);
+		trace_kvm_book3s_64_mmu_map(rflags, hpteg, va, hpaddr, orig_pte);
 
 		/* The ppc_md code may give us a secondary entry even though we
 		   asked for a primary. Fix up. */
@@ -191,7 +172,7 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
 	u16 sid_map_mask;
 	static int backwards_map = 0;
 
-	if (vcpu->arch.msr & MSR_PR)
+	if (vcpu->arch.shared->msr & MSR_PR)
 		gvsid |= VSID_PR;
 
 	/* We might get collisions that trap in preceding order, so let's
@@ -219,8 +200,7 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
 	map->guest_vsid = gvsid;
 	map->valid = true;
 
-	dprintk_slb("SLB: New mapping at %d: 0x%llx -> 0x%llx\n",
-		    sid_map_mask, gvsid, map->host_vsid);
+	trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
 
 	return map;
 }
@@ -292,7 +272,7 @@ int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
 	to_svcpu(vcpu)->slb[slb_index].esid = slb_esid;
 	to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid;
 
-	dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid);
+	trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
 
 	return 0;
 }
@@ -306,7 +286,7 @@ void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
 {
 	kvmppc_mmu_hpte_destroy(vcpu);
-	__destroy_context(to_book3s(vcpu)->context_id);
+	__destroy_context(to_book3s(vcpu)->context_id[0]);
 }
 
 int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
@@ -317,10 +297,10 @@ int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
 	err = __init_new_context();
 	if (err < 0)
 		return -1;
-	vcpu3s->context_id = err;
+	vcpu3s->context_id[0] = err;
 
-	vcpu3s->vsid_max = ((vcpu3s->context_id + 1) << USER_ESID_BITS) - 1;
-	vcpu3s->vsid_first = vcpu3s->context_id << USER_ESID_BITS;
+	vcpu3s->vsid_max = ((vcpu3s->context_id[0] + 1) << USER_ESID_BITS) - 1;
+	vcpu3s->vsid_first = vcpu3s->context_id[0] << USER_ESID_BITS;
 	vcpu3s->vsid_next = vcpu3s->vsid_first;
 
 	kvmppc_mmu_hpte_init(vcpu);

+ 29 - 44
arch/powerpc/kvm/book3s_emulate.c

@@ -73,8 +73,8 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		switch (get_xop(inst)) {
 		case OP_19_XOP_RFID:
 		case OP_19_XOP_RFI:
-			kvmppc_set_pc(vcpu, vcpu->arch.srr0);
-			kvmppc_set_msr(vcpu, vcpu->arch.srr1);
+			kvmppc_set_pc(vcpu, vcpu->arch.shared->srr0);
+			kvmppc_set_msr(vcpu, vcpu->arch.shared->srr1);
 			*advance = 0;
 			break;
 
@@ -86,14 +86,15 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
 	case 31:
 		switch (get_xop(inst)) {
 		case OP_31_XOP_MFMSR:
-			kvmppc_set_gpr(vcpu, get_rt(inst), vcpu->arch.msr);
+			kvmppc_set_gpr(vcpu, get_rt(inst),
+				       vcpu->arch.shared->msr);
 			break;
 		case OP_31_XOP_MTMSRD:
 		{
 			ulong rs = kvmppc_get_gpr(vcpu, get_rs(inst));
 			if (inst & 0x10000) {
-				vcpu->arch.msr &= ~(MSR_RI | MSR_EE);
-				vcpu->arch.msr |= rs & (MSR_RI | MSR_EE);
+				vcpu->arch.shared->msr &= ~(MSR_RI | MSR_EE);
+				vcpu->arch.shared->msr |= rs & (MSR_RI | MSR_EE);
 			} else
 				kvmppc_set_msr(vcpu, rs);
 			break;
@@ -204,14 +205,14 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
 				ra = kvmppc_get_gpr(vcpu, get_ra(inst));
 
 			addr = (ra + rb) & ~31ULL;
-			if (!(vcpu->arch.msr & MSR_SF))
+			if (!(vcpu->arch.shared->msr & MSR_SF))
 				addr &= 0xffffffff;
 			vaddr = addr;
 
 			r = kvmppc_st(vcpu, &addr, 32, zeros, true);
 			if ((r == -ENOENT) || (r == -EPERM)) {
 				*advance = 0;
-				vcpu->arch.dear = vaddr;
+				vcpu->arch.shared->dar = vaddr;
 				to_svcpu(vcpu)->fault_dar = vaddr;
 
 				dsisr = DSISR_ISSTORE;
@@ -220,7 +221,7 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
 				else if (r == -EPERM)
 					dsisr |= DSISR_PROTFAULT;
 
-				to_book3s(vcpu)->dsisr = dsisr;
+				vcpu->arch.shared->dsisr = dsisr;
 				to_svcpu(vcpu)->fault_dsisr = dsisr;
 
 				kvmppc_book3s_queue_irqprio(vcpu,
@@ -263,7 +264,7 @@ void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, bool upper,
 	}
 }
 
-static u32 kvmppc_read_bat(struct kvm_vcpu *vcpu, int sprn)
+static struct kvmppc_bat *kvmppc_find_bat(struct kvm_vcpu *vcpu, int sprn)
 {
 	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
 	struct kvmppc_bat *bat;
@@ -285,35 +286,7 @@ static u32 kvmppc_read_bat(struct kvm_vcpu *vcpu, int sprn)
 		BUG();
 	}
 
-	if (sprn % 2)
-		return bat->raw >> 32;
-	else
-		return bat->raw;
-}
-
-static void kvmppc_write_bat(struct kvm_vcpu *vcpu, int sprn, u32 val)
-{
-	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
-	struct kvmppc_bat *bat;
-
-	switch (sprn) {
-	case SPRN_IBAT0U ... SPRN_IBAT3L:
-		bat = &vcpu_book3s->ibat[(sprn - SPRN_IBAT0U) / 2];
-		break;
-	case SPRN_IBAT4U ... SPRN_IBAT7L:
-		bat = &vcpu_book3s->ibat[4 + ((sprn - SPRN_IBAT4U) / 2)];
-		break;
-	case SPRN_DBAT0U ... SPRN_DBAT3L:
-		bat = &vcpu_book3s->dbat[(sprn - SPRN_DBAT0U) / 2];
-		break;
-	case SPRN_DBAT4U ... SPRN_DBAT7L:
-		bat = &vcpu_book3s->dbat[4 + ((sprn - SPRN_DBAT4U) / 2)];
-		break;
-	default:
-		BUG();
-	}
-
-	kvmppc_set_bat(vcpu, bat, !(sprn % 2), val);
+	return bat;
 }
 
 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
@@ -326,10 +299,10 @@ int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
 		to_book3s(vcpu)->sdr1 = spr_val;
 		break;
 	case SPRN_DSISR:
-		to_book3s(vcpu)->dsisr = spr_val;
+		vcpu->arch.shared->dsisr = spr_val;
 		break;
 	case SPRN_DAR:
-		vcpu->arch.dear = spr_val;
+		vcpu->arch.shared->dar = spr_val;
 		break;
 	case SPRN_HIOR:
 		to_book3s(vcpu)->hior = spr_val;
@@ -338,12 +311,16 @@ int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
 	case SPRN_IBAT4U ... SPRN_IBAT7L:
 	case SPRN_DBAT0U ... SPRN_DBAT3L:
 	case SPRN_DBAT4U ... SPRN_DBAT7L:
-		kvmppc_write_bat(vcpu, sprn, (u32)spr_val);
+	{
+		struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn);
+
+		kvmppc_set_bat(vcpu, bat, !(sprn % 2), (u32)spr_val);
 		/* BAT writes happen so rarely that we're ok to flush
 		 * everything here */
 		kvmppc_mmu_pte_flush(vcpu, 0, 0);
 		kvmppc_mmu_flush_segments(vcpu);
 		break;
+	}
 	case SPRN_HID0:
 		to_book3s(vcpu)->hid[0] = spr_val;
 		break;
@@ -433,16 +410,24 @@ int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
 	case SPRN_IBAT4U ... SPRN_IBAT7L:
 	case SPRN_DBAT0U ... SPRN_DBAT3L:
 	case SPRN_DBAT4U ... SPRN_DBAT7L:
-		kvmppc_set_gpr(vcpu, rt, kvmppc_read_bat(vcpu, sprn));
+	{
+		struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn);
+
+		if (sprn % 2)
+			kvmppc_set_gpr(vcpu, rt, bat->raw >> 32);
+		else
+			kvmppc_set_gpr(vcpu, rt, bat->raw);
+
 		break;
+	}
 	case SPRN_SDR1:
 		kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->sdr1);
 		break;
 	case SPRN_DSISR:
-		kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->dsisr);
+		kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dsisr);
 		break;
 	case SPRN_DAR:
-		kvmppc_set_gpr(vcpu, rt, vcpu->arch.dear);
+		kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dar);
 		break;
 	case SPRN_HIOR:
 		kvmppc_set_gpr(vcpu, rt, to_book3s(vcpu)->hior);

+ 101 - 39
arch/powerpc/kvm/book3s_mmu_hpte.c

@@ -21,6 +21,7 @@
 #include <linux/kvm_host.h>
 #include <linux/hash.h>
 #include <linux/slab.h>
+#include "trace.h"
 
 #include <asm/kvm_ppc.h>
 #include <asm/kvm_book3s.h>
@@ -30,14 +31,6 @@
 
 #define PTE_SIZE	12
 
-/* #define DEBUG_MMU */
-
-#ifdef DEBUG_MMU
-#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
-#else
-#define dprintk_mmu(a, ...) do { } while(0)
-#endif
-
 static struct kmem_cache *hpte_cache;
 
 static inline u64 kvmppc_mmu_hash_pte(u64 eaddr)
@@ -45,6 +38,12 @@ static inline u64 kvmppc_mmu_hash_pte(u64 eaddr)
 	return hash_64(eaddr >> PTE_SIZE, HPTEG_HASH_BITS_PTE);
 }
 
+static inline u64 kvmppc_mmu_hash_pte_long(u64 eaddr)
+{
+	return hash_64((eaddr & 0x0ffff000) >> PTE_SIZE,
+		       HPTEG_HASH_BITS_PTE_LONG);
+}
+
 static inline u64 kvmppc_mmu_hash_vpte(u64 vpage)
 {
 	return hash_64(vpage & 0xfffffffffULL, HPTEG_HASH_BITS_VPTE);
@@ -60,77 +59,128 @@ void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
 {
 	u64 index;
 
+	trace_kvm_book3s_mmu_map(pte);
+
+	spin_lock(&vcpu->arch.mmu_lock);
+
 	/* Add to ePTE list */
 	index = kvmppc_mmu_hash_pte(pte->pte.eaddr);
-	hlist_add_head(&pte->list_pte, &vcpu->arch.hpte_hash_pte[index]);
+	hlist_add_head_rcu(&pte->list_pte, &vcpu->arch.hpte_hash_pte[index]);
+
+	/* Add to ePTE_long list */
+	index = kvmppc_mmu_hash_pte_long(pte->pte.eaddr);
+	hlist_add_head_rcu(&pte->list_pte_long,
+			   &vcpu->arch.hpte_hash_pte_long[index]);
 
 	/* Add to vPTE list */
 	index = kvmppc_mmu_hash_vpte(pte->pte.vpage);
-	hlist_add_head(&pte->list_vpte, &vcpu->arch.hpte_hash_vpte[index]);
+	hlist_add_head_rcu(&pte->list_vpte, &vcpu->arch.hpte_hash_vpte[index]);
 
 	/* Add to vPTE_long list */
 	index = kvmppc_mmu_hash_vpte_long(pte->pte.vpage);
-	hlist_add_head(&pte->list_vpte_long,
-		       &vcpu->arch.hpte_hash_vpte_long[index]);
+	hlist_add_head_rcu(&pte->list_vpte_long,
+			   &vcpu->arch.hpte_hash_vpte_long[index]);
+
+	spin_unlock(&vcpu->arch.mmu_lock);
+}
+
+static void free_pte_rcu(struct rcu_head *head)
+{
+	struct hpte_cache *pte = container_of(head, struct hpte_cache, rcu_head);
+	kmem_cache_free(hpte_cache, pte);
 }
 
 static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
 {
-	dprintk_mmu("KVM: Flushing SPT: 0x%lx (0x%llx) -> 0x%llx\n",
-		    pte->pte.eaddr, pte->pte.vpage, pte->host_va);
+	trace_kvm_book3s_mmu_invalidate(pte);
 
 	/* Different for 32 and 64 bit */
 	kvmppc_mmu_invalidate_pte(vcpu, pte);
 
+	spin_lock(&vcpu->arch.mmu_lock);
+
+	/* pte already invalidated in between? */
+	if (hlist_unhashed(&pte->list_pte)) {
+		spin_unlock(&vcpu->arch.mmu_lock);
+		return;
+	}
+
+	hlist_del_init_rcu(&pte->list_pte);
+	hlist_del_init_rcu(&pte->list_pte_long);
+	hlist_del_init_rcu(&pte->list_vpte);
+	hlist_del_init_rcu(&pte->list_vpte_long);
+
 	if (pte->pte.may_write)
 		kvm_release_pfn_dirty(pte->pfn);
 	else
 		kvm_release_pfn_clean(pte->pfn);
 
-	hlist_del(&pte->list_pte);
-	hlist_del(&pte->list_vpte);
-	hlist_del(&pte->list_vpte_long);
+	spin_unlock(&vcpu->arch.mmu_lock);
 
 	vcpu->arch.hpte_cache_count--;
-	kmem_cache_free(hpte_cache, pte);
+	call_rcu(&pte->rcu_head, free_pte_rcu);
 }
 
 static void kvmppc_mmu_pte_flush_all(struct kvm_vcpu *vcpu)
 {
 	struct hpte_cache *pte;
-	struct hlist_node *node, *tmp;
+	struct hlist_node *node;
 	int i;
 
+	rcu_read_lock();
+
 	for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) {
 		struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i];
 
-		hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte_long)
+		hlist_for_each_entry_rcu(pte, node, list, list_vpte_long)
 			invalidate_pte(vcpu, pte);
 	}
+
+	rcu_read_unlock();
 }
 
 static void kvmppc_mmu_pte_flush_page(struct kvm_vcpu *vcpu, ulong guest_ea)
 {
 	struct hlist_head *list;
-	struct hlist_node *node, *tmp;
+	struct hlist_node *node;
 	struct hpte_cache *pte;
 
 	/* Find the list of entries in the map */
 	list = &vcpu->arch.hpte_hash_pte[kvmppc_mmu_hash_pte(guest_ea)];
 
+	rcu_read_lock();
+
 	/* Check the list for matching entries and invalidate */
-	hlist_for_each_entry_safe(pte, node, tmp, list, list_pte)
+	hlist_for_each_entry_rcu(pte, node, list, list_pte)
 		if ((pte->pte.eaddr & ~0xfffUL) == guest_ea)
 			invalidate_pte(vcpu, pte);
+
+	rcu_read_unlock();
 }
 
-void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
+static void kvmppc_mmu_pte_flush_long(struct kvm_vcpu *vcpu, ulong guest_ea)
 {
-	u64 i;
+	struct hlist_head *list;
+	struct hlist_node *node;
+	struct hpte_cache *pte;
 
-	dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%lx & 0x%lx\n",
-		    vcpu->arch.hpte_cache_count, guest_ea, ea_mask);
+	/* Find the list of entries in the map */
+	list = &vcpu->arch.hpte_hash_pte_long[
+			kvmppc_mmu_hash_pte_long(guest_ea)];
 
+	rcu_read_lock();
+
+	/* Check the list for matching entries and invalidate */
+	hlist_for_each_entry_rcu(pte, node, list, list_pte_long)
+		if ((pte->pte.eaddr & 0x0ffff000UL) == guest_ea)
+			invalidate_pte(vcpu, pte);
+
+	rcu_read_unlock();
+}
+
+void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
+{
+	trace_kvm_book3s_mmu_flush("", vcpu, guest_ea, ea_mask);
 	guest_ea &= ea_mask;
 
 	switch (ea_mask) {
@@ -138,9 +188,7 @@ void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
 		kvmppc_mmu_pte_flush_page(vcpu, guest_ea);
 		break;
 	case 0x0ffff000:
-		/* 32-bit flush w/o segment, go through all possible segments */
-		for (i = 0; i < 0x100000000ULL; i += 0x10000000ULL)
-			kvmppc_mmu_pte_flush(vcpu, guest_ea | i, ~0xfffUL);
+		kvmppc_mmu_pte_flush_long(vcpu, guest_ea);
 		break;
 	case 0:
 		/* Doing a complete flush -> start from scratch */
@@ -156,39 +204,46 @@ void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
 static void kvmppc_mmu_pte_vflush_short(struct kvm_vcpu *vcpu, u64 guest_vp)
 {
 	struct hlist_head *list;
-	struct hlist_node *node, *tmp;
+	struct hlist_node *node;
 	struct hpte_cache *pte;
 	u64 vp_mask = 0xfffffffffULL;
 
 	list = &vcpu->arch.hpte_hash_vpte[kvmppc_mmu_hash_vpte(guest_vp)];
 
+	rcu_read_lock();
+
 	/* Check the list for matching entries and invalidate */
-	hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte)
+	hlist_for_each_entry_rcu(pte, node, list, list_vpte)
 		if ((pte->pte.vpage & vp_mask) == guest_vp)
 			invalidate_pte(vcpu, pte);
+
+	rcu_read_unlock();
 }
 
 /* Flush with mask 0xffffff000 */
 static void kvmppc_mmu_pte_vflush_long(struct kvm_vcpu *vcpu, u64 guest_vp)
 {
 	struct hlist_head *list;
-	struct hlist_node *node, *tmp;
+	struct hlist_node *node;
 	struct hpte_cache *pte;
 	u64 vp_mask = 0xffffff000ULL;
 
 	list = &vcpu->arch.hpte_hash_vpte_long[
 		kvmppc_mmu_hash_vpte_long(guest_vp)];
 
+	rcu_read_lock();
+
 	/* Check the list for matching entries and invalidate */
-	hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte_long)
+	hlist_for_each_entry_rcu(pte, node, list, list_vpte_long)
 		if ((pte->pte.vpage & vp_mask) == guest_vp)
 			invalidate_pte(vcpu, pte);
+
+	rcu_read_unlock();
 }
 
 void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
 {
-	dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
-		    vcpu->arch.hpte_cache_count, guest_vp, vp_mask);
+	trace_kvm_book3s_mmu_flush("v", vcpu, guest_vp, vp_mask);
 	guest_vp &= vp_mask;
 
 	switch(vp_mask) {
@@ -206,21 +261,24 @@ void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
 
 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
 {
-	struct hlist_node *node, *tmp;
+	struct hlist_node *node;
 	struct hpte_cache *pte;
 	int i;
 
-	dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%lx - 0x%lx\n",
-		    vcpu->arch.hpte_cache_count, pa_start, pa_end);
+	trace_kvm_book3s_mmu_flush("p", vcpu, pa_start, pa_end);
+
+	rcu_read_lock();
 
 	for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) {
 		struct hlist_head *list = &vcpu->arch.hpte_hash_vpte_long[i];
 
-		hlist_for_each_entry_safe(pte, node, tmp, list, list_vpte_long)
+		hlist_for_each_entry_rcu(pte, node, list, list_vpte_long)
 			if ((pte->pte.raddr >= pa_start) &&
 			    (pte->pte.raddr < pa_end))
 				invalidate_pte(vcpu, pte);
 	}
+
+	rcu_read_unlock();
 }
 
 struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
@@ -254,11 +312,15 @@ int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu)
 	/* init hpte lookup hashes */
 	kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte,
 				  ARRAY_SIZE(vcpu->arch.hpte_hash_pte));
+	kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_pte_long,
+				  ARRAY_SIZE(vcpu->arch.hpte_hash_pte_long));
 	kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte,
 				  ARRAY_SIZE(vcpu->arch.hpte_hash_vpte));
 	kvmppc_mmu_hpte_init_hash(vcpu->arch.hpte_hash_vpte_long,
 				  ARRAY_SIZE(vcpu->arch.hpte_hash_vpte_long));
 
+	spin_lock_init(&vcpu->arch.mmu_lock);
+
 	return 0;
 }
 

+ 6 - 5
arch/powerpc/kvm/book3s_paired_singles.c

@@ -165,14 +165,15 @@ static inline void kvmppc_sync_qpr(struct kvm_vcpu *vcpu, int rt)
 static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store)
 {
 	u64 dsisr;
+	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
 
-	vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 36, 0);
-	vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0);
-	vcpu->arch.dear = eaddr;
+	shared->msr = kvmppc_set_field(shared->msr, 33, 36, 0);
+	shared->msr = kvmppc_set_field(shared->msr, 42, 47, 0);
+	shared->dar = eaddr;
 	/* Page Fault */
 	dsisr = kvmppc_set_field(0, 33, 33, 1);
 	if (is_store)
-		to_book3s(vcpu)->dsisr = kvmppc_set_field(dsisr, 38, 38, 1);
+		shared->dsisr = kvmppc_set_field(dsisr, 38, 38, 1);
 	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE);
 }
 
@@ -658,7 +659,7 @@ int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu)
 	if (!kvmppc_inst_is_paired_single(vcpu, inst))
 		return EMULATE_FAIL;
 
-	if (!(vcpu->arch.msr & MSR_FP)) {
+	if (!(vcpu->arch.shared->msr & MSR_FP)) {
 		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL);
 		return EMULATE_AGAIN;
 	}

+ 21 - 11
arch/powerpc/kvm/book3s_rmhandlers.S

@@ -202,8 +202,25 @@ _GLOBAL(kvmppc_rmcall)
 
 #if defined(CONFIG_PPC_BOOK3S_32)
 #define STACK_LR	INT_FRAME_SIZE+4
+
+/* load_up_xxx have to run with MSR_DR=0 on Book3S_32 */
+#define MSR_EXT_START						\
+	PPC_STL	r20, _NIP(r1);					\
+	mfmsr	r20;						\
+	LOAD_REG_IMMEDIATE(r3, MSR_DR|MSR_EE);			\
+	andc	r3,r20,r3;		/* Disable DR,EE */	\
+	mtmsr	r3;						\
+	sync
+
+#define MSR_EXT_END						\
+	mtmsr	r20;			/* Enable DR,EE */	\
+	sync;							\
+	PPC_LL	r20, _NIP(r1)
+
 #elif defined(CONFIG_PPC_BOOK3S_64)
 #define STACK_LR	_LINK
+#define MSR_EXT_START
+#define MSR_EXT_END
 #endif
 
 /*
@@ -215,19 +232,12 @@ _GLOBAL(kvmppc_load_up_ ## what);				\
 	PPC_STLU r1, -INT_FRAME_SIZE(r1);			\
 	mflr	r3;						\
 	PPC_STL	r3, STACK_LR(r1);				\
-	PPC_STL	r20, _NIP(r1);					\
-	mfmsr	r20;						\
-	LOAD_REG_IMMEDIATE(r3, MSR_DR|MSR_EE);			\
-	andc	r3,r20,r3;		/* Disable DR,EE */	\
-	mtmsr	r3;						\
-	sync;							\
+	MSR_EXT_START;						\
 								\
 	bl	FUNC(load_up_ ## what);				\
 								\
-	mtmsr	r20;			/* Enable DR,EE */	\
-	sync;							\
+	MSR_EXT_END;						\
 	PPC_LL	r3, STACK_LR(r1);				\
-	PPC_LL	r20, _NIP(r1);					\
 	mtlr	r3;						\
 	addi	r1, r1, INT_FRAME_SIZE;				\
 	blr
@@ -242,10 +252,10 @@ define_load_up(vsx)
 
 .global kvmppc_trampoline_lowmem
 kvmppc_trampoline_lowmem:
-	.long kvmppc_handler_lowmem_trampoline - CONFIG_KERNEL_START
+	PPC_LONG kvmppc_handler_lowmem_trampoline - CONFIG_KERNEL_START
 
 .global kvmppc_trampoline_enter
 kvmppc_trampoline_enter:
-	.long kvmppc_handler_trampoline_enter - CONFIG_KERNEL_START
+	PPC_LONG kvmppc_handler_trampoline_enter - CONFIG_KERNEL_START
 
 #include "book3s_segment.S"

+ 78 - 30
arch/powerpc/kvm/booke.c

@@ -62,9 +62,10 @@ void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
 {
 	int i;
 
-	printk("pc:   %08lx msr:  %08lx\n", vcpu->arch.pc, vcpu->arch.msr);
+	printk("pc:   %08lx msr:  %08llx\n", vcpu->arch.pc, vcpu->arch.shared->msr);
 	printk("lr:   %08lx ctr:  %08lx\n", vcpu->arch.lr, vcpu->arch.ctr);
-	printk("srr0: %08lx srr1: %08lx\n", vcpu->arch.srr0, vcpu->arch.srr1);
+	printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
+					    vcpu->arch.shared->srr1);
 
 	printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);
 
@@ -130,13 +131,19 @@ void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
 void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
                                 struct kvm_interrupt *irq)
 {
-	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_EXTERNAL);
+	unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;
+
+	if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
+		prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;
+
+	kvmppc_booke_queue_irqprio(vcpu, prio);
 }
 
 void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu,
                                   struct kvm_interrupt *irq)
 {
 	clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
+	clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
 }
 
 /* Deliver the interrupt of the corresponding priority, if possible. */
@@ -146,6 +153,26 @@ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
 	int allowed = 0;
 	ulong uninitialized_var(msr_mask);
 	bool update_esr = false, update_dear = false;
+	ulong crit_raw = vcpu->arch.shared->critical;
+	ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
+	bool crit;
+	bool keep_irq = false;
+
+	/* Truncate crit indicators in 32 bit mode */
+	if (!(vcpu->arch.shared->msr & MSR_SF)) {
+		crit_raw &= 0xffffffff;
+		crit_r1 &= 0xffffffff;
+	}
+
+	/* Critical section when crit == r1 */
+	crit = (crit_raw == crit_r1);
+	/* ... and we're in supervisor mode */
+	crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
+
+	if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
+		priority = BOOKE_IRQPRIO_EXTERNAL;
+		keep_irq = true;
+	}
 
 	switch (priority) {
 	case BOOKE_IRQPRIO_DTLB_MISS:
@@ -169,36 +196,38 @@ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
 		break;
 	case BOOKE_IRQPRIO_CRITICAL:
 	case BOOKE_IRQPRIO_WATCHDOG:
-		allowed = vcpu->arch.msr & MSR_CE;
+		allowed = vcpu->arch.shared->msr & MSR_CE;
 		msr_mask = MSR_ME;
 		break;
 	case BOOKE_IRQPRIO_MACHINE_CHECK:
-		allowed = vcpu->arch.msr & MSR_ME;
+		allowed = vcpu->arch.shared->msr & MSR_ME;
 		msr_mask = 0;
 		break;
 	case BOOKE_IRQPRIO_EXTERNAL:
 	case BOOKE_IRQPRIO_DECREMENTER:
 	case BOOKE_IRQPRIO_FIT:
-		allowed = vcpu->arch.msr & MSR_EE;
+		allowed = vcpu->arch.shared->msr & MSR_EE;
+		allowed = allowed && !crit;
 		msr_mask = MSR_CE|MSR_ME|MSR_DE;
 		break;
 	case BOOKE_IRQPRIO_DEBUG:
-		allowed = vcpu->arch.msr & MSR_DE;
+		allowed = vcpu->arch.shared->msr & MSR_DE;
 		msr_mask = MSR_ME;
 		break;
 	}
 
 	if (allowed) {
-		vcpu->arch.srr0 = vcpu->arch.pc;
-		vcpu->arch.srr1 = vcpu->arch.msr;
+		vcpu->arch.shared->srr0 = vcpu->arch.pc;
+		vcpu->arch.shared->srr1 = vcpu->arch.shared->msr;
 		vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority];
 		if (update_esr == true)
 			vcpu->arch.esr = vcpu->arch.queued_esr;
 		if (update_dear == true)
-			vcpu->arch.dear = vcpu->arch.queued_dear;
-		kvmppc_set_msr(vcpu, vcpu->arch.msr & msr_mask);
+			vcpu->arch.shared->dar = vcpu->arch.queued_dear;
+		kvmppc_set_msr(vcpu, vcpu->arch.shared->msr & msr_mask);
 
-		clear_bit(priority, &vcpu->arch.pending_exceptions);
+		if (!keep_irq)
+			clear_bit(priority, &vcpu->arch.pending_exceptions);
 	}
 
 	return allowed;
@@ -208,6 +237,7 @@ static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
 void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
 {
 	unsigned long *pending = &vcpu->arch.pending_exceptions;
+	unsigned long old_pending = vcpu->arch.pending_exceptions;
 	unsigned int priority;
 
 	priority = __ffs(*pending);
@@ -219,6 +249,12 @@ void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
 		                         BITS_PER_BYTE * sizeof(*pending),
 		                         priority + 1);
 	}
+
+	/* Tell the guest about our interrupt status */
+	if (*pending)
+		vcpu->arch.shared->int_pending = 1;
+	else if (old_pending)
+		vcpu->arch.shared->int_pending = 0;
 }
 
 /**
@@ -265,7 +301,7 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		break;
 
 	case BOOKE_INTERRUPT_PROGRAM:
-		if (vcpu->arch.msr & MSR_PR) {
+		if (vcpu->arch.shared->msr & MSR_PR) {
 			/* Program traps generated by user-level software must be handled
 			 * by the guest kernel. */
 			kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
@@ -337,7 +373,15 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 		break;
 
 	case BOOKE_INTERRUPT_SYSCALL:
-		kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
+		if (!(vcpu->arch.shared->msr & MSR_PR) &&
+		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
+			/* KVM PV hypercalls */
+			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
+			r = RESUME_GUEST;
+		} else {
+			/* Guest syscalls */
+			kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
+		}
 		kvmppc_account_exit(vcpu, SYSCALL_EXITS);
 		r = RESUME_GUEST;
 		break;
@@ -466,15 +510,19 @@ int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
 /* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 {
+	int i;
+
 	vcpu->arch.pc = 0;
-	vcpu->arch.msr = 0;
+	vcpu->arch.shared->msr = 0;
 	kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
 
 	vcpu->arch.shadow_pid = 1;
 
-	/* Eye-catching number so we know if the guest takes an interrupt
-	 * before it's programmed its own IVPR. */
+	/* Eye-catching numbers so we know if the guest takes an interrupt
+	 * before it's programmed its own IVPR/IVORs. */
 	vcpu->arch.ivpr = 0x55550000;
+	for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
+		vcpu->arch.ivor[i] = 0x7700 | i * 4;
 
 	kvmppc_init_timing_stats(vcpu);
 
@@ -490,14 +538,14 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 	regs->ctr = vcpu->arch.ctr;
 	regs->lr = vcpu->arch.lr;
 	regs->xer = kvmppc_get_xer(vcpu);
-	regs->msr = vcpu->arch.msr;
-	regs->srr0 = vcpu->arch.srr0;
-	regs->srr1 = vcpu->arch.srr1;
+	regs->msr = vcpu->arch.shared->msr;
+	regs->srr0 = vcpu->arch.shared->srr0;
+	regs->srr1 = vcpu->arch.shared->srr1;
 	regs->pid = vcpu->arch.pid;
-	regs->sprg0 = vcpu->arch.sprg0;
-	regs->sprg1 = vcpu->arch.sprg1;
-	regs->sprg2 = vcpu->arch.sprg2;
-	regs->sprg3 = vcpu->arch.sprg3;
+	regs->sprg0 = vcpu->arch.shared->sprg0;
+	regs->sprg1 = vcpu->arch.shared->sprg1;
+	regs->sprg2 = vcpu->arch.shared->sprg2;
+	regs->sprg3 = vcpu->arch.shared->sprg3;
 	regs->sprg5 = vcpu->arch.sprg4;
 	regs->sprg6 = vcpu->arch.sprg5;
 	regs->sprg7 = vcpu->arch.sprg6;
@@ -518,12 +566,12 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 	vcpu->arch.lr = regs->lr;
 	kvmppc_set_xer(vcpu, regs->xer);
 	kvmppc_set_msr(vcpu, regs->msr);
-	vcpu->arch.srr0 = regs->srr0;
-	vcpu->arch.srr1 = regs->srr1;
-	vcpu->arch.sprg0 = regs->sprg0;
-	vcpu->arch.sprg1 = regs->sprg1;
-	vcpu->arch.sprg2 = regs->sprg2;
-	vcpu->arch.sprg3 = regs->sprg3;
+	vcpu->arch.shared->srr0 = regs->srr0;
+	vcpu->arch.shared->srr1 = regs->srr1;
+	vcpu->arch.shared->sprg0 = regs->sprg0;
+	vcpu->arch.shared->sprg1 = regs->sprg1;
+	vcpu->arch.shared->sprg2 = regs->sprg2;
+	vcpu->arch.shared->sprg3 = regs->sprg3;
 	vcpu->arch.sprg5 = regs->sprg4;
 	vcpu->arch.sprg6 = regs->sprg5;
 	vcpu->arch.sprg7 = regs->sprg6;

+ 6 - 4
arch/powerpc/kvm/booke.h

@@ -46,7 +46,9 @@
 #define BOOKE_IRQPRIO_FIT 17
 #define BOOKE_IRQPRIO_DECREMENTER 18
 #define BOOKE_IRQPRIO_PERFORMANCE_MONITOR 19
-#define BOOKE_IRQPRIO_MAX 19
+/* Internal pseudo-irqprio for level triggered externals */
+#define BOOKE_IRQPRIO_EXTERNAL_LEVEL 20
+#define BOOKE_IRQPRIO_MAX 20
 
 extern unsigned long kvmppc_booke_handlers;
 
@@ -54,12 +56,12 @@ extern unsigned long kvmppc_booke_handlers;
  * changing. */
 static inline void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
 {
-	if ((new_msr & MSR_PR) != (vcpu->arch.msr & MSR_PR))
+	if ((new_msr & MSR_PR) != (vcpu->arch.shared->msr & MSR_PR))
 		kvmppc_mmu_priv_switch(vcpu, new_msr & MSR_PR);
 
-	vcpu->arch.msr = new_msr;
+	vcpu->arch.shared->msr = new_msr;
 
-	if (vcpu->arch.msr & MSR_WE) {
+	if (vcpu->arch.shared->msr & MSR_WE) {
 		kvm_vcpu_block(vcpu);
 		kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
 	};

+ 7 - 7
arch/powerpc/kvm/booke_emulate.c

@@ -31,8 +31,8 @@
 
 static void kvmppc_emul_rfi(struct kvm_vcpu *vcpu)
 {
-	vcpu->arch.pc = vcpu->arch.srr0;
-	kvmppc_set_msr(vcpu, vcpu->arch.srr1);
+	vcpu->arch.pc = vcpu->arch.shared->srr0;
+	kvmppc_set_msr(vcpu, vcpu->arch.shared->srr1);
 }
 
 int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
@@ -62,7 +62,7 @@ int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
 
 		case OP_31_XOP_MFMSR:
 			rt = get_rt(inst);
-			kvmppc_set_gpr(vcpu, rt, vcpu->arch.msr);
+			kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->msr);
 			kvmppc_set_exit_type(vcpu, EMULATED_MFMSR_EXITS);
 			break;
 
@@ -74,13 +74,13 @@ int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
 
 		case OP_31_XOP_WRTEE:
 			rs = get_rs(inst);
-			vcpu->arch.msr = (vcpu->arch.msr & ~MSR_EE)
+			vcpu->arch.shared->msr = (vcpu->arch.shared->msr & ~MSR_EE)
 					| (kvmppc_get_gpr(vcpu, rs) & MSR_EE);
 			kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS);
 			break;
 
 		case OP_31_XOP_WRTEEI:
-			vcpu->arch.msr = (vcpu->arch.msr & ~MSR_EE)
+			vcpu->arch.shared->msr = (vcpu->arch.shared->msr & ~MSR_EE)
 							 | (inst & MSR_EE);
 			kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS);
 			break;
@@ -105,7 +105,7 @@ int kvmppc_booke_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
 
 	switch (sprn) {
 	case SPRN_DEAR:
-		vcpu->arch.dear = spr_val; break;
+		vcpu->arch.shared->dar = spr_val; break;
 	case SPRN_ESR:
 		vcpu->arch.esr = spr_val; break;
 	case SPRN_DBCR0:
@@ -200,7 +200,7 @@ int kvmppc_booke_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
 	case SPRN_IVPR:
 		kvmppc_set_gpr(vcpu, rt, vcpu->arch.ivpr); break;
 	case SPRN_DEAR:
-		kvmppc_set_gpr(vcpu, rt, vcpu->arch.dear); break;
+		kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dar); break;
 	case SPRN_ESR:
 		kvmppc_set_gpr(vcpu, rt, vcpu->arch.esr); break;
 	case SPRN_DBCR0:

+ 2 - 1
arch/powerpc/kvm/booke_interrupts.S

@@ -415,7 +415,8 @@ lightweight_exit:
 	lwz	r8, VCPU_GPR(r8)(r4)
 	lwz	r3, VCPU_PC(r4)
 	mtsrr0	r3
-	lwz	r3, VCPU_MSR(r4)
+	lwz	r3, VCPU_SHARED(r4)
+	lwz	r3, VCPU_SHARED_MSR(r3)
 	oris	r3, r3, KVMPPC_MSR_MASK@h
 	ori	r3, r3, KVMPPC_MSR_MASK@l
 	mtsrr1	r3

+ 7 - 0
arch/powerpc/kvm/e500.c

@@ -117,8 +117,14 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
 	if (err)
 		goto uninit_vcpu;
 
+	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
+	if (!vcpu->arch.shared)
+		goto uninit_tlb;
+
 	return vcpu;
 
+uninit_tlb:
+	kvmppc_e500_tlb_uninit(vcpu_e500);
 uninit_vcpu:
 	kvm_vcpu_uninit(vcpu);
 free_vcpu:
@@ -131,6 +137,7 @@ void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
 {
 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 
+	free_page((unsigned long)vcpu->arch.shared);
 	kvmppc_e500_tlb_uninit(vcpu_e500);
 	kvm_vcpu_uninit(vcpu);
 	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);

+ 9 - 9
arch/powerpc/kvm/e500_tlb.c

@@ -226,8 +226,7 @@ static void kvmppc_e500_stlbe_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
 
 	kvmppc_e500_shadow_release(vcpu_e500, tlbsel, esel);
 	stlbe->mas1 = 0;
-	trace_kvm_stlb_inval(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2,
-			     stlbe->mas3, stlbe->mas7);
+	trace_kvm_stlb_inval(index_of(tlbsel, esel));
 }
 
 static void kvmppc_e500_tlb1_invalidate(struct kvmppc_vcpu_e500 *vcpu_e500,
@@ -298,7 +297,8 @@ static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
 	/* Get reference to new page. */
 	new_page = gfn_to_page(vcpu_e500->vcpu.kvm, gfn);
 	if (is_error_page(new_page)) {
-		printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n", gfn);
+		printk(KERN_ERR "Couldn't get guest page for gfn %lx!\n",
+				(long)gfn);
 		kvm_release_page_clean(new_page);
 		return;
 	}
@@ -314,10 +314,10 @@ static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
 		| MAS1_TID(get_tlb_tid(gtlbe)) | MAS1_TS | MAS1_VALID;
 	stlbe->mas2 = (gvaddr & MAS2_EPN)
 		| e500_shadow_mas2_attrib(gtlbe->mas2,
-				vcpu_e500->vcpu.arch.msr & MSR_PR);
+				vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
 	stlbe->mas3 = (hpaddr & MAS3_RPN)
 		| e500_shadow_mas3_attrib(gtlbe->mas3,
-				vcpu_e500->vcpu.arch.msr & MSR_PR);
+				vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
 	stlbe->mas7 = (hpaddr >> 32) & MAS7_RPN;
 
 	trace_kvm_stlb_write(index_of(tlbsel, esel), stlbe->mas1, stlbe->mas2,
@@ -576,28 +576,28 @@ int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
 
 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
 {
-	unsigned int as = !!(vcpu->arch.msr & MSR_IS);
+	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
 
 	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
 }
 
 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
 {
-	unsigned int as = !!(vcpu->arch.msr & MSR_DS);
+	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
 
 	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
 }
 
 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
 {
-	unsigned int as = !!(vcpu->arch.msr & MSR_IS);
+	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
 
 	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
 }
 
 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
 {
-	unsigned int as = !!(vcpu->arch.msr & MSR_DS);
+	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
 
 	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
 }

+ 1 - 1
arch/powerpc/kvm/e500_tlb.h

@@ -171,7 +171,7 @@ static inline int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
 
 	/* Does it match current guest AS? */
 	/* XXX what about IS != DS? */
-	if (get_tlb_ts(tlbe) != !!(vcpu->arch.msr & MSR_IS))
+	if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS))
 		return 0;
 
 	gpa = get_tlb_raddr(tlbe);

+ 24 - 12
arch/powerpc/kvm/emulate.c

@@ -242,9 +242,11 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
 
 			switch (sprn) {
 			case SPRN_SRR0:
-				kvmppc_set_gpr(vcpu, rt, vcpu->arch.srr0); break;
+				kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->srr0);
+				break;
 			case SPRN_SRR1:
-				kvmppc_set_gpr(vcpu, rt, vcpu->arch.srr1); break;
+				kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->srr1);
+				break;
 			case SPRN_PVR:
 				kvmppc_set_gpr(vcpu, rt, vcpu->arch.pvr); break;
 			case SPRN_PIR:
@@ -261,13 +263,17 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
 				kvmppc_set_gpr(vcpu, rt, get_tb()); break;
 
 			case SPRN_SPRG0:
-				kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg0); break;
+				kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg0);
+				break;
 			case SPRN_SPRG1:
-				kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg1); break;
+				kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg1);
+				break;
 			case SPRN_SPRG2:
-				kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg2); break;
+				kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg2);
+				break;
 			case SPRN_SPRG3:
-				kvmppc_set_gpr(vcpu, rt, vcpu->arch.sprg3); break;
+				kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->sprg3);
+				break;
 			/* Note: SPRG4-7 are user-readable, so we don't get
 			 * a trap. */
 
@@ -320,9 +326,11 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
 			rs = get_rs(inst);
 			switch (sprn) {
 			case SPRN_SRR0:
-				vcpu->arch.srr0 = kvmppc_get_gpr(vcpu, rs); break;
+				vcpu->arch.shared->srr0 = kvmppc_get_gpr(vcpu, rs);
+				break;
 			case SPRN_SRR1:
-				vcpu->arch.srr1 = kvmppc_get_gpr(vcpu, rs); break;
+				vcpu->arch.shared->srr1 = kvmppc_get_gpr(vcpu, rs);
+				break;
 
 			/* XXX We need to context-switch the timebase for
 			 * watchdog and FIT. */
@@ -337,13 +345,17 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
 				break;
 
 			case SPRN_SPRG0:
-				vcpu->arch.sprg0 = kvmppc_get_gpr(vcpu, rs); break;
+				vcpu->arch.shared->sprg0 = kvmppc_get_gpr(vcpu, rs);
+				break;
 			case SPRN_SPRG1:
-				vcpu->arch.sprg1 = kvmppc_get_gpr(vcpu, rs); break;
+				vcpu->arch.shared->sprg1 = kvmppc_get_gpr(vcpu, rs);
+				break;
 			case SPRN_SPRG2:
-				vcpu->arch.sprg2 = kvmppc_get_gpr(vcpu, rs); break;
+				vcpu->arch.shared->sprg2 = kvmppc_get_gpr(vcpu, rs);
+				break;
 			case SPRN_SPRG3:
-				vcpu->arch.sprg3 = kvmppc_get_gpr(vcpu, rs); break;
+				vcpu->arch.shared->sprg3 = kvmppc_get_gpr(vcpu, rs);
+				break;
 
 			default:
 				emulated = kvmppc_core_emulate_mtspr(vcpu, sprn, rs);

+ 87 - 1
arch/powerpc/kvm/powerpc.c

@@ -38,9 +38,56 @@
 
 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 {
-	return !(v->arch.msr & MSR_WE) || !!(v->arch.pending_exceptions);
+	return !(v->arch.shared->msr & MSR_WE) ||
+	       !!(v->arch.pending_exceptions);
 }
 
+int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
+{
+	int nr = kvmppc_get_gpr(vcpu, 11);
+	int r;
+	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
+	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
+	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
+	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
+	unsigned long r2 = 0;
+
+	if (!(vcpu->arch.shared->msr & MSR_SF)) {
+		/* 32 bit mode */
+		param1 &= 0xffffffff;
+		param2 &= 0xffffffff;
+		param3 &= 0xffffffff;
+		param4 &= 0xffffffff;
+	}
+
+	switch (nr) {
+	case HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE:
+	{
+		vcpu->arch.magic_page_pa = param1;
+		vcpu->arch.magic_page_ea = param2;
+
+		r2 = KVM_MAGIC_FEAT_SR;
+
+		r = HC_EV_SUCCESS;
+		break;
+	}
+	case HC_VENDOR_KVM | KVM_HC_FEATURES:
+		r = HC_EV_SUCCESS;
+#if defined(CONFIG_PPC_BOOK3S) /* XXX Missing magic page on BookE */
+		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
+#endif
+
+		/* Second return value is in r4 */
+		break;
+	default:
+		r = HC_EV_UNIMPLEMENTED;
+		break;
+	}
+
+	kvmppc_set_gpr(vcpu, 4, r2);
+
+	return r;
+}
 
 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
 {
@@ -145,8 +192,10 @@ int kvm_dev_ioctl_check_extension(long ext)
 	case KVM_CAP_PPC_SEGSTATE:
 	case KVM_CAP_PPC_PAIRED_SINGLES:
 	case KVM_CAP_PPC_UNSET_IRQ:
+	case KVM_CAP_PPC_IRQ_LEVEL:
 	case KVM_CAP_ENABLE_CAP:
 	case KVM_CAP_PPC_OSI:
+	case KVM_CAP_PPC_GET_PVINFO:
 		r = 1;
 		break;
 	case KVM_CAP_COALESCED_MMIO:
@@ -534,16 +583,53 @@ out:
 	return r;
 }
 
+static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
+{
+	u32 inst_lis = 0x3c000000;
+	u32 inst_ori = 0x60000000;
+	u32 inst_nop = 0x60000000;
+	u32 inst_sc = 0x44000002;
+	u32 inst_imm_mask = 0xffff;
+
+	/*
+	 * The hypercall to get into KVM from within guest context is as
+	 * follows:
+	 *
+	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
+	 *    ori r0, KVM_SC_MAGIC_R0@l
+	 *    sc
+	 *    nop
+	 */
+	pvinfo->hcall[0] = inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask);
+	pvinfo->hcall[1] = inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask);
+	pvinfo->hcall[2] = inst_sc;
+	pvinfo->hcall[3] = inst_nop;
+
+	return 0;
+}
+
 long kvm_arch_vm_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
 {
+	void __user *argp = (void __user *)arg;
 	long r;
 
 	switch (ioctl) {
+	case KVM_PPC_GET_PVINFO: {
+		struct kvm_ppc_pvinfo pvinfo;
+		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
+		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
+			r = -EFAULT;
+			goto out;
+		}
+
+		break;
+	}
 	default:
 		r = -ENOTTY;
 	}
 
+out:
 	return r;
 }
 

+ 239 - 0
arch/powerpc/kvm/trace.h

@@ -98,6 +98,245 @@ TRACE_EVENT(kvm_gtlb_write,
 		__entry->word1, __entry->word2)
 );
 
+
+/*************************************************************************
+ *                         Book3S trace points                           *
+ *************************************************************************/
+
+#ifdef CONFIG_PPC_BOOK3S
+
+TRACE_EVENT(kvm_book3s_exit,
+	TP_PROTO(unsigned int exit_nr, struct kvm_vcpu *vcpu),
+	TP_ARGS(exit_nr, vcpu),
+
+	TP_STRUCT__entry(
+		__field(	unsigned int,	exit_nr		)
+		__field(	unsigned long,	pc		)
+		__field(	unsigned long,	msr		)
+		__field(	unsigned long,	dar		)
+		__field(	unsigned long,	srr1		)
+	),
+
+	TP_fast_assign(
+		__entry->exit_nr	= exit_nr;
+		__entry->pc		= kvmppc_get_pc(vcpu);
+		__entry->dar		= kvmppc_get_fault_dar(vcpu);
+		__entry->msr		= vcpu->arch.shared->msr;
+		__entry->srr1		= to_svcpu(vcpu)->shadow_srr1;
+	),
+
+	TP_printk("exit=0x%x | pc=0x%lx | msr=0x%lx | dar=0x%lx | srr1=0x%lx",
+		  __entry->exit_nr, __entry->pc, __entry->msr, __entry->dar,
+		  __entry->srr1)
+);
+
+TRACE_EVENT(kvm_book3s_reenter,
+	TP_PROTO(int r, struct kvm_vcpu *vcpu),
+	TP_ARGS(r, vcpu),
+
+	TP_STRUCT__entry(
+		__field(	unsigned int,	r		)
+		__field(	unsigned long,	pc		)
+	),
+
+	TP_fast_assign(
+		__entry->r		= r;
+		__entry->pc		= kvmppc_get_pc(vcpu);
+	),
+
+	TP_printk("reentry r=%d | pc=0x%lx", __entry->r, __entry->pc)
+);
+
+#ifdef CONFIG_PPC_BOOK3S_64
+
+TRACE_EVENT(kvm_book3s_64_mmu_map,
+	TP_PROTO(int rflags, ulong hpteg, ulong va, pfn_t hpaddr,
+		 struct kvmppc_pte *orig_pte),
+	TP_ARGS(rflags, hpteg, va, hpaddr, orig_pte),
+
+	TP_STRUCT__entry(
+		__field(	unsigned char,		flag_w		)
+		__field(	unsigned char,		flag_x		)
+		__field(	unsigned long,		eaddr		)
+		__field(	unsigned long,		hpteg		)
+		__field(	unsigned long,		va		)
+		__field(	unsigned long long,	vpage		)
+		__field(	unsigned long,		hpaddr		)
+	),
+
+	TP_fast_assign(
+		__entry->flag_w	= ((rflags & HPTE_R_PP) == 3) ? '-' : 'w';
+		__entry->flag_x	= (rflags & HPTE_R_N) ? '-' : 'x';
+		__entry->eaddr	= orig_pte->eaddr;
+		__entry->hpteg	= hpteg;
+		__entry->va	= va;
+		__entry->vpage	= orig_pte->vpage;
+		__entry->hpaddr	= hpaddr;
+	),
+
+	TP_printk("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx",
+		  __entry->flag_w, __entry->flag_x, __entry->eaddr,
+		  __entry->hpteg, __entry->va, __entry->vpage, __entry->hpaddr)
+);
+
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+TRACE_EVENT(kvm_book3s_mmu_map,
+	TP_PROTO(struct hpte_cache *pte),
+	TP_ARGS(pte),
+
+	TP_STRUCT__entry(
+		__field(	u64,		host_va		)
+		__field(	u64,		pfn		)
+		__field(	ulong,		eaddr		)
+		__field(	u64,		vpage		)
+		__field(	ulong,		raddr		)
+		__field(	int,		flags		)
+	),
+
+	TP_fast_assign(
+		__entry->host_va	= pte->host_va;
+		__entry->pfn		= pte->pfn;
+		__entry->eaddr		= pte->pte.eaddr;
+		__entry->vpage		= pte->pte.vpage;
+		__entry->raddr		= pte->pte.raddr;
+		__entry->flags		= (pte->pte.may_read ? 0x4 : 0) |
+					  (pte->pte.may_write ? 0x2 : 0) |
+					  (pte->pte.may_execute ? 0x1 : 0);
+	),
+
+	TP_printk("Map: hva=%llx pfn=%llx ea=%lx vp=%llx ra=%lx [%x]",
+		  __entry->host_va, __entry->pfn, __entry->eaddr,
+		  __entry->vpage, __entry->raddr, __entry->flags)
+);
+
+TRACE_EVENT(kvm_book3s_mmu_invalidate,
+	TP_PROTO(struct hpte_cache *pte),
+	TP_ARGS(pte),
+
+	TP_STRUCT__entry(
+		__field(	u64,		host_va		)
+		__field(	u64,		pfn		)
+		__field(	ulong,		eaddr		)
+		__field(	u64,		vpage		)
+		__field(	ulong,		raddr		)
+		__field(	int,		flags		)
+	),
+
+	TP_fast_assign(
+		__entry->host_va	= pte->host_va;
+		__entry->pfn		= pte->pfn;
+		__entry->eaddr		= pte->pte.eaddr;
+		__entry->vpage		= pte->pte.vpage;
+		__entry->raddr		= pte->pte.raddr;
+		__entry->flags		= (pte->pte.may_read ? 0x4 : 0) |
+					  (pte->pte.may_write ? 0x2 : 0) |
+					  (pte->pte.may_execute ? 0x1 : 0);
+	),
+
+	TP_printk("Flush: hva=%llx pfn=%llx ea=%lx vp=%llx ra=%lx [%x]",
+		  __entry->host_va, __entry->pfn, __entry->eaddr,
+		  __entry->vpage, __entry->raddr, __entry->flags)
+);
+
+TRACE_EVENT(kvm_book3s_mmu_flush,
+	TP_PROTO(const char *type, struct kvm_vcpu *vcpu, unsigned long long p1,
+		 unsigned long long p2),
+	TP_ARGS(type, vcpu, p1, p2),
+
+	TP_STRUCT__entry(
+		__field(	int,			count		)
+		__field(	unsigned long long,	p1		)
+		__field(	unsigned long long,	p2		)
+		__field(	const char *,		type		)
+	),
+
+	TP_fast_assign(
+		__entry->count		= vcpu->arch.hpte_cache_count;
+		__entry->p1		= p1;
+		__entry->p2		= p2;
+		__entry->type		= type;
+	),
+
+	TP_printk("Flush %d %sPTEs: %llx - %llx",
+		  __entry->count, __entry->type, __entry->p1, __entry->p2)
+);
+
+TRACE_EVENT(kvm_book3s_slb_found,
+	TP_PROTO(unsigned long long gvsid, unsigned long long hvsid),
+	TP_ARGS(gvsid, hvsid),
+
+	TP_STRUCT__entry(
+		__field(	unsigned long long,	gvsid		)
+		__field(	unsigned long long,	hvsid		)
+	),
+
+	TP_fast_assign(
+		__entry->gvsid		= gvsid;
+		__entry->hvsid		= hvsid;
+	),
+
+	TP_printk("%llx -> %llx", __entry->gvsid, __entry->hvsid)
+);
+
+TRACE_EVENT(kvm_book3s_slb_fail,
+	TP_PROTO(u16 sid_map_mask, unsigned long long gvsid),
+	TP_ARGS(sid_map_mask, gvsid),
+
+	TP_STRUCT__entry(
+		__field(	unsigned short,		sid_map_mask	)
+		__field(	unsigned long long,	gvsid		)
+	),
+
+	TP_fast_assign(
+		__entry->sid_map_mask	= sid_map_mask;
+		__entry->gvsid		= gvsid;
+	),
+
+	TP_printk("%x/%x: %llx", __entry->sid_map_mask,
+		  SID_MAP_MASK - __entry->sid_map_mask, __entry->gvsid)
+);
+
+TRACE_EVENT(kvm_book3s_slb_map,
+	TP_PROTO(u16 sid_map_mask, unsigned long long gvsid,
+		 unsigned long long hvsid),
+	TP_ARGS(sid_map_mask, gvsid, hvsid),
+
+	TP_STRUCT__entry(
+		__field(	unsigned short,		sid_map_mask	)
+		__field(	unsigned long long,	guest_vsid	)
+		__field(	unsigned long long,	host_vsid	)
+	),
+
+	TP_fast_assign(
+		__entry->sid_map_mask	= sid_map_mask;
+		__entry->guest_vsid	= gvsid;
+		__entry->host_vsid	= hvsid;
+	),
+
+	TP_printk("%x: %llx -> %llx", __entry->sid_map_mask,
+		  __entry->guest_vsid, __entry->host_vsid)
+);
+
+TRACE_EVENT(kvm_book3s_slbmte,
+	TP_PROTO(u64 slb_vsid, u64 slb_esid),
+	TP_ARGS(slb_vsid, slb_esid),
+
+	TP_STRUCT__entry(
+		__field(	u64,	slb_vsid	)
+		__field(	u64,	slb_esid	)
+	),
+
+	TP_fast_assign(
+		__entry->slb_vsid	= slb_vsid;
+		__entry->slb_esid	= slb_esid;
+	),
+
+	TP_printk("%llx, %llx", __entry->slb_vsid, __entry->slb_esid)
+);
+
+#endif /* CONFIG_PPC_BOOK3S */
+
 #endif /* _TRACE_KVM_H */
 
 /* This part must be outside protection */

+ 10 - 0
arch/powerpc/platforms/Kconfig

@@ -21,6 +21,16 @@ source "arch/powerpc/platforms/44x/Kconfig"
 source "arch/powerpc/platforms/40x/Kconfig"
 source "arch/powerpc/platforms/amigaone/Kconfig"
 
+config KVM_GUEST
+	bool "KVM Guest support"
+	default y
+	---help---
+	  This option enables various optimizations for running under the KVM
+	  hypervisor. Overhead for the kernel when not running inside KVM should
+	  be minimal.
+
+	  In case of doubt, say Y
+
 config PPC_NATIVE
 	bool
 	depends on 6xx || PPC64

+ 1 - 0
arch/s390/include/asm/Kbuild

@@ -5,6 +5,7 @@ header-y += chsc.h
 header-y += cmb.h
 header-y += dasd.h
 header-y += debug.h
+header-y += kvm_virtio.h
 header-y += monwriter.h
 header-y += qeth.h
 header-y += schid.h

+ 7 - 0
arch/s390/include/asm/kvm_virtio.h

@@ -54,4 +54,11 @@ struct kvm_vqconfig {
  * This is pagesize for historical reasons. */
 #define KVM_S390_VIRTIO_RING_ALIGN	4096
 
+
+/* These values are supposed to be in ext_params on an interrupt */
+#define VIRTIO_PARAM_MASK		0xff
+#define VIRTIO_PARAM_VRING_INTERRUPT	0x0
+#define VIRTIO_PARAM_CONFIG_CHANGED	0x1
+#define VIRTIO_PARAM_DEV_ADD		0x2
+
 #endif

+ 17 - 13
arch/x86/include/asm/kvm_emulate.h

@@ -139,6 +139,7 @@ struct x86_emulate_ops {
 	void (*set_segment_selector)(u16 sel, int seg, struct kvm_vcpu *vcpu);
 	unsigned long (*get_cached_segment_base)(int seg, struct kvm_vcpu *vcpu);
 	void (*get_gdt)(struct desc_ptr *dt, struct kvm_vcpu *vcpu);
+	void (*get_idt)(struct desc_ptr *dt, struct kvm_vcpu *vcpu);
 	ulong (*get_cr)(int cr, struct kvm_vcpu *vcpu);
 	int (*set_cr)(int cr, ulong val, struct kvm_vcpu *vcpu);
 	int (*cpl)(struct kvm_vcpu *vcpu);
@@ -156,7 +157,10 @@ struct operand {
 		unsigned long orig_val;
 		u64 orig_val64;
 	};
-	unsigned long *ptr;
+	union {
+		unsigned long *reg;
+		unsigned long mem;
+	} addr;
 	union {
 		unsigned long val;
 		u64 val64;
@@ -190,6 +194,7 @@ struct decode_cache {
 	bool has_seg_override;
 	u8 seg_override;
 	unsigned int d;
+	int (*execute)(struct x86_emulate_ctxt *ctxt);
 	unsigned long regs[NR_VCPU_REGS];
 	unsigned long eip;
 	/* modrm */
@@ -197,17 +202,16 @@ struct decode_cache {
 	u8 modrm_mod;
 	u8 modrm_reg;
 	u8 modrm_rm;
-	u8 use_modrm_ea;
+	u8 modrm_seg;
 	bool rip_relative;
-	unsigned long modrm_ea;
-	void *modrm_ptr;
-	unsigned long modrm_val;
 	struct fetch_cache fetch;
 	struct read_cache io_read;
 	struct read_cache mem_read;
 };
 
 struct x86_emulate_ctxt {
+	struct x86_emulate_ops *ops;
+
 	/* Register state before/after emulation. */
 	struct kvm_vcpu *vcpu;
 
@@ -220,12 +224,11 @@ struct x86_emulate_ctxt {
 	/* interruptibility state, as a result of execution of STI or MOV SS */
 	int interruptibility;
 
-	bool restart; /* restart string instruction after writeback */
+	bool perm_ok; /* do not check permissions if true */
 
 	int exception; /* exception that happens during emulation or -1 */
 	u32 error_code; /* error code for exception */
 	bool error_code_valid;
-	unsigned long cr2; /* faulted address in case of #PF */
 
 	/* decode cache */
 	struct decode_cache decode;
@@ -249,13 +252,14 @@ struct x86_emulate_ctxt {
 #define X86EMUL_MODE_HOST X86EMUL_MODE_PROT64
 #endif
 
-int x86_decode_insn(struct x86_emulate_ctxt *ctxt,
-		    struct x86_emulate_ops *ops);
-int x86_emulate_insn(struct x86_emulate_ctxt *ctxt,
-		     struct x86_emulate_ops *ops);
+int x86_decode_insn(struct x86_emulate_ctxt *ctxt);
+#define EMULATION_FAILED -1
+#define EMULATION_OK 0
+#define EMULATION_RESTART 1
+int x86_emulate_insn(struct x86_emulate_ctxt *ctxt);
 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
-			 struct x86_emulate_ops *ops,
 			 u16 tss_selector, int reason,
 			 bool has_error_code, u32 error_code);
-
+int emulate_int_real(struct x86_emulate_ctxt *ctxt,
+		     struct x86_emulate_ops *ops, int irq);
 #endif /* _ASM_X86_KVM_X86_EMULATE_H */

+ 72 - 9
arch/x86/include/asm/kvm_host.h

@@ -236,10 +236,14 @@ struct kvm_pio_request {
  */
 struct kvm_mmu {
 	void (*new_cr3)(struct kvm_vcpu *vcpu);
+	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
+	unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
 	int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err);
+	void (*inject_page_fault)(struct kvm_vcpu *vcpu);
 	void (*free)(struct kvm_vcpu *vcpu);
 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
 			    u32 *error);
+	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access);
 	void (*prefetch_page)(struct kvm_vcpu *vcpu,
 			      struct kvm_mmu_page *page);
 	int (*sync_page)(struct kvm_vcpu *vcpu,
@@ -249,13 +253,18 @@ struct kvm_mmu {
 	int root_level;
 	int shadow_root_level;
 	union kvm_mmu_page_role base_role;
+	bool direct_map;
 
 	u64 *pae_root;
+	u64 *lm_root;
 	u64 rsvd_bits_mask[2][4];
+
+	bool nx;
+
+	u64 pdptrs[4]; /* pae */
 };
 
 struct kvm_vcpu_arch {
-	u64 host_tsc;
 	/*
 	 * rip and regs accesses must go through
 	 * kvm_{register,rip}_{read,write} functions.
@@ -272,7 +281,6 @@ struct kvm_vcpu_arch {
 	unsigned long cr4_guest_owned_bits;
 	unsigned long cr8;
 	u32 hflags;
-	u64 pdptrs[4]; /* pae */
 	u64 efer;
 	u64 apic_base;
 	struct kvm_lapic *apic;    /* kernel irqchip context */
@@ -282,7 +290,41 @@ struct kvm_vcpu_arch {
 	u64 ia32_misc_enable_msr;
 	bool tpr_access_reporting;
 
+	/*
+	 * Paging state of the vcpu
+	 *
+	 * If the vcpu runs in guest mode with two level paging this still saves
+	 * the paging mode of the l1 guest. This context is always used to
+	 * handle faults.
+	 */
 	struct kvm_mmu mmu;
+
+	/*
+	 * Paging state of an L2 guest (used for nested npt)
+	 *
+	 * This context will save all necessary information to walk page tables
+	 * of the an L2 guest. This context is only initialized for page table
+	 * walking and not for faulting since we never handle l2 page faults on
+	 * the host.
+	 */
+	struct kvm_mmu nested_mmu;
+
+	/*
+	 * Pointer to the mmu context currently used for
+	 * gva_to_gpa translations.
+	 */
+	struct kvm_mmu *walk_mmu;
+
+	/*
+	 * This struct is filled with the necessary information to propagate a
+	 * page fault into the guest
+	 */
+	struct {
+		u64      address;
+		unsigned error_code;
+		bool     nested;
+	} fault;
+
 	/* only needed in kvm_pv_mmu_op() path, but it's hot so
 	 * put it here to avoid allocation */
 	struct kvm_pv_mmu_op_buffer mmu_op_buffer;
@@ -336,9 +378,15 @@ struct kvm_vcpu_arch {
 
 	gpa_t time;
 	struct pvclock_vcpu_time_info hv_clock;
-	unsigned int hv_clock_tsc_khz;
+	unsigned int hw_tsc_khz;
 	unsigned int time_offset;
 	struct page *time_page;
+	u64 last_host_tsc;
+	u64 last_guest_tsc;
+	u64 last_kernel_ns;
+	u64 last_tsc_nsec;
+	u64 last_tsc_write;
+	bool tsc_catchup;
 
 	bool nmi_pending;
 	bool nmi_injected;
@@ -367,9 +415,9 @@ struct kvm_vcpu_arch {
 };
 
 struct kvm_arch {
-	unsigned int n_free_mmu_pages;
+	unsigned int n_used_mmu_pages;
 	unsigned int n_requested_mmu_pages;
-	unsigned int n_alloc_mmu_pages;
+	unsigned int n_max_mmu_pages;
 	atomic_t invlpg_counter;
 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
 	/*
@@ -394,8 +442,14 @@ struct kvm_arch {
 	gpa_t ept_identity_map_addr;
 
 	unsigned long irq_sources_bitmap;
-	u64 vm_init_tsc;
 	s64 kvmclock_offset;
+	spinlock_t tsc_write_lock;
+	u64 last_tsc_nsec;
+	u64 last_tsc_offset;
+	u64 last_tsc_write;
+	u32 virtual_tsc_khz;
+	u32 virtual_tsc_mult;
+	s8 virtual_tsc_shift;
 
 	struct kvm_xen_hvm_config xen_hvm_config;
 
@@ -505,6 +559,7 @@ struct kvm_x86_ops {
 	void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr,
 				bool has_error_code, u32 error_code,
 				bool reinject);
+	void (*cancel_injection)(struct kvm_vcpu *vcpu);
 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
 	int (*nmi_allowed)(struct kvm_vcpu *vcpu);
 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
@@ -517,11 +572,16 @@ struct kvm_x86_ops {
 	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
 	int (*get_lpage_level)(void);
 	bool (*rdtscp_supported)(void);
+	void (*adjust_tsc_offset)(struct kvm_vcpu *vcpu, s64 adjustment);
+
+	void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
 
 	void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
 
 	bool (*has_wbinvd_exit)(void);
 
+	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
+
 	const struct trace_print_flags *exit_reasons_str;
 };
 
@@ -544,7 +604,7 @@ void kvm_mmu_zap_all(struct kvm *kvm);
 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);
 
-int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
+int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
 
 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
 			  const void *val, int bytes);
@@ -608,8 +668,11 @@ void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
-void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long cr2,
-			   u32 error_code);
+void kvm_inject_page_fault(struct kvm_vcpu *vcpu);
+int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+			    gfn_t gfn, void *data, int offset, int len,
+			    u32 access);
+void kvm_propagate_fault(struct kvm_vcpu *vcpu);
 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
 
 int kvm_pic_set_irq(void *opaque, int irq, int level);

+ 6 - 0
arch/x86/include/asm/kvm_para.h

@@ -158,6 +158,12 @@ static inline unsigned int kvm_arch_para_features(void)
 	return cpuid_eax(KVM_CPUID_FEATURES);
 }
 
+#ifdef CONFIG_KVM_GUEST
+void __init kvm_guest_init(void);
+#else
+#define kvm_guest_init() do { } while (0)
 #endif
 
+#endif /* __KERNEL__ */
+
 #endif /* _ASM_X86_KVM_PARA_H */

+ 1 - 0
arch/x86/include/asm/msr-index.h

@@ -198,6 +198,7 @@
 #define MSR_IA32_TSC			0x00000010
 #define MSR_IA32_PLATFORM_ID		0x00000017
 #define MSR_IA32_EBL_CR_POWERON		0x0000002a
+#define MSR_EBC_FREQUENCY_ID		0x0000002c
 #define MSR_IA32_FEATURE_CONTROL        0x0000003a
 
 #define FEATURE_CONTROL_LOCKED				(1<<0)

+ 38 - 0
arch/x86/include/asm/pvclock.h

@@ -12,4 +12,42 @@ void pvclock_read_wallclock(struct pvclock_wall_clock *wall,
 			    struct pvclock_vcpu_time_info *vcpu,
 			    struct timespec *ts);
 
+/*
+ * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
+ * yielding a 64-bit result.
+ */
+static inline u64 pvclock_scale_delta(u64 delta, u32 mul_frac, int shift)
+{
+	u64 product;
+#ifdef __i386__
+	u32 tmp1, tmp2;
+#endif
+
+	if (shift < 0)
+		delta >>= -shift;
+	else
+		delta <<= shift;
+
+#ifdef __i386__
+	__asm__ (
+		"mul  %5       ; "
+		"mov  %4,%%eax ; "
+		"mov  %%edx,%4 ; "
+		"mul  %5       ; "
+		"xor  %5,%5    ; "
+		"add  %4,%%eax ; "
+		"adc  %5,%%edx ; "
+		: "=A" (product), "=r" (tmp1), "=r" (tmp2)
+		: "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) );
+#elif defined(__x86_64__)
+	__asm__ (
+		"mul %%rdx ; shrd $32,%%rdx,%%rax"
+		: "=a" (product) : "0" (delta), "d" ((u64)mul_frac) );
+#else
+#error implement me!
+#endif
+
+	return product;
+}
+
 #endif /* _ASM_X86_PVCLOCK_H */

+ 4 - 2
arch/x86/kernel/kvmclock.c

@@ -128,13 +128,15 @@ static struct clocksource kvm_clock = {
 static int kvm_register_clock(char *txt)
 {
 	int cpu = smp_processor_id();
-	int low, high;
+	int low, high, ret;
+
 	low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
 	high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
+	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
 	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
 	       cpu, high, low, txt);
 
-	return native_write_msr_safe(msr_kvm_system_time, low, high);
+	return ret;
 }
 
 #ifdef CONFIG_X86_LOCAL_APIC

+ 2 - 1
arch/x86/kernel/pvclock.c

@@ -82,7 +82,8 @@ static inline u64 scale_delta(u64 delta, u32 mul_frac, int shift)
 static u64 pvclock_get_nsec_offset(struct pvclock_shadow_time *shadow)
 {
 	u64 delta = native_read_tsc() - shadow->tsc_timestamp;
-	return scale_delta(delta, shadow->tsc_to_nsec_mul, shadow->tsc_shift);
+	return pvclock_scale_delta(delta, shadow->tsc_to_nsec_mul,
+				   shadow->tsc_shift);
 }
 
 /*

+ 7 - 0
arch/x86/kvm/Kconfig

@@ -64,6 +64,13 @@ config KVM_AMD
 	  To compile this as a module, choose M here: the module
 	  will be called kvm-amd.
 
+config KVM_MMU_AUDIT
+	bool "Audit KVM MMU"
+	depends on KVM && TRACEPOINTS
+	---help---
+	 This option adds a R/W kVM module parameter 'mmu_audit', which allows
+	 audit  KVM MMU at runtime.
+
 # OK, it's a little counter-intuitive to do this, but it puts it neatly under
 # the virtualization menu.
 source drivers/vhost/Kconfig

Файлын зөрүү хэтэрхий том тул дарагдсан байна
+ 242 - 747
arch/x86/kvm/emulate.c


+ 1 - 10
arch/x86/kvm/i8254.c

@@ -5,7 +5,7 @@
  * Copyright (c) 2006 Intel Corporation
  * Copyright (c) 2007 Keir Fraser, XenSource Inc
  * Copyright (c) 2008 Intel Corporation
- * Copyright 2009 Red Hat, Inc. and/or its affilates.
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
  *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
@@ -232,15 +232,6 @@ static void pit_latch_status(struct kvm *kvm, int channel)
 	}
 }
 
-int pit_has_pending_timer(struct kvm_vcpu *vcpu)
-{
-	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
-
-	if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
-		return atomic_read(&pit->pit_state.pit_timer.pending);
-	return 0;
-}
-
 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
 {
 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,

+ 15 - 10
arch/x86/kvm/i8259.c

@@ -3,7 +3,7 @@
  *
  * Copyright (c) 2003-2004 Fabrice Bellard
  * Copyright (c) 2007 Intel Corporation
- * Copyright 2009 Red Hat, Inc. and/or its affilates.
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
  *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
@@ -39,7 +39,7 @@ static void pic_irq_request(struct kvm *kvm, int level);
 static void pic_lock(struct kvm_pic *s)
 	__acquires(&s->lock)
 {
-	raw_spin_lock(&s->lock);
+	spin_lock(&s->lock);
 }
 
 static void pic_unlock(struct kvm_pic *s)
@@ -51,7 +51,7 @@ static void pic_unlock(struct kvm_pic *s)
 
 	s->wakeup_needed = false;
 
-	raw_spin_unlock(&s->lock);
+	spin_unlock(&s->lock);
 
 	if (wakeup) {
 		kvm_for_each_vcpu(i, vcpu, s->kvm) {
@@ -67,6 +67,7 @@ static void pic_unlock(struct kvm_pic *s)
 		if (!found)
 			return;
 
+		kvm_make_request(KVM_REQ_EVENT, found);
 		kvm_vcpu_kick(found);
 	}
 }
@@ -308,13 +309,17 @@ static void pic_ioport_write(void *opaque, u32 addr, u32 val)
 	addr &= 1;
 	if (addr == 0) {
 		if (val & 0x10) {
-			kvm_pic_reset(s);	/* init */
-			/*
-			 * deassert a pending interrupt
-			 */
-			pic_irq_request(s->pics_state->kvm, 0);
-			s->init_state = 1;
 			s->init4 = val & 1;
+			s->last_irr = 0;
+			s->imr = 0;
+			s->priority_add = 0;
+			s->special_mask = 0;
+			s->read_reg_select = 0;
+			if (!s->init4) {
+				s->special_fully_nested_mode = 0;
+				s->auto_eoi = 0;
+			}
+			s->init_state = 1;
 			if (val & 0x02)
 				printk(KERN_ERR "single mode not supported");
 			if (val & 0x08)
@@ -564,7 +569,7 @@ struct kvm_pic *kvm_create_pic(struct kvm *kvm)
 	s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
 	if (!s)
 		return NULL;
-	raw_spin_lock_init(&s->lock);
+	spin_lock_init(&s->lock);
 	s->kvm = kvm;
 	s->pics[0].elcr_mask = 0xf8;
 	s->pics[1].elcr_mask = 0xde;

+ 2 - 7
arch/x86/kvm/irq.c

@@ -1,7 +1,7 @@
 /*
  * irq.c: API for in kernel interrupt controller
  * Copyright (c) 2007, Intel Corporation.
- * Copyright 2009 Red Hat, Inc. and/or its affilates.
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
  *
  * This program is free software; you can redistribute it and/or modify it
  * under the terms and conditions of the GNU General Public License,
@@ -33,12 +33,7 @@
  */
 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 {
-	int ret;
-
-	ret = pit_has_pending_timer(vcpu);
-	ret |= apic_has_pending_timer(vcpu);
-
-	return ret;
+	return apic_has_pending_timer(vcpu);
 }
 EXPORT_SYMBOL(kvm_cpu_has_pending_timer);
 

+ 1 - 1
arch/x86/kvm/irq.h

@@ -60,7 +60,7 @@ struct kvm_kpic_state {
 };
 
 struct kvm_pic {
-	raw_spinlock_t lock;
+	spinlock_t lock;
 	bool wakeup_needed;
 	unsigned pending_acks;
 	struct kvm *kvm;

+ 8 - 1
arch/x86/kvm/kvm_cache_regs.h

@@ -42,7 +42,14 @@ static inline u64 kvm_pdptr_read(struct kvm_vcpu *vcpu, int index)
 		      (unsigned long *)&vcpu->arch.regs_avail))
 		kvm_x86_ops->cache_reg(vcpu, VCPU_EXREG_PDPTR);
 
-	return vcpu->arch.pdptrs[index];
+	return vcpu->arch.walk_mmu->pdptrs[index];
+}
+
+static inline u64 kvm_pdptr_read_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, int index)
+{
+	load_pdptrs(vcpu, mmu, mmu->get_cr3(vcpu));
+
+	return mmu->pdptrs[index];
 }
 
 static inline ulong kvm_read_cr0_bits(struct kvm_vcpu *vcpu, ulong mask)

+ 12 - 3
arch/x86/kvm/lapic.c

@@ -5,7 +5,7 @@
  * Copyright (C) 2006 Qumranet, Inc.
  * Copyright (C) 2007 Novell
  * Copyright (C) 2007 Intel
- * Copyright 2009 Red Hat, Inc. and/or its affilates.
+ * Copyright 2009 Red Hat, Inc. and/or its affiliates.
  *
  * Authors:
  *   Dor Laor <dor.laor@qumranet.com>
@@ -259,9 +259,10 @@ static inline int apic_find_highest_isr(struct kvm_lapic *apic)
 
 static void apic_update_ppr(struct kvm_lapic *apic)
 {
-	u32 tpr, isrv, ppr;
+	u32 tpr, isrv, ppr, old_ppr;
 	int isr;
 
+	old_ppr = apic_get_reg(apic, APIC_PROCPRI);
 	tpr = apic_get_reg(apic, APIC_TASKPRI);
 	isr = apic_find_highest_isr(apic);
 	isrv = (isr != -1) ? isr : 0;
@@ -274,7 +275,10 @@ static void apic_update_ppr(struct kvm_lapic *apic)
 	apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x",
 		   apic, ppr, isr, isrv);
 
-	apic_set_reg(apic, APIC_PROCPRI, ppr);
+	if (old_ppr != ppr) {
+		apic_set_reg(apic, APIC_PROCPRI, ppr);
+		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
+	}
 }
 
 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
@@ -391,6 +395,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
 			break;
 		}
 
+		kvm_make_request(KVM_REQ_EVENT, vcpu);
 		kvm_vcpu_kick(vcpu);
 		break;
 
@@ -416,6 +421,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
 				       "INIT on a runnable vcpu %d\n",
 				       vcpu->vcpu_id);
 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
+			kvm_make_request(KVM_REQ_EVENT, vcpu);
 			kvm_vcpu_kick(vcpu);
 		} else {
 			apic_debug("Ignoring de-assert INIT to vcpu %d\n",
@@ -430,6 +436,7 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
 			result = 1;
 			vcpu->arch.sipi_vector = vector;
 			vcpu->arch.mp_state = KVM_MP_STATE_SIPI_RECEIVED;
+			kvm_make_request(KVM_REQ_EVENT, vcpu);
 			kvm_vcpu_kick(vcpu);
 		}
 		break;
@@ -475,6 +482,7 @@ static void apic_set_eoi(struct kvm_lapic *apic)
 		trigger_mode = IOAPIC_EDGE_TRIG;
 	if (!(apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI))
 		kvm_ioapic_update_eoi(apic->vcpu->kvm, vector, trigger_mode);
+	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
 }
 
 static void apic_send_ipi(struct kvm_lapic *apic)
@@ -1151,6 +1159,7 @@ void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu)
 	update_divide_count(apic);
 	start_apic_timer(apic);
 	apic->irr_pending = true;
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
 }
 
 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)

Файлын зөрүү хэтэрхий том тул дарагдсан байна
+ 452 - 142
arch/x86/kvm/mmu.c


+ 8 - 1
arch/x86/kvm/mmu.h

@@ -49,10 +49,17 @@
 #define PFERR_FETCH_MASK (1U << 4)
 
 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
+int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
+
+static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
+{
+	return kvm->arch.n_max_mmu_pages -
+		kvm->arch.n_used_mmu_pages;
+}
 
 static inline void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
 {
-	if (unlikely(vcpu->kvm->arch.n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
+	if (unlikely(kvm_mmu_available_pages(vcpu->kvm)< KVM_MIN_FREE_MMU_PAGES))
 		__kvm_mmu_free_some_pages(vcpu);
 }
 

+ 299 - 0
arch/x86/kvm/mmu_audit.c

@@ -0,0 +1,299 @@
+/*
+ * mmu_audit.c:
+ *
+ * Audit code for KVM MMU
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *   Avi Kivity   <avi@qumranet.com>
+ *   Marcelo Tosatti <mtosatti@redhat.com>
+ *   Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2.  See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/ratelimit.h>
+
+static int audit_point;
+
+#define audit_printk(fmt, args...)		\
+	printk(KERN_ERR "audit: (%s) error: "	\
+		fmt, audit_point_name[audit_point], ##args)
+
+typedef void (*inspect_spte_fn) (struct kvm_vcpu *vcpu, u64 *sptep, int level);
+
+static void __mmu_spte_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+			    inspect_spte_fn fn, int level)
+{
+	int i;
+
+	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+		u64 *ent = sp->spt;
+
+		fn(vcpu, ent + i, level);
+
+		if (is_shadow_present_pte(ent[i]) &&
+		      !is_last_spte(ent[i], level)) {
+			struct kvm_mmu_page *child;
+
+			child = page_header(ent[i] & PT64_BASE_ADDR_MASK);
+			__mmu_spte_walk(vcpu, child, fn, level - 1);
+		}
+	}
+}
+
+static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
+{
+	int i;
+	struct kvm_mmu_page *sp;
+
+	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+		return;
+
+	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
+		hpa_t root = vcpu->arch.mmu.root_hpa;
+
+		sp = page_header(root);
+		__mmu_spte_walk(vcpu, sp, fn, PT64_ROOT_LEVEL);
+		return;
+	}
+
+	for (i = 0; i < 4; ++i) {
+		hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+		if (root && VALID_PAGE(root)) {
+			root &= PT64_BASE_ADDR_MASK;
+			sp = page_header(root);
+			__mmu_spte_walk(vcpu, sp, fn, 2);
+		}
+	}
+
+	return;
+}
+
+typedef void (*sp_handler) (struct kvm *kvm, struct kvm_mmu_page *sp);
+
+static void walk_all_active_sps(struct kvm *kvm, sp_handler fn)
+{
+	struct kvm_mmu_page *sp;
+
+	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link)
+		fn(kvm, sp);
+}
+
+static void audit_mappings(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+	struct kvm_mmu_page *sp;
+	gfn_t gfn;
+	pfn_t pfn;
+	hpa_t hpa;
+
+	sp = page_header(__pa(sptep));
+
+	if (sp->unsync) {
+		if (level != PT_PAGE_TABLE_LEVEL) {
+			audit_printk("unsync sp: %p level = %d\n", sp, level);
+			return;
+		}
+
+		if (*sptep == shadow_notrap_nonpresent_pte) {
+			audit_printk("notrap spte in unsync sp: %p\n", sp);
+			return;
+		}
+	}
+
+	if (sp->role.direct && *sptep == shadow_notrap_nonpresent_pte) {
+		audit_printk("notrap spte in direct sp: %p\n", sp);
+		return;
+	}
+
+	if (!is_shadow_present_pte(*sptep) || !is_last_spte(*sptep, level))
+		return;
+
+	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
+	pfn = gfn_to_pfn_atomic(vcpu->kvm, gfn);
+
+	if (is_error_pfn(pfn)) {
+		kvm_release_pfn_clean(pfn);
+		return;
+	}
+
+	hpa =  pfn << PAGE_SHIFT;
+	if ((*sptep & PT64_BASE_ADDR_MASK) != hpa)
+		audit_printk("levels %d pfn %llx hpa %llx ent %llxn",
+				   vcpu->arch.mmu.root_level, pfn, hpa, *sptep);
+}
+
+static void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
+{
+	unsigned long *rmapp;
+	struct kvm_mmu_page *rev_sp;
+	gfn_t gfn;
+
+
+	rev_sp = page_header(__pa(sptep));
+	gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
+
+	if (!gfn_to_memslot(kvm, gfn)) {
+		if (!printk_ratelimit())
+			return;
+		audit_printk("no memslot for gfn %llx\n", gfn);
+		audit_printk("index %ld of sp (gfn=%llx)\n",
+		       (long int)(sptep - rev_sp->spt), rev_sp->gfn);
+		dump_stack();
+		return;
+	}
+
+	rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
+	if (!*rmapp) {
+		if (!printk_ratelimit())
+			return;
+		audit_printk("no rmap for writable spte %llx\n", *sptep);
+		dump_stack();
+	}
+}
+
+static void audit_sptes_have_rmaps(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+	if (is_shadow_present_pte(*sptep) && is_last_spte(*sptep, level))
+		inspect_spte_has_rmap(vcpu->kvm, sptep);
+}
+
+static void audit_spte_after_sync(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+	struct kvm_mmu_page *sp = page_header(__pa(sptep));
+
+	if (audit_point == AUDIT_POST_SYNC && sp->unsync)
+		audit_printk("meet unsync sp(%p) after sync root.\n", sp);
+}
+
+static void check_mappings_rmap(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	int i;
+
+	if (sp->role.level != PT_PAGE_TABLE_LEVEL)
+		return;
+
+	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+		if (!is_rmap_spte(sp->spt[i]))
+			continue;
+
+		inspect_spte_has_rmap(kvm, sp->spt + i);
+	}
+}
+
+static void audit_write_protection(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	struct kvm_memory_slot *slot;
+	unsigned long *rmapp;
+	u64 *spte;
+
+	if (sp->role.direct || sp->unsync || sp->role.invalid)
+		return;
+
+	slot = gfn_to_memslot(kvm, sp->gfn);
+	rmapp = &slot->rmap[sp->gfn - slot->base_gfn];
+
+	spte = rmap_next(kvm, rmapp, NULL);
+	while (spte) {
+		if (is_writable_pte(*spte))
+			audit_printk("shadow page has writable mappings: gfn "
+				     "%llx role %x\n", sp->gfn, sp->role.word);
+		spte = rmap_next(kvm, rmapp, spte);
+	}
+}
+
+static void audit_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+	check_mappings_rmap(kvm, sp);
+	audit_write_protection(kvm, sp);
+}
+
+static void audit_all_active_sps(struct kvm *kvm)
+{
+	walk_all_active_sps(kvm, audit_sp);
+}
+
+static void audit_spte(struct kvm_vcpu *vcpu, u64 *sptep, int level)
+{
+	audit_sptes_have_rmaps(vcpu, sptep, level);
+	audit_mappings(vcpu, sptep, level);
+	audit_spte_after_sync(vcpu, sptep, level);
+}
+
+static void audit_vcpu_spte(struct kvm_vcpu *vcpu)
+{
+	mmu_spte_walk(vcpu, audit_spte);
+}
+
+static void kvm_mmu_audit(void *ignore, struct kvm_vcpu *vcpu, int point)
+{
+	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
+
+	if (!__ratelimit(&ratelimit_state))
+		return;
+
+	audit_point = point;
+	audit_all_active_sps(vcpu->kvm);
+	audit_vcpu_spte(vcpu);
+}
+
+static bool mmu_audit;
+
+static void mmu_audit_enable(void)
+{
+	int ret;
+
+	if (mmu_audit)
+		return;
+
+	ret = register_trace_kvm_mmu_audit(kvm_mmu_audit, NULL);
+	WARN_ON(ret);
+
+	mmu_audit = true;
+}
+
+static void mmu_audit_disable(void)
+{
+	if (!mmu_audit)
+		return;
+
+	unregister_trace_kvm_mmu_audit(kvm_mmu_audit, NULL);
+	tracepoint_synchronize_unregister();
+	mmu_audit = false;
+}
+
+static int mmu_audit_set(const char *val, const struct kernel_param *kp)
+{
+	int ret;
+	unsigned long enable;
+
+	ret = strict_strtoul(val, 10, &enable);
+	if (ret < 0)
+		return -EINVAL;
+
+	switch (enable) {
+	case 0:
+		mmu_audit_disable();
+		break;
+	case 1:
+		mmu_audit_enable();
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static struct kernel_param_ops audit_param_ops = {
+	.set = mmu_audit_set,
+	.get = param_get_bool,
+};
+
+module_param_cb(mmu_audit, &audit_param_ops, &mmu_audit, 0644);

+ 19 - 0
arch/x86/kvm/mmutrace.h

@@ -195,6 +195,25 @@ DEFINE_EVENT(kvm_mmu_page_class, kvm_mmu_prepare_zap_page,
 
 	TP_ARGS(sp)
 );
+
+TRACE_EVENT(
+	kvm_mmu_audit,
+	TP_PROTO(struct kvm_vcpu *vcpu, int audit_point),
+	TP_ARGS(vcpu, audit_point),
+
+	TP_STRUCT__entry(
+		__field(struct kvm_vcpu *, vcpu)
+		__field(int, audit_point)
+	),
+
+	TP_fast_assign(
+		__entry->vcpu = vcpu;
+		__entry->audit_point = audit_point;
+	),
+
+	TP_printk("vcpu:%d %s", __entry->vcpu->cpu,
+		  audit_point_name[__entry->audit_point])
+);
 #endif /* _TRACE_KVMMMU_H */
 
 #undef TRACE_INCLUDE_PATH

+ 164 - 38
arch/x86/kvm/paging_tmpl.h

@@ -7,7 +7,7 @@
  * MMU support
  *
  * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affilates.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  *
  * Authors:
  *   Yaniv Kamay  <yaniv@qumranet.com>
@@ -67,6 +67,7 @@ struct guest_walker {
 	int level;
 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
+	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
 	unsigned pt_access;
 	unsigned pte_access;
@@ -104,7 +105,7 @@ static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
 
 	access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
 #if PTTYPE == 64
-	if (is_nx(vcpu))
+	if (vcpu->arch.mmu.nx)
 		access &= ~(gpte >> PT64_NX_SHIFT);
 #endif
 	return access;
@@ -113,26 +114,32 @@ static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
 /*
  * Fetch a guest pte for a guest virtual address
  */
-static int FNAME(walk_addr)(struct guest_walker *walker,
-			    struct kvm_vcpu *vcpu, gva_t addr,
-			    int write_fault, int user_fault, int fetch_fault)
+static int FNAME(walk_addr_generic)(struct guest_walker *walker,
+				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
+				    gva_t addr, u32 access)
 {
 	pt_element_t pte;
 	gfn_t table_gfn;
 	unsigned index, pt_access, uninitialized_var(pte_access);
 	gpa_t pte_gpa;
 	bool eperm, present, rsvd_fault;
+	int offset, write_fault, user_fault, fetch_fault;
+
+	write_fault = access & PFERR_WRITE_MASK;
+	user_fault = access & PFERR_USER_MASK;
+	fetch_fault = access & PFERR_FETCH_MASK;
 
 	trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
 				     fetch_fault);
 walk:
 	present = true;
 	eperm = rsvd_fault = false;
-	walker->level = vcpu->arch.mmu.root_level;
-	pte = vcpu->arch.cr3;
+	walker->level = mmu->root_level;
+	pte           = mmu->get_cr3(vcpu);
+
 #if PTTYPE == 64
-	if (!is_long_mode(vcpu)) {
-		pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3);
+	if (walker->level == PT32E_ROOT_LEVEL) {
+		pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
 		trace_kvm_mmu_paging_element(pte, walker->level);
 		if (!is_present_gpte(pte)) {
 			present = false;
@@ -142,7 +149,7 @@ walk:
 	}
 #endif
 	ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
-	       (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
+	       (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
 
 	pt_access = ACC_ALL;
 
@@ -150,12 +157,14 @@ walk:
 		index = PT_INDEX(addr, walker->level);
 
 		table_gfn = gpte_to_gfn(pte);
-		pte_gpa = gfn_to_gpa(table_gfn);
-		pte_gpa += index * sizeof(pt_element_t);
+		offset    = index * sizeof(pt_element_t);
+		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
 		walker->table_gfn[walker->level - 1] = table_gfn;
 		walker->pte_gpa[walker->level - 1] = pte_gpa;
 
-		if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte))) {
+		if (kvm_read_guest_page_mmu(vcpu, mmu, table_gfn, &pte,
+					    offset, sizeof(pte),
+					    PFERR_USER_MASK|PFERR_WRITE_MASK)) {
 			present = false;
 			break;
 		}
@@ -167,7 +176,7 @@ walk:
 			break;
 		}
 
-		if (is_rsvd_bits_set(vcpu, pte, walker->level)) {
+		if (is_rsvd_bits_set(&vcpu->arch.mmu, pte, walker->level)) {
 			rsvd_fault = true;
 			break;
 		}
@@ -204,17 +213,28 @@ walk:
 				(PTTYPE == 64 || is_pse(vcpu))) ||
 		    ((walker->level == PT_PDPE_LEVEL) &&
 				is_large_pte(pte) &&
-				is_long_mode(vcpu))) {
+				mmu->root_level == PT64_ROOT_LEVEL)) {
 			int lvl = walker->level;
+			gpa_t real_gpa;
+			gfn_t gfn;
+			u32 ac;
 
-			walker->gfn = gpte_to_gfn_lvl(pte, lvl);
-			walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
-					>> PAGE_SHIFT;
+			gfn = gpte_to_gfn_lvl(pte, lvl);
+			gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
 
 			if (PTTYPE == 32 &&
 			    walker->level == PT_DIRECTORY_LEVEL &&
 			    is_cpuid_PSE36())
-				walker->gfn += pse36_gfn_delta(pte);
+				gfn += pse36_gfn_delta(pte);
+
+			ac = write_fault | fetch_fault | user_fault;
+
+			real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
+						      ac);
+			if (real_gpa == UNMAPPED_GVA)
+				return 0;
+
+			walker->gfn = real_gpa >> PAGE_SHIFT;
 
 			break;
 		}
@@ -249,18 +269,36 @@ error:
 	walker->error_code = 0;
 	if (present)
 		walker->error_code |= PFERR_PRESENT_MASK;
-	if (write_fault)
-		walker->error_code |= PFERR_WRITE_MASK;
-	if (user_fault)
-		walker->error_code |= PFERR_USER_MASK;
-	if (fetch_fault && is_nx(vcpu))
+
+	walker->error_code |= write_fault | user_fault;
+
+	if (fetch_fault && mmu->nx)
 		walker->error_code |= PFERR_FETCH_MASK;
 	if (rsvd_fault)
 		walker->error_code |= PFERR_RSVD_MASK;
+
+	vcpu->arch.fault.address    = addr;
+	vcpu->arch.fault.error_code = walker->error_code;
+
 	trace_kvm_mmu_walker_error(walker->error_code);
 	return 0;
 }
 
+static int FNAME(walk_addr)(struct guest_walker *walker,
+			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
+{
+	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
+					access);
+}
+
+static int FNAME(walk_addr_nested)(struct guest_walker *walker,
+				   struct kvm_vcpu *vcpu, gva_t addr,
+				   u32 access)
+{
+	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
+					addr, access);
+}
+
 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 			      u64 *spte, const void *pte)
 {
@@ -302,14 +340,87 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
 				struct guest_walker *gw, int level)
 {
-	int r;
 	pt_element_t curr_pte;
-
-	r = kvm_read_guest_atomic(vcpu->kvm, gw->pte_gpa[level - 1],
+	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
+	u64 mask;
+	int r, index;
+
+	if (level == PT_PAGE_TABLE_LEVEL) {
+		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
+		base_gpa = pte_gpa & ~mask;
+		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
+
+		r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
+				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
+		curr_pte = gw->prefetch_ptes[index];
+	} else
+		r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
 				  &curr_pte, sizeof(curr_pte));
+
 	return r || curr_pte != gw->ptes[level - 1];
 }
 
+static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
+				u64 *sptep)
+{
+	struct kvm_mmu_page *sp;
+	struct kvm_mmu *mmu = &vcpu->arch.mmu;
+	pt_element_t *gptep = gw->prefetch_ptes;
+	u64 *spte;
+	int i;
+
+	sp = page_header(__pa(sptep));
+
+	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+		return;
+
+	if (sp->role.direct)
+		return __direct_pte_prefetch(vcpu, sp, sptep);
+
+	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
+	spte = sp->spt + i;
+
+	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
+		pt_element_t gpte;
+		unsigned pte_access;
+		gfn_t gfn;
+		pfn_t pfn;
+		bool dirty;
+
+		if (spte == sptep)
+			continue;
+
+		if (*spte != shadow_trap_nonpresent_pte)
+			continue;
+
+		gpte = gptep[i];
+
+		if (!is_present_gpte(gpte) ||
+		      is_rsvd_bits_set(mmu, gpte, PT_PAGE_TABLE_LEVEL)) {
+			if (!sp->unsync)
+				__set_spte(spte, shadow_notrap_nonpresent_pte);
+			continue;
+		}
+
+		if (!(gpte & PT_ACCESSED_MASK))
+			continue;
+
+		pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
+		gfn = gpte_to_gfn(gpte);
+		dirty = is_dirty_gpte(gpte);
+		pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
+				      (pte_access & ACC_WRITE_MASK) && dirty);
+		if (is_error_pfn(pfn)) {
+			kvm_release_pfn_clean(pfn);
+			break;
+		}
+
+		mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
+			     dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
+			     pfn, true, true);
+	}
+}
+
 /*
  * Fetch a shadow pte for a specific level in the paging hierarchy.
  */
@@ -391,6 +502,7 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
 	mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
 		     user_fault, write_fault, dirty, ptwrite, it.level,
 		     gw->gfn, pfn, false, true);
+	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
 
 	return it.sptep;
 
@@ -420,7 +532,6 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
 {
 	int write_fault = error_code & PFERR_WRITE_MASK;
 	int user_fault = error_code & PFERR_USER_MASK;
-	int fetch_fault = error_code & PFERR_FETCH_MASK;
 	struct guest_walker walker;
 	u64 *sptep;
 	int write_pt = 0;
@@ -430,7 +541,6 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
 	unsigned long mmu_seq;
 
 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
-	kvm_mmu_audit(vcpu, "pre page fault");
 
 	r = mmu_topup_memory_caches(vcpu);
 	if (r)
@@ -439,15 +549,14 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
 	/*
 	 * Look up the guest pte for the faulting address.
 	 */
-	r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
-			     fetch_fault);
+	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
 
 	/*
 	 * The page is not mapped by the guest.  Let the guest handle it.
 	 */
 	if (!r) {
 		pgprintk("%s: guest page fault\n", __func__);
-		inject_page_fault(vcpu, addr, walker.error_code);
+		inject_page_fault(vcpu);
 		vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
 		return 0;
 	}
@@ -468,6 +577,8 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
 	spin_lock(&vcpu->kvm->mmu_lock);
 	if (mmu_notifier_retry(vcpu, mmu_seq))
 		goto out_unlock;
+
+	trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
 	kvm_mmu_free_some_pages(vcpu);
 	sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
 			     level, &write_pt, pfn);
@@ -479,7 +590,7 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
 		vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
 
 	++vcpu->stat.pf_fixed;
-	kvm_mmu_audit(vcpu, "post page fault (fixed)");
+	trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
 	spin_unlock(&vcpu->kvm->mmu_lock);
 
 	return write_pt;
@@ -556,10 +667,25 @@ static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
 	gpa_t gpa = UNMAPPED_GVA;
 	int r;
 
-	r = FNAME(walk_addr)(&walker, vcpu, vaddr,
-			     !!(access & PFERR_WRITE_MASK),
-			     !!(access & PFERR_USER_MASK),
-			     !!(access & PFERR_FETCH_MASK));
+	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
+
+	if (r) {
+		gpa = gfn_to_gpa(walker.gfn);
+		gpa |= vaddr & ~PAGE_MASK;
+	} else if (error)
+		*error = walker.error_code;
+
+	return gpa;
+}
+
+static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
+				      u32 access, u32 *error)
+{
+	struct guest_walker walker;
+	gpa_t gpa = UNMAPPED_GVA;
+	int r;
+
+	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
 
 	if (r) {
 		gpa = gfn_to_gpa(walker.gfn);
@@ -638,7 +764,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 			return -EINVAL;
 
 		gfn = gpte_to_gfn(gpte);
-		if (is_rsvd_bits_set(vcpu, gpte, PT_PAGE_TABLE_LEVEL)
+		if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)
 		      || gfn != sp->gfns[i] || !is_present_gpte(gpte)
 		      || !(gpte & PT_ACCESSED_MASK)) {
 			u64 nonpresent;

+ 221 - 62
arch/x86/kvm/svm.c

@@ -4,7 +4,7 @@
  * AMD SVM support
  *
  * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affilates.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  *
  * Authors:
  *   Yaniv Kamay  <yaniv@qumranet.com>
@@ -88,6 +88,14 @@ struct nested_state {
 	/* A VMEXIT is required but not yet emulated */
 	bool exit_required;
 
+	/*
+	 * If we vmexit during an instruction emulation we need this to restore
+	 * the l1 guest rip after the emulation
+	 */
+	unsigned long vmexit_rip;
+	unsigned long vmexit_rsp;
+	unsigned long vmexit_rax;
+
 	/* cache for intercepts of the guest */
 	u16 intercept_cr_read;
 	u16 intercept_cr_write;
@@ -96,6 +104,8 @@ struct nested_state {
 	u32 intercept_exceptions;
 	u64 intercept;
 
+	/* Nested Paging related state */
+	u64 nested_cr3;
 };
 
 #define MSRPM_OFFSETS	16
@@ -284,6 +294,15 @@ static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
 	force_new_asid(vcpu);
 }
 
+static int get_npt_level(void)
+{
+#ifdef CONFIG_X86_64
+	return PT64_ROOT_LEVEL;
+#else
+	return PT32E_ROOT_LEVEL;
+#endif
+}
+
 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 {
 	vcpu->arch.efer = efer;
@@ -701,6 +720,29 @@ static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
 	seg->base = 0;
 }
 
+static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u64 g_tsc_offset = 0;
+
+	if (is_nested(svm)) {
+		g_tsc_offset = svm->vmcb->control.tsc_offset -
+			       svm->nested.hsave->control.tsc_offset;
+		svm->nested.hsave->control.tsc_offset = offset;
+	}
+
+	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
+}
+
+static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.tsc_offset += adjustment;
+	if (is_nested(svm))
+		svm->nested.hsave->control.tsc_offset += adjustment;
+}
+
 static void init_vmcb(struct vcpu_svm *svm)
 {
 	struct vmcb_control_area *control = &svm->vmcb->control;
@@ -793,7 +835,7 @@ static void init_vmcb(struct vcpu_svm *svm)
 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
 
-	save->efer = EFER_SVME;
+	svm_set_efer(&svm->vcpu, 0);
 	save->dr6 = 0xffff0ff0;
 	save->dr7 = 0x400;
 	save->rflags = 2;
@@ -804,8 +846,8 @@ static void init_vmcb(struct vcpu_svm *svm)
 	 * This is the guest-visible cr0 value.
 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
 	 */
-	svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
-	(void)kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
+	svm->vcpu.arch.cr0 = 0;
+	(void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
 
 	save->cr4 = X86_CR4_PAE;
 	/* rdx = ?? */
@@ -901,7 +943,7 @@ static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
 	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
 	svm->asid_generation = 0;
 	init_vmcb(svm);
-	svm->vmcb->control.tsc_offset = 0-native_read_tsc();
+	kvm_write_tsc(&svm->vcpu, 0);
 
 	err = fx_init(&svm->vcpu);
 	if (err)
@@ -947,20 +989,6 @@ static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 	int i;
 
 	if (unlikely(cpu != vcpu->cpu)) {
-		u64 delta;
-
-		if (check_tsc_unstable()) {
-			/*
-			 * Make sure that the guest sees a monotonically
-			 * increasing TSC.
-			 */
-			delta = vcpu->arch.host_tsc - native_read_tsc();
-			svm->vmcb->control.tsc_offset += delta;
-			if (is_nested(svm))
-				svm->nested.hsave->control.tsc_offset += delta;
-		}
-		vcpu->cpu = cpu;
-		kvm_migrate_timers(vcpu);
 		svm->asid_generation = 0;
 	}
 
@@ -976,8 +1004,6 @@ static void svm_vcpu_put(struct kvm_vcpu *vcpu)
 	++vcpu->stat.host_state_reload;
 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
-
-	vcpu->arch.host_tsc = native_read_tsc();
 }
 
 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
@@ -995,7 +1021,7 @@ static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
 	switch (reg) {
 	case VCPU_EXREG_PDPTR:
 		BUG_ON(!npt_enabled);
-		load_pdptrs(vcpu, vcpu->arch.cr3);
+		load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
 		break;
 	default:
 		BUG();
@@ -1206,8 +1232,12 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 		if (old == new) {
 			/* cr0 write with ts and mp unchanged */
 			svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
-			if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
+			if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
+				svm->nested.vmexit_rip = kvm_rip_read(vcpu);
+				svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+				svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 				return;
+			}
 		}
 	}
 
@@ -1581,6 +1611,54 @@ static int vmmcall_interception(struct vcpu_svm *svm)
 	return 1;
 }
 
+static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	return svm->nested.nested_cr3;
+}
+
+static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
+				   unsigned long root)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.nested_cr3 = root;
+	force_new_asid(vcpu);
+}
+
+static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.exit_code = SVM_EXIT_NPF;
+	svm->vmcb->control.exit_code_hi = 0;
+	svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
+	svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
+
+	nested_svm_vmexit(svm);
+}
+
+static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+	int r;
+
+	r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
+
+	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
+	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
+	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
+	vcpu->arch.mmu.shadow_root_level = get_npt_level();
+	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
+
+	return r;
+}
+
+static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+}
+
 static int nested_svm_check_permissions(struct vcpu_svm *svm)
 {
 	if (!(svm->vcpu.arch.efer & EFER_SVME)
@@ -1629,6 +1707,14 @@ static inline bool nested_svm_intr(struct vcpu_svm *svm)
 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
 		return false;
 
+	/*
+	 * if vmexit was already requested (by intercepted exception
+	 * for instance) do not overwrite it with "external interrupt"
+	 * vmexit.
+	 */
+	if (svm->nested.exit_required)
+		return false;
+
 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
 	svm->vmcb->control.exit_info_1 = 0;
 	svm->vmcb->control.exit_info_2 = 0;
@@ -1896,6 +1982,7 @@ static int nested_svm_vmexit(struct vcpu_svm *svm)
 	nested_vmcb->save.ds     = vmcb->save.ds;
 	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
 	nested_vmcb->save.idtr   = vmcb->save.idtr;
+	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
 	nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
 	nested_vmcb->save.cr2    = vmcb->save.cr2;
@@ -1917,6 +2004,7 @@ static int nested_svm_vmexit(struct vcpu_svm *svm)
 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
+	nested_vmcb->control.next_rip          = vmcb->control.next_rip;
 
 	/*
 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
@@ -1947,6 +2035,8 @@ static int nested_svm_vmexit(struct vcpu_svm *svm)
 	kvm_clear_exception_queue(&svm->vcpu);
 	kvm_clear_interrupt_queue(&svm->vcpu);
 
+	svm->nested.nested_cr3 = 0;
+
 	/* Restore selected save entries */
 	svm->vmcb->save.es = hsave->save.es;
 	svm->vmcb->save.cs = hsave->save.cs;
@@ -1973,6 +2063,7 @@ static int nested_svm_vmexit(struct vcpu_svm *svm)
 
 	nested_svm_unmap(page);
 
+	nested_svm_uninit_mmu_context(&svm->vcpu);
 	kvm_mmu_reset_context(&svm->vcpu);
 	kvm_mmu_load(&svm->vcpu);
 
@@ -2012,6 +2103,20 @@ static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
 	return true;
 }
 
+static bool nested_vmcb_checks(struct vmcb *vmcb)
+{
+	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
+		return false;
+
+	if (vmcb->control.asid == 0)
+		return false;
+
+	if (vmcb->control.nested_ctl && !npt_enabled)
+		return false;
+
+	return true;
+}
+
 static bool nested_svm_vmrun(struct vcpu_svm *svm)
 {
 	struct vmcb *nested_vmcb;
@@ -2026,7 +2131,18 @@ static bool nested_svm_vmrun(struct vcpu_svm *svm)
 	if (!nested_vmcb)
 		return false;
 
-	trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
+	if (!nested_vmcb_checks(nested_vmcb)) {
+		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
+		nested_vmcb->control.exit_code_hi = 0;
+		nested_vmcb->control.exit_info_1  = 0;
+		nested_vmcb->control.exit_info_2  = 0;
+
+		nested_svm_unmap(page);
+
+		return false;
+	}
+
+	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
 			       nested_vmcb->save.rip,
 			       nested_vmcb->control.int_ctl,
 			       nested_vmcb->control.event_inj,
@@ -2055,7 +2171,7 @@ static bool nested_svm_vmrun(struct vcpu_svm *svm)
 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
 	hsave->save.cr4    = svm->vcpu.arch.cr4;
 	hsave->save.rflags = vmcb->save.rflags;
-	hsave->save.rip    = svm->next_rip;
+	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
 	hsave->save.rsp    = vmcb->save.rsp;
 	hsave->save.rax    = vmcb->save.rax;
 	if (npt_enabled)
@@ -2070,6 +2186,12 @@ static bool nested_svm_vmrun(struct vcpu_svm *svm)
 	else
 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
 
+	if (nested_vmcb->control.nested_ctl) {
+		kvm_mmu_unload(&svm->vcpu);
+		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
+		nested_svm_init_mmu_context(&svm->vcpu);
+	}
+
 	/* Load the nested guest state */
 	svm->vmcb->save.es = nested_vmcb->save.es;
 	svm->vmcb->save.cs = nested_vmcb->save.cs;
@@ -2227,8 +2349,8 @@ static int vmrun_interception(struct vcpu_svm *svm)
 	if (nested_svm_check_permissions(svm))
 		return 1;
 
-	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
-	skip_emulated_instruction(&svm->vcpu);
+	/* Save rip after vmrun instruction */
+	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
 
 	if (!nested_svm_vmrun(svm))
 		return 1;
@@ -2257,6 +2379,7 @@ static int stgi_interception(struct vcpu_svm *svm)
 
 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
 	skip_emulated_instruction(&svm->vcpu);
+	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
 
 	enable_gif(svm);
 
@@ -2399,6 +2522,23 @@ static int emulate_on_interception(struct vcpu_svm *svm)
 	return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
 }
 
+static int cr0_write_interception(struct vcpu_svm *svm)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	int r;
+
+	r = emulate_instruction(&svm->vcpu, 0, 0, 0);
+
+	if (svm->nested.vmexit_rip) {
+		kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
+		kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
+		kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
+		svm->nested.vmexit_rip = 0;
+	}
+
+	return r == EMULATE_DONE;
+}
+
 static int cr8_write_interception(struct vcpu_svm *svm)
 {
 	struct kvm_run *kvm_run = svm->vcpu.run;
@@ -2542,20 +2682,9 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
 	struct vcpu_svm *svm = to_svm(vcpu);
 
 	switch (ecx) {
-	case MSR_IA32_TSC: {
-		u64 tsc_offset = data - native_read_tsc();
-		u64 g_tsc_offset = 0;
-
-		if (is_nested(svm)) {
-			g_tsc_offset = svm->vmcb->control.tsc_offset -
-				       svm->nested.hsave->control.tsc_offset;
-			svm->nested.hsave->control.tsc_offset = tsc_offset;
-		}
-
-		svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
-
+	case MSR_IA32_TSC:
+		kvm_write_tsc(vcpu, data);
 		break;
-	}
 	case MSR_STAR:
 		svm->vmcb->save.star = data;
 		break;
@@ -2643,6 +2772,7 @@ static int interrupt_window_interception(struct vcpu_svm *svm)
 {
 	struct kvm_run *kvm_run = svm->vcpu.run;
 
+	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
 	svm_clear_vintr(svm);
 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
 	/*
@@ -2672,7 +2802,7 @@ static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
 	[SVM_EXIT_READ_CR4]			= emulate_on_interception,
 	[SVM_EXIT_READ_CR8]			= emulate_on_interception,
 	[SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception,
-	[SVM_EXIT_WRITE_CR0]			= emulate_on_interception,
+	[SVM_EXIT_WRITE_CR0]			= cr0_write_interception,
 	[SVM_EXIT_WRITE_CR3]			= emulate_on_interception,
 	[SVM_EXIT_WRITE_CR4]			= emulate_on_interception,
 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
@@ -2871,7 +3001,8 @@ static int handle_exit(struct kvm_vcpu *vcpu)
 
 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
-	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
+	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
+	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
 		printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
 		       "exit_code 0x%x\n",
 		       __func__, svm->vmcb->control.exit_int_info,
@@ -3088,8 +3219,10 @@ static void svm_complete_interrupts(struct vcpu_svm *svm)
 
 	svm->int3_injected = 0;
 
-	if (svm->vcpu.arch.hflags & HF_IRET_MASK)
+	if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
+		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+	}
 
 	svm->vcpu.arch.nmi_injected = false;
 	kvm_clear_exception_queue(&svm->vcpu);
@@ -3098,6 +3231,8 @@ static void svm_complete_interrupts(struct vcpu_svm *svm)
 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
 		return;
 
+	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+
 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
 
@@ -3134,6 +3269,17 @@ static void svm_complete_interrupts(struct vcpu_svm *svm)
 	}
 }
 
+static void svm_cancel_injection(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb_control_area *control = &svm->vmcb->control;
+
+	control->exit_int_info = control->event_inj;
+	control->exit_int_info_err = control->event_inj_err;
+	control->event_inj = 0;
+	svm_complete_interrupts(svm);
+}
+
 #ifdef CONFIG_X86_64
 #define R "r"
 #else
@@ -3167,9 +3313,6 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
 	savesegment(gs, gs_selector);
 	ldt_selector = kvm_read_ldt();
 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
-	/* required for live migration with NPT */
-	if (npt_enabled)
-		svm->vmcb->save.cr3 = vcpu->arch.cr3;
 
 	clgi();
 
@@ -3291,16 +3434,22 @@ static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
 {
 	struct vcpu_svm *svm = to_svm(vcpu);
 
-	if (npt_enabled) {
-		svm->vmcb->control.nested_cr3 = root;
-		force_new_asid(vcpu);
-		return;
-	}
-
 	svm->vmcb->save.cr3 = root;
 	force_new_asid(vcpu);
 }
 
+static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.nested_cr3 = root;
+
+	/* Also sync guest cr3 here in case we live migrate */
+	svm->vmcb->save.cr3 = vcpu->arch.cr3;
+
+	force_new_asid(vcpu);
+}
+
 static int is_disabled(void)
 {
 	u64 vm_cr;
@@ -3333,15 +3482,6 @@ static bool svm_cpu_has_accelerated_tpr(void)
 	return false;
 }
 
-static int get_npt_level(void)
-{
-#ifdef CONFIG_X86_64
-	return PT64_ROOT_LEVEL;
-#else
-	return PT32E_ROOT_LEVEL;
-#endif
-}
-
 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
 {
 	return 0;
@@ -3354,12 +3494,25 @@ static void svm_cpuid_update(struct kvm_vcpu *vcpu)
 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
 {
 	switch (func) {
+	case 0x80000001:
+		if (nested)
+			entry->ecx |= (1 << 2); /* Set SVM bit */
+		break;
 	case 0x8000000A:
 		entry->eax = 1; /* SVM revision 1 */
 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 				   ASID emulation to nested SVM */
 		entry->ecx = 0; /* Reserved */
-		entry->edx = 0; /* Do not support any additional features */
+		entry->edx = 0; /* Per default do not support any
+				   additional features */
+
+		/* Support next_rip if host supports it */
+		if (svm_has(SVM_FEATURE_NRIP))
+			entry->edx |= SVM_FEATURE_NRIP;
+
+		/* Support NPT for the guest if enabled */
+		if (npt_enabled)
+			entry->edx |= SVM_FEATURE_NPT;
 
 		break;
 	}
@@ -3497,6 +3650,7 @@ static struct kvm_x86_ops svm_x86_ops = {
 	.set_irq = svm_set_irq,
 	.set_nmi = svm_inject_nmi,
 	.queue_exception = svm_queue_exception,
+	.cancel_injection = svm_cancel_injection,
 	.interrupt_allowed = svm_interrupt_allowed,
 	.nmi_allowed = svm_nmi_allowed,
 	.get_nmi_mask = svm_get_nmi_mask,
@@ -3519,6 +3673,11 @@ static struct kvm_x86_ops svm_x86_ops = {
 	.set_supported_cpuid = svm_set_supported_cpuid,
 
 	.has_wbinvd_exit = svm_has_wbinvd_exit,
+
+	.write_tsc_offset = svm_write_tsc_offset,
+	.adjust_tsc_offset = svm_adjust_tsc_offset,
+
+	.set_tdp_cr3 = set_tdp_cr3,
 };
 
 static int __init svm_init(void)

+ 1 - 1
arch/x86/kvm/timer.c

@@ -6,7 +6,7 @@
  *
  * timer support
  *
- * Copyright 2010 Red Hat, Inc. and/or its affilates.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  *
  * This work is licensed under the terms of the GNU GPL, version 2.  See
  * the COPYING file in the top-level directory.

+ 102 - 117
arch/x86/kvm/vmx.c

@@ -5,7 +5,7 @@
  * machines without emulation or binary translation.
  *
  * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affilates.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  *
  * Authors:
  *   Avi Kivity   <avi@qumranet.com>
@@ -125,6 +125,7 @@ struct vcpu_vmx {
 	unsigned long         host_rsp;
 	int                   launched;
 	u8                    fail;
+	u32                   exit_intr_info;
 	u32                   idt_vectoring_info;
 	struct shared_msr_entry *guest_msrs;
 	int                   nmsrs;
@@ -154,11 +155,6 @@ struct vcpu_vmx {
 			u32 limit;
 			u32 ar;
 		} tr, es, ds, fs, gs;
-		struct {
-			bool pending;
-			u8 vector;
-			unsigned rip;
-		} irq;
 	} rmode;
 	int vpid;
 	bool emulation_required;
@@ -505,7 +501,6 @@ static void __vcpu_clear(void *arg)
 		vmcs_clear(vmx->vmcs);
 	if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
 		per_cpu(current_vmcs, cpu) = NULL;
-	rdtscll(vmx->vcpu.arch.host_tsc);
 	list_del(&vmx->local_vcpus_link);
 	vmx->vcpu.cpu = -1;
 	vmx->launched = 0;
@@ -706,11 +701,10 @@ static void reload_tss(void)
 	/*
 	 * VT restores TR but not its size.  Useless.
 	 */
-	struct desc_ptr gdt;
+	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
 	struct desc_struct *descs;
 
-	native_store_gdt(&gdt);
-	descs = (void *)gdt.address;
+	descs = (void *)gdt->address;
 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
 	load_TR_desc();
 }
@@ -753,7 +747,7 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
 
 static unsigned long segment_base(u16 selector)
 {
-	struct desc_ptr gdt;
+	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
 	struct desc_struct *d;
 	unsigned long table_base;
 	unsigned long v;
@@ -761,8 +755,7 @@ static unsigned long segment_base(u16 selector)
 	if (!(selector & ~3))
 		return 0;
 
-	native_store_gdt(&gdt);
-	table_base = gdt.address;
+	table_base = gdt->address;
 
 	if (selector & 4) {           /* from ldt */
 		u16 ldt_selector = kvm_read_ldt();
@@ -883,7 +876,6 @@ static void vmx_load_host_state(struct vcpu_vmx *vmx)
 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 {
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u64 tsc_this, delta, new_offset;
 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
 
 	if (!vmm_exclusive)
@@ -897,37 +889,24 @@ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 	}
 
 	if (vcpu->cpu != cpu) {
-		struct desc_ptr dt;
+		struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
 		unsigned long sysenter_esp;
 
-		kvm_migrate_timers(vcpu);
 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 		local_irq_disable();
 		list_add(&vmx->local_vcpus_link,
 			 &per_cpu(vcpus_on_cpu, cpu));
 		local_irq_enable();
 
-		vcpu->cpu = cpu;
 		/*
 		 * Linux uses per-cpu TSS and GDT, so set these when switching
 		 * processors.
 		 */
 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
-		native_store_gdt(&dt);
-		vmcs_writel(HOST_GDTR_BASE, dt.address);   /* 22.2.4 */
+		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
 
 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
-
-		/*
-		 * Make sure the time stamp counter is monotonous.
-		 */
-		rdtscll(tsc_this);
-		if (tsc_this < vcpu->arch.host_tsc) {
-			delta = vcpu->arch.host_tsc - tsc_this;
-			new_offset = vmcs_read64(TSC_OFFSET) + delta;
-			vmcs_write64(TSC_OFFSET, new_offset);
-		}
 	}
 }
 
@@ -1044,16 +1023,8 @@ static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 	}
 
 	if (vmx->rmode.vm86_active) {
-		vmx->rmode.irq.pending = true;
-		vmx->rmode.irq.vector = nr;
-		vmx->rmode.irq.rip = kvm_rip_read(vcpu);
-		if (kvm_exception_is_soft(nr))
-			vmx->rmode.irq.rip +=
-				vmx->vcpu.arch.event_exit_inst_len;
-		intr_info |= INTR_TYPE_SOFT_INTR;
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
-		kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
+		if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 		return;
 	}
 
@@ -1149,12 +1120,17 @@ static u64 guest_read_tsc(void)
 }
 
 /*
- * writes 'guest_tsc' into guest's timestamp counter "register"
- * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
+ * writes 'offset' into guest's timestamp counter offset register
  */
-static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
+static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+	vmcs_write64(TSC_OFFSET, offset);
+}
+
+static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
 {
-	vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
+	u64 offset = vmcs_read64(TSC_OFFSET);
+	vmcs_write64(TSC_OFFSET, offset + adjustment);
 }
 
 /*
@@ -1227,7 +1203,6 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 {
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	struct shared_msr_entry *msr;
-	u64 host_tsc;
 	int ret = 0;
 
 	switch (msr_index) {
@@ -1257,8 +1232,7 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 		vmcs_writel(GUEST_SYSENTER_ESP, data);
 		break;
 	case MSR_IA32_TSC:
-		rdtscll(host_tsc);
-		guest_write_tsc(data, host_tsc);
+		kvm_write_tsc(vcpu, data);
 		break;
 	case MSR_IA32_CR_PAT:
 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
@@ -1856,20 +1830,20 @@ static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
 		return;
 
 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
-		vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
-		vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
-		vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
-		vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
+		vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
+		vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
+		vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
+		vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
 	}
 }
 
 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
 {
 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
-		vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
-		vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
-		vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
-		vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+		vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+		vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+		vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+		vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
 	}
 
 	__set_bit(VCPU_EXREG_PDPTR,
@@ -2515,7 +2489,7 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
 {
 	u32 host_sysenter_cs, msr_low, msr_high;
 	u32 junk;
-	u64 host_pat, tsc_this, tsc_base;
+	u64 host_pat;
 	unsigned long a;
 	struct desc_ptr dt;
 	int i;
@@ -2656,12 +2630,7 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
 
-	tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
-	rdtscll(tsc_this);
-	if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
-		tsc_base = tsc_this;
-
-	guest_write_tsc(0, tsc_base);
+	kvm_write_tsc(&vmx->vcpu, 0);
 
 	return 0;
 }
@@ -2834,16 +2803,8 @@ static void vmx_inject_irq(struct kvm_vcpu *vcpu)
 
 	++vcpu->stat.irq_injections;
 	if (vmx->rmode.vm86_active) {
-		vmx->rmode.irq.pending = true;
-		vmx->rmode.irq.vector = irq;
-		vmx->rmode.irq.rip = kvm_rip_read(vcpu);
-		if (vcpu->arch.interrupt.soft)
-			vmx->rmode.irq.rip +=
-				vmx->vcpu.arch.event_exit_inst_len;
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
-			     irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
-		kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
+		if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 		return;
 	}
 	intr = irq | INTR_INFO_VALID_MASK;
@@ -2875,14 +2836,8 @@ static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
 
 	++vcpu->stat.nmi_injections;
 	if (vmx->rmode.vm86_active) {
-		vmx->rmode.irq.pending = true;
-		vmx->rmode.irq.vector = NMI_VECTOR;
-		vmx->rmode.irq.rip = kvm_rip_read(vcpu);
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
-			     NMI_VECTOR | INTR_TYPE_SOFT_INTR |
-			     INTR_INFO_VALID_MASK);
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
-		kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
+		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 		return;
 	}
 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
@@ -3346,6 +3301,7 @@ static int handle_wrmsr(struct kvm_vcpu *vcpu)
 
 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
 {
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
 	return 1;
 }
 
@@ -3358,6 +3314,8 @@ static int handle_interrupt_window(struct kvm_vcpu *vcpu)
 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
 
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
 	++vcpu->stat.irq_window_exits;
 
 	/*
@@ -3614,6 +3572,7 @@ static int handle_nmi_window(struct kvm_vcpu *vcpu)
 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
 	++vcpu->stat.nmi_window_exits;
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
 
 	return 1;
 }
@@ -3623,8 +3582,17 @@ static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 	enum emulation_result err = EMULATE_DONE;
 	int ret = 1;
+	u32 cpu_exec_ctrl;
+	bool intr_window_requested;
+
+	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
 
 	while (!guest_state_valid(vcpu)) {
+		if (intr_window_requested
+		    && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
+			return handle_interrupt_window(&vmx->vcpu);
+
 		err = emulate_instruction(vcpu, 0, 0, 0);
 
 		if (err == EMULATE_DO_MMIO) {
@@ -3790,18 +3758,9 @@ static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
 	vmcs_write32(TPR_THRESHOLD, irr);
 }
 
-static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
 {
-	u32 exit_intr_info;
-	u32 idt_vectoring_info = vmx->idt_vectoring_info;
-	bool unblock_nmi;
-	u8 vector;
-	int type;
-	bool idtv_info_valid;
-
-	exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-
-	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
+	u32 exit_intr_info = vmx->exit_intr_info;
 
 	/* Handle machine checks before interrupts are enabled */
 	if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
@@ -3816,8 +3775,16 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 		asm("int $2");
 		kvm_after_handle_nmi(&vmx->vcpu);
 	}
+}
 
-	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+	u32 exit_intr_info = vmx->exit_intr_info;
+	bool unblock_nmi;
+	u8 vector;
+	bool idtv_info_valid;
+
+	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 
 	if (cpu_has_virtual_nmis()) {
 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
@@ -3839,6 +3806,18 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 	} else if (unlikely(vmx->soft_vnmi_blocked))
 		vmx->vnmi_blocked_time +=
 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
+				      u32 idt_vectoring_info,
+				      int instr_len_field,
+				      int error_code_field)
+{
+	u8 vector;
+	int type;
+	bool idtv_info_valid;
+
+	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
 
 	vmx->vcpu.arch.nmi_injected = false;
 	kvm_clear_exception_queue(&vmx->vcpu);
@@ -3847,6 +3826,8 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 	if (!idtv_info_valid)
 		return;
 
+	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+
 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
 
@@ -3863,18 +3844,18 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 		break;
 	case INTR_TYPE_SOFT_EXCEPTION:
 		vmx->vcpu.arch.event_exit_inst_len =
-			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+			vmcs_read32(instr_len_field);
 		/* fall through */
 	case INTR_TYPE_HARD_EXCEPTION:
 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
-			u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
+			u32 err = vmcs_read32(error_code_field);
 			kvm_queue_exception_e(&vmx->vcpu, vector, err);
 		} else
 			kvm_queue_exception(&vmx->vcpu, vector);
 		break;
 	case INTR_TYPE_SOFT_INTR:
 		vmx->vcpu.arch.event_exit_inst_len =
-			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+			vmcs_read32(instr_len_field);
 		/* fall through */
 	case INTR_TYPE_EXT_INTR:
 		kvm_queue_interrupt(&vmx->vcpu, vector,
@@ -3885,27 +3866,21 @@ static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 	}
 }
 
-/*
- * Failure to inject an interrupt should give us the information
- * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs
- * when fetching the interrupt redirection bitmap in the real-mode
- * tss, this doesn't happen.  So we do it ourselves.
- */
-static void fixup_rmode_irq(struct vcpu_vmx *vmx)
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
 {
-	vmx->rmode.irq.pending = 0;
-	if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
-		return;
-	kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
-	if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
-		vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
-		vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
-		return;
-	}
-	vmx->idt_vectoring_info =
-		VECTORING_INFO_VALID_MASK
-		| INTR_TYPE_EXT_INTR
-		| vmx->rmode.irq.vector;
+	__vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
+				  VM_EXIT_INSTRUCTION_LEN,
+				  IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+	__vmx_complete_interrupts(to_vmx(vcpu),
+				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+				  VM_ENTRY_INSTRUCTION_LEN,
+				  VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
 }
 
 #ifdef CONFIG_X86_64
@@ -4032,7 +4007,7 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
 #endif
 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
 	      : "cc", "memory"
-		, R"bx", R"di", R"si"
+		, R"ax", R"bx", R"di", R"si"
 #ifdef CONFIG_X86_64
 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
 #endif
@@ -4043,12 +4018,15 @@ static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
 	vcpu->arch.regs_dirty = 0;
 
 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
-	if (vmx->rmode.irq.pending)
-		fixup_rmode_irq(vmx);
 
 	asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
 	vmx->launched = 1;
 
+	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
+	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+	vmx_complete_atomic_exit(vmx);
+	vmx_recover_nmi_blocking(vmx);
 	vmx_complete_interrupts(vmx);
 }
 
@@ -4119,6 +4097,7 @@ static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
 
 	cpu = get_cpu();
 	vmx_vcpu_load(&vmx->vcpu, cpu);
+	vmx->vcpu.cpu = cpu;
 	err = vmx_vcpu_setup(vmx);
 	vmx_vcpu_put(&vmx->vcpu);
 	put_cpu();
@@ -4334,6 +4313,7 @@ static struct kvm_x86_ops vmx_x86_ops = {
 	.set_irq = vmx_inject_irq,
 	.set_nmi = vmx_inject_nmi,
 	.queue_exception = vmx_queue_exception,
+	.cancel_injection = vmx_cancel_injection,
 	.interrupt_allowed = vmx_interrupt_allowed,
 	.nmi_allowed = vmx_nmi_allowed,
 	.get_nmi_mask = vmx_get_nmi_mask,
@@ -4356,6 +4336,11 @@ static struct kvm_x86_ops vmx_x86_ops = {
 	.set_supported_cpuid = vmx_set_supported_cpuid,
 
 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+	.write_tsc_offset = vmx_write_tsc_offset,
+	.adjust_tsc_offset = vmx_adjust_tsc_offset,
+
+	.set_tdp_cr3 = vmx_set_cr3,
 };
 
 static int __init vmx_init(void)

Файлын зөрүү хэтэрхий том тул дарагдсан байна
+ 505 - 127
arch/x86/kvm/x86.c


+ 8 - 0
arch/x86/kvm/x86.h

@@ -50,6 +50,11 @@ static inline int is_long_mode(struct kvm_vcpu *vcpu)
 #endif
 }
 
+static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
+{
+	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
+}
+
 static inline int is_pae(struct kvm_vcpu *vcpu)
 {
 	return kvm_read_cr4_bits(vcpu, X86_CR4_PAE);
@@ -67,5 +72,8 @@ static inline int is_paging(struct kvm_vcpu *vcpu)
 
 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu);
 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu);
+int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq);
+
+void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data);
 
 #endif

+ 60 - 6
drivers/s390/kvm/kvm_virtio.c

@@ -32,6 +32,7 @@
  * The pointer to our (page) of device descriptions.
  */
 static void *kvm_devices;
+struct work_struct hotplug_work;
 
 struct kvm_device {
 	struct virtio_device vdev;
@@ -327,6 +328,47 @@ static void scan_devices(void)
 	}
 }
 
+/*
+ * match for a kvm device with a specific desc pointer
+ */
+static int match_desc(struct device *dev, void *data)
+{
+	if ((ulong)to_kvmdev(dev_to_virtio(dev))->desc == (ulong)data)
+		return 1;
+
+	return 0;
+}
+
+/*
+ * hotplug_device tries to find changes in the device page.
+ */
+static void hotplug_devices(struct work_struct *dummy)
+{
+	unsigned int i;
+	struct kvm_device_desc *d;
+	struct device *dev;
+
+	for (i = 0; i < PAGE_SIZE; i += desc_size(d)) {
+		d = kvm_devices + i;
+
+		/* end of list */
+		if (d->type == 0)
+			break;
+
+		/* device already exists */
+		dev = device_find_child(kvm_root, d, match_desc);
+		if (dev) {
+			/* XXX check for hotplug remove */
+			put_device(dev);
+			continue;
+		}
+
+		/* new device */
+		printk(KERN_INFO "Adding new virtio device %p\n", d);
+		add_kvm_device(d, i);
+	}
+}
+
 /*
  * we emulate the request_irq behaviour on top of s390 extints
  */
@@ -334,7 +376,7 @@ static void kvm_extint_handler(u16 code)
 {
 	struct virtqueue *vq;
 	u16 subcode;
-	int config_changed;
+	u32 param;
 
 	subcode = S390_lowcore.cpu_addr;
 	if ((subcode & 0xff00) != VIRTIO_SUBCODE_64)
@@ -343,18 +385,28 @@ static void kvm_extint_handler(u16 code)
 	/* The LSB might be overloaded, we have to mask it */
 	vq = (struct virtqueue *)(S390_lowcore.ext_params2 & ~1UL);
 
-	/* We use the LSB of extparam, to decide, if this interrupt is a config
-	 * change or a "standard" interrupt */
-	config_changed = S390_lowcore.ext_params & 1;
+	/* We use ext_params to decide what this interrupt means */
+	param = S390_lowcore.ext_params & VIRTIO_PARAM_MASK;
 
-	if (config_changed) {
+	switch (param) {
+	case VIRTIO_PARAM_CONFIG_CHANGED:
+	{
 		struct virtio_driver *drv;
 		drv = container_of(vq->vdev->dev.driver,
 				   struct virtio_driver, driver);
 		if (drv->config_changed)
 			drv->config_changed(vq->vdev);
-	} else
+
+		break;
+	}
+	case VIRTIO_PARAM_DEV_ADD:
+		schedule_work(&hotplug_work);
+		break;
+	case VIRTIO_PARAM_VRING_INTERRUPT:
+	default:
 		vring_interrupt(0, vq);
+		break;
+	}
 }
 
 /*
@@ -383,6 +435,8 @@ static int __init kvm_devices_init(void)
 
 	kvm_devices = (void *) real_memory_size;
 
+	INIT_WORK(&hotplug_work, hotplug_devices);
+
 	ctl_set_bit(0, 9);
 	register_external_interrupt(0x2603, kvm_extint_handler);
 

+ 12 - 0
include/linux/kvm.h

@@ -414,6 +414,14 @@ struct kvm_enable_cap {
 	__u8  pad[64];
 };
 
+/* for KVM_PPC_GET_PVINFO */
+struct kvm_ppc_pvinfo {
+	/* out */
+	__u32 flags;
+	__u32 hcall[4];
+	__u8  pad[108];
+};
+
 #define KVMIO 0xAE
 
 /*
@@ -530,6 +538,8 @@ struct kvm_enable_cap {
 #ifdef __KVM_HAVE_XCRS
 #define KVM_CAP_XCRS 56
 #endif
+#define KVM_CAP_PPC_GET_PVINFO 57
+#define KVM_CAP_PPC_IRQ_LEVEL 58
 
 #ifdef KVM_CAP_IRQ_ROUTING
 
@@ -664,6 +674,8 @@ struct kvm_clock_data {
 /* Available with KVM_CAP_PIT_STATE2 */
 #define KVM_GET_PIT2              _IOR(KVMIO,  0x9f, struct kvm_pit_state2)
 #define KVM_SET_PIT2              _IOW(KVMIO,  0xa0, struct kvm_pit_state2)
+/* Available with KVM_CAP_PPC_GET_PVINFO */
+#define KVM_PPC_GET_PVINFO	  _IOW(KVMIO,  0xa1, struct kvm_ppc_pvinfo)
 
 /*
  * ioctls for vcpu fds

+ 19 - 3
include/linux/kvm_host.h

@@ -36,9 +36,10 @@
 #define KVM_REQ_PENDING_TIMER      5
 #define KVM_REQ_UNHALT             6
 #define KVM_REQ_MMU_SYNC           7
-#define KVM_REQ_KVMCLOCK_UPDATE    8
+#define KVM_REQ_CLOCK_UPDATE       8
 #define KVM_REQ_KICK               9
 #define KVM_REQ_DEACTIVATE_FPU    10
+#define KVM_REQ_EVENT             11
 
 #define KVM_USERSPACE_IRQ_SOURCE_ID	0
 
@@ -289,6 +290,9 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
 void kvm_disable_largepages(void);
 void kvm_arch_flush_shadow(struct kvm *kvm);
 
+int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
+			    int nr_pages);
+
 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
 void kvm_release_page_clean(struct page *page);
@@ -296,6 +300,8 @@ void kvm_release_page_dirty(struct page *page);
 void kvm_set_page_dirty(struct page *page);
 void kvm_set_page_accessed(struct page *page);
 
+pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr);
+pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
 			 struct kvm_memory_slot *slot, gfn_t gfn);
@@ -477,8 +483,7 @@ int kvm_deassign_device(struct kvm *kvm,
 			struct kvm_assigned_dev_kernel *assigned_dev);
 #else /* CONFIG_IOMMU_API */
 static inline int kvm_iommu_map_pages(struct kvm *kvm,
-				      gfn_t base_gfn,
-				      unsigned long npages)
+				      struct kvm_memory_slot *slot)
 {
 	return 0;
 }
@@ -518,11 +523,22 @@ static inline void kvm_guest_exit(void)
 	current->flags &= ~PF_VCPU;
 }
 
+static inline unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
+					       gfn_t gfn)
+{
+	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
+}
+
 static inline gpa_t gfn_to_gpa(gfn_t gfn)
 {
 	return (gpa_t)gfn << PAGE_SHIFT;
 }
 
+static inline gfn_t gpa_to_gfn(gpa_t gpa)
+{
+	return (gfn_t)(gpa >> PAGE_SHIFT);
+}
+
 static inline hpa_t pfn_to_hpa(pfn_t pfn)
 {
 	return (hpa_t)pfn << PAGE_SHIFT;

+ 2 - 5
include/linux/kvm_para.h

@@ -17,6 +17,8 @@
 
 #define KVM_HC_VAPIC_POLL_IRQ		1
 #define KVM_HC_MMU_OP			2
+#define KVM_HC_FEATURES			3
+#define KVM_HC_PPC_MAP_MAGIC_PAGE	4
 
 /*
  * hypercalls use architecture specific
@@ -24,11 +26,6 @@
 #include <asm/kvm_para.h>
 
 #ifdef __KERNEL__
-#ifdef CONFIG_KVM_GUEST
-void __init kvm_guest_init(void);
-#else
-#define kvm_guest_init() do { } while (0)
-#endif
 
 static inline int kvm_para_has_feature(unsigned int feature)
 {

+ 13 - 0
mm/util.c

@@ -245,6 +245,19 @@ void arch_pick_mmap_layout(struct mm_struct *mm)
 }
 #endif
 
+/*
+ * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
+ * back to the regular GUP.
+ * If the architecture not support this fucntion, simply return with no
+ * page pinned
+ */
+int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
+				 int nr_pages, int write, struct page **pages)
+{
+	return 0;
+}
+EXPORT_SYMBOL_GPL(__get_user_pages_fast);
+
 /**
  * get_user_pages_fast() - pin user pages in memory
  * @start:	starting user address

+ 1 - 1
virt/kvm/irq_comm.c

@@ -17,7 +17,7 @@
  * Authors:
  *   Yaozu (Eddie) Dong <Eddie.dong@intel.com>
  *
- * Copyright 2010 Red Hat, Inc. and/or its affilates.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  */
 
 #include <linux/kvm_host.h>

+ 66 - 18
virt/kvm/kvm_main.c

@@ -5,7 +5,7 @@
  * machines without emulation or binary translation.
  *
  * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affilates.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  *
  * Authors:
  *   Avi Kivity   <avi@qumranet.com>
@@ -705,14 +705,12 @@ skip_lpage:
 	if (r)
 		goto out_free;
 
-#ifdef CONFIG_DMAR
 	/* map the pages in iommu page table */
 	if (npages) {
 		r = kvm_iommu_map_pages(kvm, &new);
 		if (r)
 			goto out_free;
 	}
-#endif
 
 	r = -ENOMEM;
 	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
@@ -927,35 +925,46 @@ int memslot_id(struct kvm *kvm, gfn_t gfn)
 	return memslot - slots->memslots;
 }
 
-static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
-{
-	return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
-}
-
-unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
+static unsigned long gfn_to_hva_many(struct kvm *kvm, gfn_t gfn,
+				     gfn_t *nr_pages)
 {
 	struct kvm_memory_slot *slot;
 
 	slot = gfn_to_memslot(kvm, gfn);
 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
 		return bad_hva();
+
+	if (nr_pages)
+		*nr_pages = slot->npages - (gfn - slot->base_gfn);
+
 	return gfn_to_hva_memslot(slot, gfn);
 }
+
+unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
+{
+	return gfn_to_hva_many(kvm, gfn, NULL);
+}
 EXPORT_SYMBOL_GPL(gfn_to_hva);
 
-static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
+static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic)
 {
 	struct page *page[1];
 	int npages;
 	pfn_t pfn;
 
-	might_sleep();
-
-	npages = get_user_pages_fast(addr, 1, 1, page);
+	if (atomic)
+		npages = __get_user_pages_fast(addr, 1, 1, page);
+	else {
+		might_sleep();
+		npages = get_user_pages_fast(addr, 1, 1, page);
+	}
 
 	if (unlikely(npages != 1)) {
 		struct vm_area_struct *vma;
 
+		if (atomic)
+			goto return_fault_page;
+
 		down_read(&current->mm->mmap_sem);
 		if (is_hwpoison_address(addr)) {
 			up_read(&current->mm->mmap_sem);
@@ -968,6 +977,7 @@ static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
 		if (vma == NULL || addr < vma->vm_start ||
 		    !(vma->vm_flags & VM_PFNMAP)) {
 			up_read(&current->mm->mmap_sem);
+return_fault_page:
 			get_page(fault_page);
 			return page_to_pfn(fault_page);
 		}
@@ -981,7 +991,13 @@ static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
 	return pfn;
 }
 
-pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
+pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
+{
+	return hva_to_pfn(kvm, addr, true);
+}
+EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
+
+static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic)
 {
 	unsigned long addr;
 
@@ -991,7 +1007,18 @@ pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
 		return page_to_pfn(bad_page);
 	}
 
-	return hva_to_pfn(kvm, addr);
+	return hva_to_pfn(kvm, addr, atomic);
+}
+
+pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
+{
+	return __gfn_to_pfn(kvm, gfn, true);
+}
+EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
+
+pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
+{
+	return __gfn_to_pfn(kvm, gfn, false);
 }
 EXPORT_SYMBOL_GPL(gfn_to_pfn);
 
@@ -999,9 +1026,26 @@ pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
 			 struct kvm_memory_slot *slot, gfn_t gfn)
 {
 	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
-	return hva_to_pfn(kvm, addr);
+	return hva_to_pfn(kvm, addr, false);
 }
 
+int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
+								  int nr_pages)
+{
+	unsigned long addr;
+	gfn_t entry;
+
+	addr = gfn_to_hva_many(kvm, gfn, &entry);
+	if (kvm_is_error_hva(addr))
+		return -1;
+
+	if (entry < nr_pages)
+		return 0;
+
+	return __get_user_pages_fast(addr, nr_pages, 1, pages);
+}
+EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
+
 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
 {
 	pfn_t pfn;
@@ -1964,7 +2008,9 @@ static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
 	case CPU_STARTING:
 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
 		       cpu);
+		spin_lock(&kvm_lock);
 		hardware_enable(NULL);
+		spin_unlock(&kvm_lock);
 		break;
 	}
 	return NOTIFY_OK;
@@ -1977,7 +2023,7 @@ asmlinkage void kvm_handle_fault_on_reboot(void)
 		/* spin while reset goes on */
 		local_irq_enable();
 		while (true)
-			;
+			cpu_relax();
 	}
 	/* Fault while not rebooting.  We want the trace. */
 	BUG();
@@ -2171,8 +2217,10 @@ static int kvm_suspend(struct sys_device *dev, pm_message_t state)
 
 static int kvm_resume(struct sys_device *dev)
 {
-	if (kvm_usage_count)
+	if (kvm_usage_count) {
+		WARN_ON(spin_is_locked(&kvm_lock));
 		hardware_enable(NULL);
+	}
 	return 0;
 }
 

Энэ ялгаанд хэт олон файл өөрчлөгдсөн тул зарим файлыг харуулаагүй болно