|
@@ -0,0 +1,3254 @@
|
|
|
+/*
|
|
|
+ comedi/drivers/s626.c
|
|
|
+ Sensoray s626 Comedi driver
|
|
|
+
|
|
|
+ COMEDI - Linux Control and Measurement Device Interface
|
|
|
+ Copyright (C) 2000 David A. Schleef <ds@schleef.org>
|
|
|
+
|
|
|
+ Based on Sensoray Model 626 Linux driver Version 0.2
|
|
|
+ Copyright (C) 2002-2004 Sensoray Co., Inc.
|
|
|
+
|
|
|
+ This program is free software; you can redistribute it and/or modify
|
|
|
+ it under the terms of the GNU General Public License as published by
|
|
|
+ the Free Software Foundation; either version 2 of the License, or
|
|
|
+ (at your option) any later version.
|
|
|
+
|
|
|
+ This program is distributed in the hope that it will be useful,
|
|
|
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ GNU General Public License for more details.
|
|
|
+
|
|
|
+ You should have received a copy of the GNU General Public License
|
|
|
+ along with this program; if not, write to the Free Software
|
|
|
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
+
|
|
|
+*/
|
|
|
+
|
|
|
+/*
|
|
|
+Driver: s626
|
|
|
+Description: Sensoray 626 driver
|
|
|
+Devices: [Sensoray] 626 (s626)
|
|
|
+Authors: Gianluca Palli <gpalli@deis.unibo.it>,
|
|
|
+Updated: Fri, 15 Feb 2008 10:28:42 +0000
|
|
|
+Status: experimental
|
|
|
+
|
|
|
+Configuration options:
|
|
|
+ [0] - PCI bus of device (optional)
|
|
|
+ [1] - PCI slot of device (optional)
|
|
|
+ If bus/slot is not specified, the first supported
|
|
|
+ PCI device found will be used.
|
|
|
+
|
|
|
+INSN_CONFIG instructions:
|
|
|
+ analog input:
|
|
|
+ none
|
|
|
+
|
|
|
+ analog output:
|
|
|
+ none
|
|
|
+
|
|
|
+ digital channel:
|
|
|
+ s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
|
|
|
+ supported configuration options:
|
|
|
+ INSN_CONFIG_DIO_QUERY
|
|
|
+ COMEDI_INPUT
|
|
|
+ COMEDI_OUTPUT
|
|
|
+
|
|
|
+ encoder:
|
|
|
+ Every channel must be configured before reading.
|
|
|
+
|
|
|
+ Example code
|
|
|
+
|
|
|
+ insn.insn=INSN_CONFIG; //configuration instruction
|
|
|
+ insn.n=1; //number of operation (must be 1)
|
|
|
+ insn.data=&initialvalue; //initial value loaded into encoder
|
|
|
+ //during configuration
|
|
|
+ insn.subdev=5; //encoder subdevice
|
|
|
+ insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
|
|
|
+ //to configure
|
|
|
+
|
|
|
+ comedi_do_insn(cf,&insn); //executing configuration
|
|
|
+*/
|
|
|
+
|
|
|
+#include <linux/kernel.h>
|
|
|
+#include <linux/types.h>
|
|
|
+
|
|
|
+#include "../comedidev.h"
|
|
|
+
|
|
|
+#include "comedi_pci.h"
|
|
|
+
|
|
|
+#include "comedi_fc.h"
|
|
|
+#include "s626.h"
|
|
|
+
|
|
|
+MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
|
|
|
+MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
|
|
|
+MODULE_LICENSE("GPL");
|
|
|
+
|
|
|
+typedef struct s626_board_struct {
|
|
|
+ const char *name;
|
|
|
+ int ai_chans;
|
|
|
+ int ai_bits;
|
|
|
+ int ao_chans;
|
|
|
+ int ao_bits;
|
|
|
+ int dio_chans;
|
|
|
+ int dio_banks;
|
|
|
+ int enc_chans;
|
|
|
+} s626_board;
|
|
|
+
|
|
|
+static const s626_board s626_boards[] = {
|
|
|
+ {
|
|
|
+ name: "s626",
|
|
|
+ ai_chans:S626_ADC_CHANNELS,
|
|
|
+ ai_bits: 14,
|
|
|
+ ao_chans:S626_DAC_CHANNELS,
|
|
|
+ ao_bits: 13,
|
|
|
+ dio_chans:S626_DIO_CHANNELS,
|
|
|
+ dio_banks:S626_DIO_BANKS,
|
|
|
+ enc_chans:S626_ENCODER_CHANNELS,
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+#define thisboard ((const s626_board *)dev->board_ptr)
|
|
|
+#define PCI_VENDOR_ID_S626 0x1131
|
|
|
+#define PCI_DEVICE_ID_S626 0x7146
|
|
|
+
|
|
|
+static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
|
|
|
+ {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
|
|
|
+ 0},
|
|
|
+ {0}
|
|
|
+};
|
|
|
+
|
|
|
+MODULE_DEVICE_TABLE(pci, s626_pci_table);
|
|
|
+
|
|
|
+static int s626_attach(comedi_device * dev, comedi_devconfig * it);
|
|
|
+static int s626_detach(comedi_device * dev);
|
|
|
+
|
|
|
+static comedi_driver driver_s626 = {
|
|
|
+ driver_name:"s626",
|
|
|
+ module:THIS_MODULE,
|
|
|
+ attach:s626_attach,
|
|
|
+ detach:s626_detach,
|
|
|
+};
|
|
|
+
|
|
|
+typedef struct {
|
|
|
+ struct pci_dev *pdev;
|
|
|
+ void *base_addr;
|
|
|
+ int got_regions;
|
|
|
+ short allocatedBuf;
|
|
|
+ uint8_t ai_cmd_running; // ai_cmd is running
|
|
|
+ uint8_t ai_continous; // continous aquisition
|
|
|
+ int ai_sample_count; // number of samples to aquire
|
|
|
+ unsigned int ai_sample_timer; // time between samples in
|
|
|
+ // units of the timer
|
|
|
+ int ai_convert_count; // conversion counter
|
|
|
+ unsigned int ai_convert_timer; // time between conversion in
|
|
|
+ // units of the timer
|
|
|
+ uint16_t CounterIntEnabs; //Counter interrupt enable
|
|
|
+ //mask for MISC2 register.
|
|
|
+ uint8_t AdcItems; //Number of items in ADC poll
|
|
|
+ //list.
|
|
|
+ DMABUF RPSBuf; //DMA buffer used to hold ADC
|
|
|
+ //(RPS1) program.
|
|
|
+ DMABUF ANABuf; //DMA buffer used to receive
|
|
|
+ //ADC data and hold DAC data.
|
|
|
+ uint32_t *pDacWBuf; //Pointer to logical adrs of
|
|
|
+ //DMA buffer used to hold DAC
|
|
|
+ //data.
|
|
|
+ uint16_t Dacpol; //Image of DAC polarity
|
|
|
+ //register.
|
|
|
+ uint8_t TrimSetpoint[12]; //Images of TrimDAC setpoints.
|
|
|
+ //registers.
|
|
|
+ uint16_t ChargeEnabled; //Image of MISC2 Battery
|
|
|
+ //Charge Enabled (0 or
|
|
|
+ //WRMISC2_CHARGE_ENABLE).
|
|
|
+ uint16_t WDInterval; //Image of MISC2 watchdog
|
|
|
+ //interval control bits.
|
|
|
+ uint32_t I2CAdrs; //I2C device address for
|
|
|
+ //onboard EEPROM (board rev
|
|
|
+ //dependent).
|
|
|
+ // short I2Cards;
|
|
|
+ lsampl_t ao_readback[S626_DAC_CHANNELS];
|
|
|
+} s626_private;
|
|
|
+
|
|
|
+typedef struct {
|
|
|
+ uint16_t RDDIn;
|
|
|
+ uint16_t WRDOut;
|
|
|
+ uint16_t RDEdgSel;
|
|
|
+ uint16_t WREdgSel;
|
|
|
+ uint16_t RDCapSel;
|
|
|
+ uint16_t WRCapSel;
|
|
|
+ uint16_t RDCapFlg;
|
|
|
+ uint16_t RDIntSel;
|
|
|
+ uint16_t WRIntSel;
|
|
|
+} dio_private;
|
|
|
+
|
|
|
+static dio_private dio_private_A = {
|
|
|
+ RDDIn:LP_RDDINA,
|
|
|
+ WRDOut:LP_WRDOUTA,
|
|
|
+ RDEdgSel:LP_RDEDGSELA,
|
|
|
+ WREdgSel:LP_WREDGSELA,
|
|
|
+ RDCapSel:LP_RDCAPSELA,
|
|
|
+ WRCapSel:LP_WRCAPSELA,
|
|
|
+ RDCapFlg:LP_RDCAPFLGA,
|
|
|
+ RDIntSel:LP_RDINTSELA,
|
|
|
+ WRIntSel:LP_WRINTSELA,
|
|
|
+};
|
|
|
+
|
|
|
+static dio_private dio_private_B = {
|
|
|
+ RDDIn:LP_RDDINB,
|
|
|
+ WRDOut:LP_WRDOUTB,
|
|
|
+ RDEdgSel:LP_RDEDGSELB,
|
|
|
+ WREdgSel:LP_WREDGSELB,
|
|
|
+ RDCapSel:LP_RDCAPSELB,
|
|
|
+ WRCapSel:LP_WRCAPSELB,
|
|
|
+ RDCapFlg:LP_RDCAPFLGB,
|
|
|
+ RDIntSel:LP_RDINTSELB,
|
|
|
+ WRIntSel:LP_WRINTSELB,
|
|
|
+};
|
|
|
+
|
|
|
+static dio_private dio_private_C = {
|
|
|
+ RDDIn:LP_RDDINC,
|
|
|
+ WRDOut:LP_WRDOUTC,
|
|
|
+ RDEdgSel:LP_RDEDGSELC,
|
|
|
+ WREdgSel:LP_WREDGSELC,
|
|
|
+ RDCapSel:LP_RDCAPSELC,
|
|
|
+ WRCapSel:LP_WRCAPSELC,
|
|
|
+ RDCapFlg:LP_RDCAPFLGC,
|
|
|
+ RDIntSel:LP_RDINTSELC,
|
|
|
+ WRIntSel:LP_WRINTSELC,
|
|
|
+};
|
|
|
+
|
|
|
+/* to group dio devices (48 bits mask and data are not allowed ???)
|
|
|
+static dio_private *dio_private_word[]={
|
|
|
+ &dio_private_A,
|
|
|
+ &dio_private_B,
|
|
|
+ &dio_private_C,
|
|
|
+};
|
|
|
+*/
|
|
|
+
|
|
|
+#define devpriv ((s626_private *)dev->private)
|
|
|
+#define diopriv ((dio_private *)s->private)
|
|
|
+
|
|
|
+COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
|
|
|
+
|
|
|
+//ioctl routines
|
|
|
+static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
|
|
|
+static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s);
|
|
|
+static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_cmd * cmd);
|
|
|
+static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s);
|
|
|
+static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_dio_set_irq(comedi_device * dev, unsigned int chan);
|
|
|
+static int s626_dio_reset_irq(comedi_device * dev, unsigned int gruop,
|
|
|
+ unsigned int mask);
|
|
|
+static int s626_dio_clear_irq(comedi_device * dev);
|
|
|
+static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data);
|
|
|
+static int s626_ns_to_timer(int *nanosec, int round_mode);
|
|
|
+static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd);
|
|
|
+static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ unsigned int trignum);
|
|
|
+static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
|
|
|
+static lsampl_t s626_ai_reg_to_uint(int data);
|
|
|
+/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
|
|
|
+
|
|
|
+//end ioctl routines
|
|
|
+
|
|
|
+//internal routines
|
|
|
+static void s626_dio_init(comedi_device * dev);
|
|
|
+static void ResetADC(comedi_device * dev, uint8_t * ppl);
|
|
|
+static void LoadTrimDACs(comedi_device * dev);
|
|
|
+static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
|
|
|
+ uint8_t DacData);
|
|
|
+static uint8_t I2Cread(comedi_device * dev, uint8_t addr);
|
|
|
+static uint32_t I2Chandshake(comedi_device * dev, uint32_t val);
|
|
|
+static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata);
|
|
|
+static void SendDAC(comedi_device * dev, uint32_t val);
|
|
|
+static void WriteMISC2(comedi_device * dev, uint16_t NewImage);
|
|
|
+static void DEBItransfer(comedi_device * dev);
|
|
|
+static uint16_t DEBIread(comedi_device * dev, uint16_t addr);
|
|
|
+static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata);
|
|
|
+static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
|
|
|
+ uint16_t wdata);
|
|
|
+static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize);
|
|
|
+
|
|
|
+// COUNTER OBJECT ------------------------------------------------
|
|
|
+typedef struct enc_private_struct {
|
|
|
+ // Pointers to functions that differ for A and B counters:
|
|
|
+ uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *); //Return clock enable.
|
|
|
+ uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *); //Return interrupt source.
|
|
|
+ uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *); //Return preload trigger source.
|
|
|
+ uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *); //Return standardized operating mode.
|
|
|
+ void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *); //Generate soft index strobe.
|
|
|
+ void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab); //Program clock enable.
|
|
|
+ void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource); //Program interrupt source.
|
|
|
+ void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig); //Program preload trigger source.
|
|
|
+ void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc); //Program standardized operating mode.
|
|
|
+ void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *); //Reset event capture flags.
|
|
|
+
|
|
|
+ uint16_t MyCRA; // Address of CRA register.
|
|
|
+ uint16_t MyCRB; // Address of CRB register.
|
|
|
+ uint16_t MyLatchLsw; // Address of Latch least-significant-word
|
|
|
+ // register.
|
|
|
+ uint16_t MyEventBits[4]; // Bit translations for IntSrc -->RDMISC2.
|
|
|
+} enc_private; //counter object
|
|
|
+
|
|
|
+#define encpriv ((enc_private *)(dev->subdevices+5)->private)
|
|
|
+
|
|
|
+//counters routines
|
|
|
+static void s626_timer_load(comedi_device * dev, enc_private * k, int tick);
|
|
|
+static uint32_t ReadLatch(comedi_device * dev, enc_private * k);
|
|
|
+static void ResetCapFlags_A(comedi_device * dev, enc_private * k);
|
|
|
+static void ResetCapFlags_B(comedi_device * dev, enc_private * k);
|
|
|
+static uint16_t GetMode_A(comedi_device * dev, enc_private * k);
|
|
|
+static uint16_t GetMode_B(comedi_device * dev, enc_private * k);
|
|
|
+static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
|
|
|
+ uint16_t DisableIntSrc);
|
|
|
+static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
|
|
|
+ uint16_t DisableIntSrc);
|
|
|
+static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab);
|
|
|
+static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab);
|
|
|
+static uint16_t GetEnable_A(comedi_device * dev, enc_private * k);
|
|
|
+static uint16_t GetEnable_B(comedi_device * dev, enc_private * k);
|
|
|
+static void SetLatchSource(comedi_device * dev, enc_private * k,
|
|
|
+ uint16_t value);
|
|
|
+/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
|
|
|
+static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig);
|
|
|
+static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig);
|
|
|
+static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k);
|
|
|
+static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k);
|
|
|
+static void SetIntSrc_B(comedi_device * dev, enc_private * k,
|
|
|
+ uint16_t IntSource);
|
|
|
+static void SetIntSrc_A(comedi_device * dev, enc_private * k,
|
|
|
+ uint16_t IntSource);
|
|
|
+static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k);
|
|
|
+static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k);
|
|
|
+/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
|
|
|
+/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
|
|
|
+/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
|
|
|
+/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
|
|
|
+/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
|
|
|
+/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ); */
|
|
|
+/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value ); */
|
|
|
+/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k ); */
|
|
|
+static void PulseIndex_A(comedi_device * dev, enc_private * k);
|
|
|
+static void PulseIndex_B(comedi_device * dev, enc_private * k);
|
|
|
+static void Preload(comedi_device * dev, enc_private * k, uint32_t value);
|
|
|
+static void CountersInit(comedi_device * dev);
|
|
|
+//end internal routines
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////
|
|
|
+// Counter objects constructor.
|
|
|
+
|
|
|
+// Counter overflow/index event flag masks for RDMISC2.
|
|
|
+#define INDXMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 + 4 ) ) )
|
|
|
+#define OVERMASK(C) ( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
|
|
|
+#define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
|
|
|
+
|
|
|
+// Translation table to map IntSrc into equivalent RDMISC2 event flag
|
|
|
+// bits.
|
|
|
+//static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
|
|
|
+
|
|
|
+/* enc_private; */
|
|
|
+static enc_private enc_private_data[] = {
|
|
|
+ {
|
|
|
+ GetEnable:GetEnable_A,
|
|
|
+ GetIntSrc:GetIntSrc_A,
|
|
|
+ GetLoadTrig:GetLoadTrig_A,
|
|
|
+ GetMode: GetMode_A,
|
|
|
+ PulseIndex:PulseIndex_A,
|
|
|
+ SetEnable:SetEnable_A,
|
|
|
+ SetIntSrc:SetIntSrc_A,
|
|
|
+ SetLoadTrig:SetLoadTrig_A,
|
|
|
+ SetMode: SetMode_A,
|
|
|
+ ResetCapFlags:ResetCapFlags_A,
|
|
|
+ MyCRA: LP_CR0A,
|
|
|
+ MyCRB: LP_CR0B,
|
|
|
+ MyLatchLsw:LP_CNTR0ALSW,
|
|
|
+ MyEventBits:EVBITS(0),
|
|
|
+ },
|
|
|
+ {
|
|
|
+ GetEnable:GetEnable_A,
|
|
|
+ GetIntSrc:GetIntSrc_A,
|
|
|
+ GetLoadTrig:GetLoadTrig_A,
|
|
|
+ GetMode: GetMode_A,
|
|
|
+ PulseIndex:PulseIndex_A,
|
|
|
+ SetEnable:SetEnable_A,
|
|
|
+ SetIntSrc:SetIntSrc_A,
|
|
|
+ SetLoadTrig:SetLoadTrig_A,
|
|
|
+ SetMode: SetMode_A,
|
|
|
+ ResetCapFlags:ResetCapFlags_A,
|
|
|
+ MyCRA: LP_CR1A,
|
|
|
+ MyCRB: LP_CR1B,
|
|
|
+ MyLatchLsw:LP_CNTR1ALSW,
|
|
|
+ MyEventBits:EVBITS(1),
|
|
|
+ },
|
|
|
+ {
|
|
|
+ GetEnable:GetEnable_A,
|
|
|
+ GetIntSrc:GetIntSrc_A,
|
|
|
+ GetLoadTrig:GetLoadTrig_A,
|
|
|
+ GetMode: GetMode_A,
|
|
|
+ PulseIndex:PulseIndex_A,
|
|
|
+ SetEnable:SetEnable_A,
|
|
|
+ SetIntSrc:SetIntSrc_A,
|
|
|
+ SetLoadTrig:SetLoadTrig_A,
|
|
|
+ SetMode: SetMode_A,
|
|
|
+ ResetCapFlags:ResetCapFlags_A,
|
|
|
+ MyCRA: LP_CR2A,
|
|
|
+ MyCRB: LP_CR2B,
|
|
|
+ MyLatchLsw:LP_CNTR2ALSW,
|
|
|
+ MyEventBits:EVBITS(2),
|
|
|
+ },
|
|
|
+ {
|
|
|
+ GetEnable:GetEnable_B,
|
|
|
+ GetIntSrc:GetIntSrc_B,
|
|
|
+ GetLoadTrig:GetLoadTrig_B,
|
|
|
+ GetMode: GetMode_B,
|
|
|
+ PulseIndex:PulseIndex_B,
|
|
|
+ SetEnable:SetEnable_B,
|
|
|
+ SetIntSrc:SetIntSrc_B,
|
|
|
+ SetLoadTrig:SetLoadTrig_B,
|
|
|
+ SetMode: SetMode_B,
|
|
|
+ ResetCapFlags:ResetCapFlags_B,
|
|
|
+ MyCRA: LP_CR0A,
|
|
|
+ MyCRB: LP_CR0B,
|
|
|
+ MyLatchLsw:LP_CNTR0BLSW,
|
|
|
+ MyEventBits:EVBITS(3),
|
|
|
+ },
|
|
|
+ {
|
|
|
+ GetEnable:GetEnable_B,
|
|
|
+ GetIntSrc:GetIntSrc_B,
|
|
|
+ GetLoadTrig:GetLoadTrig_B,
|
|
|
+ GetMode: GetMode_B,
|
|
|
+ PulseIndex:PulseIndex_B,
|
|
|
+ SetEnable:SetEnable_B,
|
|
|
+ SetIntSrc:SetIntSrc_B,
|
|
|
+ SetLoadTrig:SetLoadTrig_B,
|
|
|
+ SetMode: SetMode_B,
|
|
|
+ ResetCapFlags:ResetCapFlags_B,
|
|
|
+ MyCRA: LP_CR1A,
|
|
|
+ MyCRB: LP_CR1B,
|
|
|
+ MyLatchLsw:LP_CNTR1BLSW,
|
|
|
+ MyEventBits:EVBITS(4),
|
|
|
+ },
|
|
|
+ {
|
|
|
+ GetEnable:GetEnable_B,
|
|
|
+ GetIntSrc:GetIntSrc_B,
|
|
|
+ GetLoadTrig:GetLoadTrig_B,
|
|
|
+ GetMode: GetMode_B,
|
|
|
+ PulseIndex:PulseIndex_B,
|
|
|
+ SetEnable:SetEnable_B,
|
|
|
+ SetIntSrc:SetIntSrc_B,
|
|
|
+ SetLoadTrig:SetLoadTrig_B,
|
|
|
+ SetMode: SetMode_B,
|
|
|
+ ResetCapFlags:ResetCapFlags_B,
|
|
|
+ MyCRA: LP_CR2A,
|
|
|
+ MyCRB: LP_CR2B,
|
|
|
+ MyLatchLsw:LP_CNTR2BLSW,
|
|
|
+ MyEventBits:EVBITS(5),
|
|
|
+ },
|
|
|
+};
|
|
|
+
|
|
|
+// enab/disable a function or test status bit(s) that are accessed
|
|
|
+// through Main Control Registers 1 or 2.
|
|
|
+#define MC_ENABLE( REGADRS, CTRLWORD ) writel( ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) )
|
|
|
+
|
|
|
+#define MC_DISABLE( REGADRS, CTRLWORD ) writel( (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )
|
|
|
+
|
|
|
+#define MC_TEST( REGADRS, CTRLWORD ) ( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 )
|
|
|
+
|
|
|
+/* #define WR7146(REGARDS,CTRLWORD)
|
|
|
+ writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
|
|
|
+#define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,devpriv->base_addr+(REGARDS))
|
|
|
+
|
|
|
+/* #define RR7146(REGARDS)
|
|
|
+ readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
|
|
|
+#define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
|
|
|
+
|
|
|
+#define BUGFIX_STREG(REGADRS) ( REGADRS - 4 )
|
|
|
+
|
|
|
+// Write a time slot control record to TSL2.
|
|
|
+#define VECTPORT( VECTNUM ) (P_TSL2 + ( (VECTNUM) << 2 ))
|
|
|
+#define SETVECT( VECTNUM, VECTVAL ) WR7146(VECTPORT( VECTNUM ), (VECTVAL))
|
|
|
+
|
|
|
+// Code macros used for constructing I2C command bytes.
|
|
|
+#define I2C_B2(ATTR,VAL) ( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
|
|
|
+#define I2C_B1(ATTR,VAL) ( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
|
|
|
+#define I2C_B0(ATTR,VAL) ( ( (ATTR) << 2 ) | ( (VAL) << 8 ) )
|
|
|
+
|
|
|
+static const comedi_lrange s626_range_table = { 2, {
|
|
|
+ RANGE(-5, 5),
|
|
|
+ RANGE(-10, 10),
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+static int s626_attach(comedi_device * dev, comedi_devconfig * it)
|
|
|
+{
|
|
|
+/* uint8_t PollList; */
|
|
|
+/* uint16_t AdcData; */
|
|
|
+/* uint16_t StartVal; */
|
|
|
+/* uint16_t index; */
|
|
|
+/* unsigned int data[16]; */
|
|
|
+ int result;
|
|
|
+ int i;
|
|
|
+ int ret;
|
|
|
+ resource_size_t resourceStart;
|
|
|
+ dma_addr_t appdma;
|
|
|
+ comedi_subdevice *s;
|
|
|
+ struct pci_dev *pdev;
|
|
|
+
|
|
|
+ if (alloc_private(dev, sizeof(s626_private)) < 0)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
|
|
|
+ NULL); pdev != NULL;
|
|
|
+ pdev = pci_get_device(PCI_VENDOR_ID_S626,
|
|
|
+ PCI_DEVICE_ID_S626, pdev)) {
|
|
|
+ if (it->options[0] || it->options[1]) {
|
|
|
+ if (pdev->bus->number == it->options[0] &&
|
|
|
+ PCI_SLOT(pdev->devfn) == it->options[1]) {
|
|
|
+ /* matches requested bus/slot */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* no bus/slot specified */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ devpriv->pdev = pdev;
|
|
|
+
|
|
|
+ if (pdev == NULL) {
|
|
|
+ printk("s626_attach: Board not present!!!\n");
|
|
|
+ return -ENODEV;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((result = comedi_pci_enable(pdev, "s626")) < 0) {
|
|
|
+ printk("s626_attach: comedi_pci_enable fails\n");
|
|
|
+ return -ENODEV;
|
|
|
+ }
|
|
|
+ devpriv->got_regions = 1;
|
|
|
+
|
|
|
+ resourceStart = pci_resource_start(devpriv->pdev, 0);
|
|
|
+
|
|
|
+ devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
|
|
|
+ if (devpriv->base_addr == NULL) {
|
|
|
+ printk("s626_attach: IOREMAP failed\n");
|
|
|
+ return -ENODEV;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (devpriv->base_addr) {
|
|
|
+ //disable master interrupt
|
|
|
+ writel(0, devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ //soft reset
|
|
|
+ writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
|
|
|
+
|
|
|
+ //DMA FIXME DMA//
|
|
|
+ DEBUG("s626_attach: DMA ALLOCATION\n");
|
|
|
+
|
|
|
+ //adc buffer allocation
|
|
|
+ devpriv->allocatedBuf = 0;
|
|
|
+
|
|
|
+ if ((devpriv->ANABuf.LogicalBase =
|
|
|
+ pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
|
|
|
+ &appdma)) == NULL) {
|
|
|
+ printk("s626_attach: DMA Memory mapping error\n");
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ devpriv->ANABuf.PhysicalBase = appdma;
|
|
|
+
|
|
|
+ DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
|
|
|
+
|
|
|
+ devpriv->allocatedBuf++;
|
|
|
+
|
|
|
+ if ((devpriv->RPSBuf.LogicalBase =
|
|
|
+ pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
|
|
|
+ &appdma)) == NULL) {
|
|
|
+ printk("s626_attach: DMA Memory mapping error\n");
|
|
|
+ return -ENOMEM;
|
|
|
+ }
|
|
|
+
|
|
|
+ devpriv->RPSBuf.PhysicalBase = appdma;
|
|
|
+
|
|
|
+ DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
|
|
|
+
|
|
|
+ devpriv->allocatedBuf++;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ dev->board_ptr = s626_boards;
|
|
|
+ dev->board_name = thisboard->name;
|
|
|
+
|
|
|
+ if (alloc_subdevices(dev, 6) < 0)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ dev->iobase = (unsigned long)devpriv->base_addr;
|
|
|
+ dev->irq = devpriv->pdev->irq;
|
|
|
+
|
|
|
+ //set up interrupt handler
|
|
|
+ if (dev->irq == 0) {
|
|
|
+ printk(" unknown irq (bad)\n");
|
|
|
+ } else {
|
|
|
+ if ((ret = comedi_request_irq(dev->irq, s626_irq_handler,
|
|
|
+ IRQF_SHARED, "s626", dev)) < 0) {
|
|
|
+ printk(" irq not available\n");
|
|
|
+ dev->irq = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ DEBUG("s626_attach: -- it opts %d,%d -- \n",
|
|
|
+ it->options[0], it->options[1]);
|
|
|
+
|
|
|
+ s = dev->subdevices + 0;
|
|
|
+ /* analog input subdevice */
|
|
|
+ dev->read_subdev = s;
|
|
|
+ /* we support single-ended (ground) and differential */
|
|
|
+ s->type = COMEDI_SUBD_AI;
|
|
|
+ s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
|
|
|
+ s->n_chan = thisboard->ai_chans;
|
|
|
+ s->maxdata = (0xffff >> 2);
|
|
|
+ s->range_table = &s626_range_table;
|
|
|
+ s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
|
|
|
+ length that the board can
|
|
|
+ handle */
|
|
|
+ s->insn_config = s626_ai_insn_config;
|
|
|
+ s->insn_read = s626_ai_insn_read;
|
|
|
+ s->do_cmd = s626_ai_cmd;
|
|
|
+ s->do_cmdtest = s626_ai_cmdtest;
|
|
|
+ s->cancel = s626_ai_cancel;
|
|
|
+
|
|
|
+ s = dev->subdevices + 1;
|
|
|
+ /* analog output subdevice */
|
|
|
+ s->type = COMEDI_SUBD_AO;
|
|
|
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
|
+ s->n_chan = thisboard->ao_chans;
|
|
|
+ s->maxdata = (0x3fff);
|
|
|
+ s->range_table = &range_bipolar10;
|
|
|
+ s->insn_write = s626_ao_winsn;
|
|
|
+ s->insn_read = s626_ao_rinsn;
|
|
|
+
|
|
|
+ s = dev->subdevices + 2;
|
|
|
+ /* digital I/O subdevice */
|
|
|
+ s->type = COMEDI_SUBD_DIO;
|
|
|
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
|
+ s->n_chan = S626_DIO_CHANNELS;
|
|
|
+ s->maxdata = 1;
|
|
|
+ s->io_bits = 0xffff;
|
|
|
+ s->private = &dio_private_A;
|
|
|
+ s->range_table = &range_digital;
|
|
|
+ s->insn_config = s626_dio_insn_config;
|
|
|
+ s->insn_bits = s626_dio_insn_bits;
|
|
|
+
|
|
|
+ s = dev->subdevices + 3;
|
|
|
+ /* digital I/O subdevice */
|
|
|
+ s->type = COMEDI_SUBD_DIO;
|
|
|
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
|
+ s->n_chan = 16;
|
|
|
+ s->maxdata = 1;
|
|
|
+ s->io_bits = 0xffff;
|
|
|
+ s->private = &dio_private_B;
|
|
|
+ s->range_table = &range_digital;
|
|
|
+ s->insn_config = s626_dio_insn_config;
|
|
|
+ s->insn_bits = s626_dio_insn_bits;
|
|
|
+
|
|
|
+ s = dev->subdevices + 4;
|
|
|
+ /* digital I/O subdevice */
|
|
|
+ s->type = COMEDI_SUBD_DIO;
|
|
|
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
|
|
|
+ s->n_chan = 16;
|
|
|
+ s->maxdata = 1;
|
|
|
+ s->io_bits = 0xffff;
|
|
|
+ s->private = &dio_private_C;
|
|
|
+ s->range_table = &range_digital;
|
|
|
+ s->insn_config = s626_dio_insn_config;
|
|
|
+ s->insn_bits = s626_dio_insn_bits;
|
|
|
+
|
|
|
+ s = dev->subdevices + 5;
|
|
|
+ /* encoder (counter) subdevice */
|
|
|
+ s->type = COMEDI_SUBD_COUNTER;
|
|
|
+ s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
|
|
|
+ s->n_chan = thisboard->enc_chans;
|
|
|
+ s->private = enc_private_data;
|
|
|
+ s->insn_config = s626_enc_insn_config;
|
|
|
+ s->insn_read = s626_enc_insn_read;
|
|
|
+ s->insn_write = s626_enc_insn_write;
|
|
|
+ s->maxdata = 0xffffff;
|
|
|
+ s->range_table = &range_unknown;
|
|
|
+
|
|
|
+ //stop ai_command
|
|
|
+ devpriv->ai_cmd_running = 0;
|
|
|
+
|
|
|
+ if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
|
|
|
+ dma_addr_t pPhysBuf;
|
|
|
+ uint16_t chan;
|
|
|
+
|
|
|
+ // enab DEBI and audio pins, enable I2C interface.
|
|
|
+ MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
|
|
|
+ // Configure DEBI operating mode.
|
|
|
+ WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 // Local bus is 16
|
|
|
+ // bits wide.
|
|
|
+ | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) // Declare DEBI
|
|
|
+ // transfer timeout
|
|
|
+ // interval.
|
|
|
+ | DEBI_SWAP // Set up byte lane
|
|
|
+ // steering.
|
|
|
+ | DEBI_CFG_INTEL); // Intel-compatible
|
|
|
+ // local bus (DEBI
|
|
|
+ // never times out).
|
|
|
+ DEBUG("s626_attach: %d debi init -- %d\n",
|
|
|
+ DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
|
|
|
+ DEBI_SWAP | DEBI_CFG_INTEL,
|
|
|
+ DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
|
|
|
+ DEBI_CFG_16Q);
|
|
|
+
|
|
|
+ //DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ
|
|
|
+ //| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end
|
|
|
+
|
|
|
+ // Paging is disabled.
|
|
|
+ WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); // Disable MMU paging.
|
|
|
+
|
|
|
+ // Init GPIO so that ADC Start* is negated.
|
|
|
+ WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
|
|
|
+
|
|
|
+ //IsBoardRevA is a boolean that indicates whether the board is
|
|
|
+ //RevA.
|
|
|
+
|
|
|
+ // VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
|
|
|
+ // EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
|
|
|
+ // is used to access the onboard serial EEPROM. The EEPROM's I2C
|
|
|
+ // DeviceAddress is hardwired to a value that is dependent on the
|
|
|
+ // 626 board revision. On all board revisions, the EEPROM stores
|
|
|
+ // TrimDAC calibration constants for analog I/O. On RevB and
|
|
|
+ // higher boards, the DeviceAddress is hardwired to 0 to enable
|
|
|
+ // the EEPROM to also store the PCI SubVendorID and SubDeviceID;
|
|
|
+ // this is the address at which the SAA7146 expects a
|
|
|
+ // configuration EEPROM to reside. On RevA boards, the EEPROM
|
|
|
+ // device address, which is hardwired to 4, prevents the SAA7146
|
|
|
+ // from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
|
|
|
+ // default values, instead.
|
|
|
+
|
|
|
+ // devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM
|
|
|
+ // DeviceType (0xA0)
|
|
|
+ // and DeviceAddress<<1.
|
|
|
+
|
|
|
+ devpriv->I2CAdrs = 0xA0; // I2C device address for onboard
|
|
|
+ // eeprom(revb)
|
|
|
+
|
|
|
+ // Issue an I2C ABORT command to halt any I2C operation in
|
|
|
+ //progress and reset BUSY flag.
|
|
|
+ WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); // Write I2C control:
|
|
|
+ // abort any I2C
|
|
|
+ // activity.
|
|
|
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command
|
|
|
+ // upload
|
|
|
+ while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; // and wait for
|
|
|
+ // upload to
|
|
|
+ // complete.
|
|
|
+
|
|
|
+ // Per SAA7146 data sheet, write to STATUS reg twice to reset all
|
|
|
+ // I2C error flags.
|
|
|
+ for (i = 0; i < 2; i++) {
|
|
|
+ WR7146(P_I2CSTAT, I2C_CLKSEL); // Write I2C control: reset
|
|
|
+ // error flags.
|
|
|
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC); // Invoke command upload
|
|
|
+ while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; // and wait for
|
|
|
+ // upload to
|
|
|
+ // complete.
|
|
|
+ }
|
|
|
+
|
|
|
+ // Init audio interface functional attributes: set DAC/ADC serial
|
|
|
+ // clock rates, invert DAC serial clock so that DAC data setup
|
|
|
+ // times are satisfied, enable DAC serial clock out.
|
|
|
+ WR7146(P_ACON2, ACON2_INIT);
|
|
|
+
|
|
|
+ // Set up TSL1 slot list, which is used to control the
|
|
|
+ // accumulation of ADC data: RSD1 = shift data in on SD1. SIB_A1
|
|
|
+ // = store data uint8_t at next available location in FB BUFFER1
|
|
|
+ // register.
|
|
|
+ WR7146(P_TSL1, RSD1 | SIB_A1); // Fetch ADC high data
|
|
|
+ // uint8_t.
|
|
|
+ WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); // Fetch ADC low data
|
|
|
+ // uint8_t; end of
|
|
|
+ // TSL1.
|
|
|
+
|
|
|
+ // enab TSL1 slot list so that it executes all the time.
|
|
|
+ WR7146(P_ACON1, ACON1_ADCSTART);
|
|
|
+
|
|
|
+ // Initialize RPS registers used for ADC.
|
|
|
+
|
|
|
+ //Physical start of RPS program.
|
|
|
+ WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
|
|
|
+
|
|
|
+ WR7146(P_RPSPAGE1, 0); // RPS program performs no
|
|
|
+ // explicit mem writes.
|
|
|
+ WR7146(P_RPS1_TOUT, 0); // Disable RPS timeouts.
|
|
|
+
|
|
|
+ // SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface to a
|
|
|
+ // known state by invoking ADCs until FB BUFFER 1 register shows
|
|
|
+ // that it is correctly receiving ADC data. This is necessary
|
|
|
+ // because the SAA7146 ADC interface does not start up in a
|
|
|
+ // defined state after a PCI reset.
|
|
|
+
|
|
|
+/* PollList = EOPL; // Create a simple polling */
|
|
|
+/* // list for analog input */
|
|
|
+/* // channel 0. */
|
|
|
+/* ResetADC( dev, &PollList ); */
|
|
|
+
|
|
|
+/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
|
|
|
+/* //Get initial ADC */
|
|
|
+/* //value. */
|
|
|
+
|
|
|
+/* StartVal = data[0]; */
|
|
|
+
|
|
|
+/* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
|
|
|
+/* // Invoke ADCs until the new ADC value differs from the initial */
|
|
|
+/* // value or a timeout occurs. The timeout protects against the */
|
|
|
+/* // possibility that the driver is restarting and the ADC data is a */
|
|
|
+/* // fixed value resulting from the applied ADC analog input being */
|
|
|
+/* // unusually quiet or at the rail. */
|
|
|
+
|
|
|
+/* for ( index = 0; index < 500; index++ ) */
|
|
|
+/* { */
|
|
|
+/* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
|
|
|
+/* AdcData = data[0]; //ReadADC( &AdcData ); */
|
|
|
+/* if ( AdcData != StartVal ) */
|
|
|
+/* break; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+ // end initADC
|
|
|
+
|
|
|
+ // init the DAC interface
|
|
|
+
|
|
|
+ // Init Audio2's output DMAC attributes: burst length = 1 DWORD,
|
|
|
+ // threshold = 1 DWORD.
|
|
|
+ WR7146(P_PCI_BT_A, 0);
|
|
|
+
|
|
|
+ // Init Audio2's output DMA physical addresses. The protection
|
|
|
+ // address is set to 1 DWORD past the base address so that a
|
|
|
+ // single DWORD will be transferred each time a DMA transfer is
|
|
|
+ // enabled.
|
|
|
+
|
|
|
+ pPhysBuf =
|
|
|
+ devpriv->ANABuf.PhysicalBase +
|
|
|
+ (DAC_WDMABUF_OS * sizeof(uint32_t));
|
|
|
+
|
|
|
+ WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); // Buffer base adrs.
|
|
|
+ WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); // Protection address.
|
|
|
+
|
|
|
+ // Cache Audio2's output DMA buffer logical address. This is
|
|
|
+ // where DAC data is buffered for A2 output DMA transfers.
|
|
|
+ devpriv->pDacWBuf =
|
|
|
+ (uint32_t *) devpriv->ANABuf.LogicalBase +
|
|
|
+ DAC_WDMABUF_OS;
|
|
|
+
|
|
|
+ // Audio2's output channels does not use paging. The protection
|
|
|
+ // violation handling bit is set so that the DMAC will
|
|
|
+ // automatically halt and its PCI address pointer will be reset
|
|
|
+ // when the protection address is reached.
|
|
|
+ WR7146(P_PAGEA2_OUT, 8);
|
|
|
+
|
|
|
+ // Initialize time slot list 2 (TSL2), which is used to control
|
|
|
+ // the clock generation for and serialization of data to be sent
|
|
|
+ // to the DAC devices. Slot 0 is a NOP that is used to trap TSL
|
|
|
+ // execution; this permits other slots to be safely modified
|
|
|
+ // without first turning off the TSL sequencer (which is
|
|
|
+ // apparently impossible to do). Also, SD3 (which is driven by a
|
|
|
+ // pull-up resistor) is shifted in and stored to the MSB of
|
|
|
+ // FB_BUFFER2 to be used as evidence that the slot sequence has
|
|
|
+ // not yet finished executing.
|
|
|
+ SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); // Slot 0: Trap TSL
|
|
|
+ // execution, shift 0xFF
|
|
|
+ // into FB_BUFFER2.
|
|
|
+
|
|
|
+ // Initialize slot 1, which is constant. Slot 1 causes a DWORD to
|
|
|
+ // be transferred from audio channel 2's output FIFO to the FIFO's
|
|
|
+ // output buffer so that it can be serialized and sent to the DAC
|
|
|
+ // during subsequent slots. All remaining slots are dynamically
|
|
|
+ // populated as required by the target DAC device.
|
|
|
+ SETVECT(1, LF_A2); // Slot 1: Fetch DWORD from Audio2's
|
|
|
+ // output FIFO.
|
|
|
+
|
|
|
+ // Start DAC's audio interface (TSL2) running.
|
|
|
+ WR7146(P_ACON1, ACON1_DACSTART);
|
|
|
+
|
|
|
+ ////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+ // end init DAC interface
|
|
|
+
|
|
|
+ // Init Trim DACs to calibrated values. Do it twice because the
|
|
|
+ // SAA7146 audio channel does not always reset properly and
|
|
|
+ // sometimes causes the first few TrimDAC writes to malfunction.
|
|
|
+
|
|
|
+ LoadTrimDACs(dev);
|
|
|
+ LoadTrimDACs(dev); // Insurance.
|
|
|
+
|
|
|
+ //////////////////////////////////////////////////////////////////
|
|
|
+ // Manually init all gate array hardware in case this is a soft
|
|
|
+ // reset (we have no way of determining whether this is a warm or
|
|
|
+ // cold start). This is necessary because the gate array will
|
|
|
+ // reset only in response to a PCI hard reset; there is no soft
|
|
|
+ // reset function.
|
|
|
+
|
|
|
+ // Init all DAC outputs to 0V and init all DAC setpoint and
|
|
|
+ // polarity images.
|
|
|
+ for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
|
|
|
+ SetDAC(dev, chan, 0);
|
|
|
+
|
|
|
+ // Init image of WRMISC2 Battery Charger Enabled control bit.
|
|
|
+ // This image is used when the state of the charger control bit,
|
|
|
+ // which has no direct hardware readback mechanism, is queried.
|
|
|
+ devpriv->ChargeEnabled = 0;
|
|
|
+
|
|
|
+ // Init image of watchdog timer interval in WRMISC2. This image
|
|
|
+ // maintains the value of the control bits of MISC2 are
|
|
|
+ // continuously reset to zero as long as the WD timer is disabled.
|
|
|
+ devpriv->WDInterval = 0;
|
|
|
+
|
|
|
+ // Init Counter Interrupt enab mask for RDMISC2. This mask is
|
|
|
+ // applied against MISC2 when testing to determine which timer
|
|
|
+ // events are requesting interrupt service.
|
|
|
+ devpriv->CounterIntEnabs = 0;
|
|
|
+
|
|
|
+ // Init counters.
|
|
|
+ CountersInit(dev);
|
|
|
+
|
|
|
+ // Without modifying the state of the Battery Backup enab, disable
|
|
|
+ // the watchdog timer, set DIO channels 0-5 to operate in the
|
|
|
+ // standard DIO (vs. counter overflow) mode, disable the battery
|
|
|
+ // charger, and reset the watchdog interval selector to zero.
|
|
|
+ WriteMISC2(dev, (uint16_t) (DEBIread(dev,
|
|
|
+ LP_RDMISC2) & MISC2_BATT_ENABLE));
|
|
|
+
|
|
|
+ // Initialize the digital I/O subsystem.
|
|
|
+ s626_dio_init(dev);
|
|
|
+
|
|
|
+ //enable interrupt test
|
|
|
+ // writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER);
|
|
|
+ }
|
|
|
+
|
|
|
+ DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
|
|
|
+ (uint32_t) devpriv->base_addr);
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static lsampl_t s626_ai_reg_to_uint(int data)
|
|
|
+{
|
|
|
+ lsampl_t tempdata;
|
|
|
+
|
|
|
+ tempdata = (data >> 18);
|
|
|
+ if (tempdata & 0x2000)
|
|
|
+ tempdata &= 0x1fff;
|
|
|
+ else
|
|
|
+ tempdata += (1 << 13);
|
|
|
+
|
|
|
+ return tempdata;
|
|
|
+}
|
|
|
+
|
|
|
+/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
|
|
|
+/* return 0; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
|
|
|
+{
|
|
|
+ comedi_device *dev = d;
|
|
|
+ comedi_subdevice *s;
|
|
|
+ comedi_cmd *cmd;
|
|
|
+ enc_private *k;
|
|
|
+ unsigned long flags;
|
|
|
+ int32_t *readaddr;
|
|
|
+ uint32_t irqtype, irqstatus;
|
|
|
+ int i = 0;
|
|
|
+ sampl_t tempdata;
|
|
|
+ uint8_t group;
|
|
|
+ uint16_t irqbit;
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
|
|
|
+
|
|
|
+ if (dev->attached == 0)
|
|
|
+ return IRQ_NONE;
|
|
|
+ // lock to avoid race with comedi_poll
|
|
|
+ comedi_spin_lock_irqsave(&dev->spinlock, flags);
|
|
|
+
|
|
|
+ //save interrupt enable register state
|
|
|
+ irqstatus = readl(devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ //read interrupt type
|
|
|
+ irqtype = readl(devpriv->base_addr + P_ISR);
|
|
|
+
|
|
|
+ //disable master interrupt
|
|
|
+ writel(0, devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ //clear interrupt
|
|
|
+ writel(irqtype, devpriv->base_addr + P_ISR);
|
|
|
+
|
|
|
+ //do somethings
|
|
|
+ DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
|
|
|
+
|
|
|
+ switch (irqtype) {
|
|
|
+ case IRQ_RPS1: // end_of_scan occurs
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: RPS1 irq detected\n");
|
|
|
+
|
|
|
+ // manage ai subdevice
|
|
|
+ s = dev->subdevices;
|
|
|
+ cmd = &(s->async->cmd);
|
|
|
+
|
|
|
+ // Init ptr to DMA buffer that holds new ADC data. We skip the
|
|
|
+ // first uint16_t in the buffer because it contains junk data from
|
|
|
+ // the final ADC of the previous poll list scan.
|
|
|
+ readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
|
|
|
+
|
|
|
+ // get the data and hand it over to comedi
|
|
|
+ for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
|
|
|
+ // Convert ADC data to 16-bit integer values and copy to application
|
|
|
+ // buffer.
|
|
|
+ tempdata = s626_ai_reg_to_uint((int)*readaddr);
|
|
|
+ readaddr++;
|
|
|
+
|
|
|
+ //put data into read buffer
|
|
|
+ // comedi_buf_put(s->async, tempdata);
|
|
|
+ if (cfc_write_to_buffer(s, tempdata) == 0)
|
|
|
+ printk("s626_irq_handler: cfc_write_to_buffer error!\n");
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
|
|
|
+ i, tempdata);
|
|
|
+ }
|
|
|
+
|
|
|
+ //end of scan occurs
|
|
|
+ s->async->events |= COMEDI_CB_EOS;
|
|
|
+
|
|
|
+ if (!(devpriv->ai_continous))
|
|
|
+ devpriv->ai_sample_count--;
|
|
|
+ if (devpriv->ai_sample_count <= 0) {
|
|
|
+ devpriv->ai_cmd_running = 0;
|
|
|
+
|
|
|
+ // Stop RPS program.
|
|
|
+ MC_DISABLE(P_MC1, MC1_ERPS1);
|
|
|
+
|
|
|
+ //send end of acquisition
|
|
|
+ s->async->events |= COMEDI_CB_EOA;
|
|
|
+
|
|
|
+ //disable master interrupt
|
|
|
+ irqstatus = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
|
|
|
+ DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
|
|
|
+
|
|
|
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: External trigger is set!!!\n");
|
|
|
+ }
|
|
|
+ // tell comedi that data is there
|
|
|
+ DEBUG("s626_irq_handler: events %d\n", s->async->events);
|
|
|
+ comedi_event(dev, s);
|
|
|
+ break;
|
|
|
+ case IRQ_GPIO3: //check dio and conter interrupt
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: GPIO3 irq detected\n");
|
|
|
+
|
|
|
+ // manage ai subdevice
|
|
|
+ s = dev->subdevices;
|
|
|
+ cmd = &(s->async->cmd);
|
|
|
+
|
|
|
+ //s626_dio_clear_irq(dev);
|
|
|
+
|
|
|
+ for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
|
+ irqbit = 0;
|
|
|
+ //read interrupt type
|
|
|
+ irqbit = DEBIread(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->RDCapFlg);
|
|
|
+
|
|
|
+ //check if interrupt is generated from dio channels
|
|
|
+ if (irqbit) {
|
|
|
+ s626_dio_reset_irq(dev, group, irqbit);
|
|
|
+ DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
|
|
|
+ if (devpriv->ai_cmd_running) {
|
|
|
+ //check if interrupt is an ai acquisition start trigger
|
|
|
+ if ((irqbit >> (cmd->start_arg -
|
|
|
+ (16 * group)))
|
|
|
+ == 1
|
|
|
+ && cmd->start_src == TRIG_EXT) {
|
|
|
+ DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
|
|
|
+
|
|
|
+ // Start executing the RPS program.
|
|
|
+ MC_ENABLE(P_MC1, MC1_ERPS1);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
|
|
|
+
|
|
|
+ if (cmd->scan_begin_src ==
|
|
|
+ TRIG_EXT) {
|
|
|
+ DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
|
|
|
+
|
|
|
+ s626_dio_set_irq(dev,
|
|
|
+ cmd->
|
|
|
+ scan_begin_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if ((irqbit >> (cmd->scan_begin_arg -
|
|
|
+ (16 * group)))
|
|
|
+ == 1
|
|
|
+ && cmd->scan_begin_src ==
|
|
|
+ TRIG_EXT) {
|
|
|
+ DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
|
|
|
+
|
|
|
+ // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
|
|
|
+ if (cmd->convert_src ==
|
|
|
+ TRIG_EXT) {
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
|
|
|
+
|
|
|
+ devpriv->
|
|
|
+ ai_convert_count
|
|
|
+ =
|
|
|
+ cmd->
|
|
|
+ chanlist_len;
|
|
|
+
|
|
|
+ s626_dio_set_irq(dev,
|
|
|
+ cmd->
|
|
|
+ convert_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->convert_src ==
|
|
|
+ TRIG_TIMER) {
|
|
|
+ k = &encpriv[5];
|
|
|
+ devpriv->
|
|
|
+ ai_convert_count
|
|
|
+ =
|
|
|
+ cmd->
|
|
|
+ chanlist_len;
|
|
|
+ k->SetEnable(dev, k,
|
|
|
+ CLKENAB_ALWAYS);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if ((irqbit >> (cmd->convert_arg -
|
|
|
+ (16 * group)))
|
|
|
+ == 1
|
|
|
+ && cmd->convert_src ==
|
|
|
+ TRIG_EXT) {
|
|
|
+ DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
|
|
|
+
|
|
|
+ // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: adc convert triggered!!!\n");
|
|
|
+
|
|
|
+ devpriv->ai_convert_count--;
|
|
|
+
|
|
|
+ if (devpriv->ai_convert_count >
|
|
|
+ 0) {
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
|
|
|
+
|
|
|
+ s626_dio_set_irq(dev,
|
|
|
+ cmd->
|
|
|
+ convert_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: External trigger is set!!!\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //read interrupt type
|
|
|
+ irqbit = DEBIread(dev, LP_RDMISC2);
|
|
|
+
|
|
|
+ //check interrupt on counters
|
|
|
+ DEBUG("s626_irq_handler: check counters interrupt %d\n",
|
|
|
+ irqbit);
|
|
|
+
|
|
|
+ if (irqbit & IRQ_COINT1A) {
|
|
|
+ DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
|
|
|
+ k = &encpriv[0];
|
|
|
+
|
|
|
+ //clear interrupt capture flag
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+ }
|
|
|
+ if (irqbit & IRQ_COINT2A) {
|
|
|
+ DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
|
|
|
+ k = &encpriv[1];
|
|
|
+
|
|
|
+ //clear interrupt capture flag
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+ }
|
|
|
+ if (irqbit & IRQ_COINT3A) {
|
|
|
+ DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
|
|
|
+ k = &encpriv[2];
|
|
|
+
|
|
|
+ //clear interrupt capture flag
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+ }
|
|
|
+ if (irqbit & IRQ_COINT1B) {
|
|
|
+ DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
|
|
|
+ k = &encpriv[3];
|
|
|
+
|
|
|
+ //clear interrupt capture flag
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+ }
|
|
|
+ if (irqbit & IRQ_COINT2B) {
|
|
|
+ DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
|
|
|
+ k = &encpriv[4];
|
|
|
+
|
|
|
+ //clear interrupt capture flag
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+
|
|
|
+ if (devpriv->ai_convert_count > 0) {
|
|
|
+ devpriv->ai_convert_count--;
|
|
|
+ if (devpriv->ai_convert_count == 0)
|
|
|
+ k->SetEnable(dev, k, CLKENAB_INDEX);
|
|
|
+
|
|
|
+ if (cmd->convert_src == TRIG_TIMER) {
|
|
|
+ DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
|
|
|
+
|
|
|
+ // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (irqbit & IRQ_COINT3B) {
|
|
|
+ DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
|
|
|
+ k = &encpriv[5];
|
|
|
+
|
|
|
+ //clear interrupt capture flag
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+
|
|
|
+ if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
|
+ DEBUG("s626_irq_handler: scan timer trigger!!!\n");
|
|
|
+
|
|
|
+ // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ MC_ENABLE(P_MC2, MC2_ADC_RPS);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->convert_src == TRIG_TIMER) {
|
|
|
+ DEBUG("s626_irq_handler: convert timer trigger is set\n");
|
|
|
+ k = &encpriv[4];
|
|
|
+ devpriv->ai_convert_count = cmd->chanlist_len;
|
|
|
+ k->SetEnable(dev, k, CLKENAB_ALWAYS);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //enable interrupt
|
|
|
+ writel(irqstatus, devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ DEBUG("s626_irq_handler: exit interrupt service routine.\n");
|
|
|
+
|
|
|
+ comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
|
|
|
+ return IRQ_HANDLED;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_detach(comedi_device * dev)
|
|
|
+{
|
|
|
+ if (devpriv) {
|
|
|
+ //stop ai_command
|
|
|
+ devpriv->ai_cmd_running = 0;
|
|
|
+
|
|
|
+ if (devpriv->base_addr) {
|
|
|
+ //interrupt mask
|
|
|
+ WR7146(P_IER, 0); // Disable master interrupt.
|
|
|
+ WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); // Clear board's IRQ status flag.
|
|
|
+
|
|
|
+ // Disable the watchdog timer and battery charger.
|
|
|
+ WriteMISC2(dev, 0);
|
|
|
+
|
|
|
+ // Close all interfaces on 7146 device.
|
|
|
+ WR7146(P_MC1, MC1_SHUTDOWN);
|
|
|
+ WR7146(P_ACON1, ACON1_BASE);
|
|
|
+
|
|
|
+ CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
|
|
|
+ CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (dev->irq) {
|
|
|
+ comedi_free_irq(dev->irq, dev);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (devpriv->base_addr) {
|
|
|
+ iounmap(devpriv->base_addr);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (devpriv->pdev) {
|
|
|
+ if (devpriv->got_regions) {
|
|
|
+ comedi_pci_disable(devpriv->pdev);
|
|
|
+ }
|
|
|
+ pci_dev_put(devpriv->pdev);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ DEBUG("s626_detach: S626 detached!\n");
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * this functions build the RPS program for hardware driven acquistion
|
|
|
+ */
|
|
|
+void ResetADC(comedi_device * dev, uint8_t * ppl)
|
|
|
+{
|
|
|
+ register uint32_t *pRPS;
|
|
|
+ uint32_t JmpAdrs;
|
|
|
+ uint16_t i;
|
|
|
+ uint16_t n;
|
|
|
+ uint32_t LocalPPL;
|
|
|
+ comedi_cmd *cmd = &(dev->subdevices->async->cmd);
|
|
|
+
|
|
|
+ // Stop RPS program in case it is currently running.
|
|
|
+ MC_DISABLE(P_MC1, MC1_ERPS1);
|
|
|
+
|
|
|
+ // Set starting logical address to write RPS commands.
|
|
|
+ pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
|
|
|
+
|
|
|
+ // Initialize RPS instruction pointer.
|
|
|
+ WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
|
|
|
+
|
|
|
+ // Construct RPS program in RPSBuf DMA buffer
|
|
|
+
|
|
|
+ if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
|
|
|
+ DEBUG("ResetADC: scan_begin pause inserted\n");
|
|
|
+ // Wait for Start trigger.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_SIGADC;
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
|
|
|
+ }
|
|
|
+ // SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
|
|
|
+ // because the first RPS DEBI Write following a non-RPS DEBI write
|
|
|
+ // seems to always fail. If we don't do this dummy write, the ADC
|
|
|
+ // gain might not be set to the value required for the first slot in
|
|
|
+ // the poll list; the ADC gain would instead remain unchanged from
|
|
|
+ // the previously programmed value.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI Write command
|
|
|
+ // and address to shadow RAM.
|
|
|
+ *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI immediate data
|
|
|
+ // to shadow RAM:
|
|
|
+ *pRPS++ = GSEL_BIPOLAR5V; // arbitrary immediate data
|
|
|
+ // value.
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM
|
|
|
+ // uploaded" flag.
|
|
|
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to finish.
|
|
|
+
|
|
|
+ // Digitize all slots in the poll list. This is implemented as a
|
|
|
+ // for loop to limit the slot count to 16 in case the application
|
|
|
+ // forgot to set the EOPL flag in the final slot.
|
|
|
+ for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
|
|
|
+ // Convert application's poll list item to private board class
|
|
|
+ // format. Each app poll list item is an uint8_t with form
|
|
|
+ // (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
|
|
|
+ // +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
|
|
|
+ LocalPPL =
|
|
|
+ (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
|
|
|
+ GSEL_BIPOLAR10V);
|
|
|
+
|
|
|
+ // Switch ADC analog gain.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
|
|
|
+ // and address to
|
|
|
+ // shadow RAM.
|
|
|
+ *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
|
|
|
+ // immediate data to
|
|
|
+ // shadow RAM.
|
|
|
+ *pRPS++ = LocalPPL;
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
|
|
|
+ // flag.
|
|
|
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
|
|
|
+ // finish.
|
|
|
+
|
|
|
+ // Select ADC analog input channel.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); // Write DEBI command
|
|
|
+ // and address to
|
|
|
+ // shadow RAM.
|
|
|
+ *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
|
|
|
+ *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); // Write DEBI
|
|
|
+ // immediate data to
|
|
|
+ // shadow RAM.
|
|
|
+ *pRPS++ = LocalPPL;
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; // Reset "shadow RAM uploaded"
|
|
|
+ // flag.
|
|
|
+ *pRPS++ = RPS_UPLOAD | RPS_DEBI; // Invoke shadow RAM upload.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_DEBI; // Wait for shadow upload to
|
|
|
+ // finish.
|
|
|
+
|
|
|
+ // Delay at least 10 microseconds for analog input settling.
|
|
|
+ // Instead of padding with NOPs, we use RPS_JUMP instructions
|
|
|
+ // here; this allows us to produce a longer delay than is
|
|
|
+ // possible with NOPs because each RPS_JUMP flushes the RPS'
|
|
|
+ // instruction prefetch pipeline.
|
|
|
+ JmpAdrs =
|
|
|
+ (uint32_t) devpriv->RPSBuf.PhysicalBase +
|
|
|
+ (uint32_t) ((unsigned long)pRPS -
|
|
|
+ (unsigned long)devpriv->RPSBuf.LogicalBase);
|
|
|
+ for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
|
|
|
+ JmpAdrs += 8; // Repeat to implement time delay:
|
|
|
+ *pRPS++ = RPS_JUMP; // Jump to next RPS instruction.
|
|
|
+ *pRPS++ = JmpAdrs;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
|
|
|
+ DEBUG("ResetADC: convert pause inserted\n");
|
|
|
+ // Wait for Start trigger.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_SIGADC;
|
|
|
+ *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
|
|
|
+ }
|
|
|
+ // Start ADC by pulsing GPIO1.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
|
|
|
+ *pRPS++ = GPIO_BASE | GPIO1_LO;
|
|
|
+ *pRPS++ = RPS_NOP;
|
|
|
+ // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
|
|
|
+ *pRPS++ = GPIO_BASE | GPIO1_HI;
|
|
|
+
|
|
|
+ // Wait for ADC to complete (GPIO2 is asserted high when ADC not
|
|
|
+ // busy) and for data from previous conversion to shift into FB
|
|
|
+ // BUFFER 1 register.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
|
|
|
+
|
|
|
+ // Transfer ADC data from FB BUFFER 1 register to DMA buffer.
|
|
|
+ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
|
|
|
+ *pRPS++ =
|
|
|
+ (uint32_t) devpriv->ANABuf.PhysicalBase +
|
|
|
+ (devpriv->AdcItems << 2);
|
|
|
+
|
|
|
+ // If this slot's EndOfPollList flag is set, all channels have
|
|
|
+ // now been processed.
|
|
|
+ if (*ppl++ & EOPL) {
|
|
|
+ devpriv->AdcItems++; // Adjust poll list item count.
|
|
|
+ break; // Exit poll list processing loop.
|
|
|
+ }
|
|
|
+ }
|
|
|
+ DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
|
|
|
+
|
|
|
+ // VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
|
|
|
+ // ADC to stabilize for 2 microseconds before starting the final
|
|
|
+ // (dummy) conversion. This delay is necessary to allow sufficient
|
|
|
+ // time between last conversion finished and the start of the dummy
|
|
|
+ // conversion. Without this delay, the last conversion's data value
|
|
|
+ // is sometimes set to the previous conversion's data value.
|
|
|
+ for (n = 0; n < (2 * RPSCLK_PER_US); n++)
|
|
|
+ *pRPS++ = RPS_NOP;
|
|
|
+
|
|
|
+ // Start a dummy conversion to cause the data from the last
|
|
|
+ // conversion of interest to be shifted in.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // Begin ADC Start pulse.
|
|
|
+ *pRPS++ = GPIO_BASE | GPIO1_LO;
|
|
|
+ *pRPS++ = RPS_NOP;
|
|
|
+ // VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
|
|
|
+ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); // End ADC Start pulse.
|
|
|
+ *pRPS++ = GPIO_BASE | GPIO1_HI;
|
|
|
+
|
|
|
+ // Wait for the data from the last conversion of interest to arrive
|
|
|
+ // in FB BUFFER 1 register.
|
|
|
+ *pRPS++ = RPS_PAUSE | RPS_GPIO2; // Wait for ADC done.
|
|
|
+
|
|
|
+ // Transfer final ADC data from FB BUFFER 1 register to DMA buffer.
|
|
|
+ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); //
|
|
|
+ *pRPS++ =
|
|
|
+ (uint32_t) devpriv->ANABuf.PhysicalBase +
|
|
|
+ (devpriv->AdcItems << 2);
|
|
|
+
|
|
|
+ // Indicate ADC scan loop is finished.
|
|
|
+ // *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done.
|
|
|
+
|
|
|
+ //invoke interrupt
|
|
|
+ if (devpriv->ai_cmd_running == 1) {
|
|
|
+ DEBUG("ResetADC: insert irq in ADC RPS task\n");
|
|
|
+ *pRPS++ = RPS_IRQ;
|
|
|
+ }
|
|
|
+ // Restart RPS program at its beginning.
|
|
|
+ *pRPS++ = RPS_JUMP; // Branch to start of RPS program.
|
|
|
+ *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
|
|
|
+
|
|
|
+ // End of RPS program build
|
|
|
+ // ------------------------------------------------------------
|
|
|
+}
|
|
|
+
|
|
|
+/* TO COMPLETE, IF NECESSARY */
|
|
|
+static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+
|
|
|
+ return -EINVAL;
|
|
|
+}
|
|
|
+
|
|
|
+/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
|
|
|
+/* { */
|
|
|
+/* register uint8_t i; */
|
|
|
+/* register int32_t *readaddr; */
|
|
|
+
|
|
|
+/* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
|
|
|
+
|
|
|
+/* // Trigger ADC scan loop start by setting RPS Signal 0. */
|
|
|
+/* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
|
|
|
+
|
|
|
+/* // Wait until ADC scan loop is finished (RPS Signal 0 reset). */
|
|
|
+/* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
|
|
|
+
|
|
|
+/* // Init ptr to DMA buffer that holds new ADC data. We skip the */
|
|
|
+/* // first uint16_t in the buffer because it contains junk data from */
|
|
|
+/* // the final ADC of the previous poll list scan. */
|
|
|
+/* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
|
|
|
+
|
|
|
+/* // Convert ADC data to 16-bit integer values and copy to application */
|
|
|
+/* // buffer. */
|
|
|
+/* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
|
|
|
+/* *data = s626_ai_reg_to_uint( *readaddr++ ); */
|
|
|
+/* DEBUG("s626_ai_rinsn: data %d \n",*data); */
|
|
|
+/* data++; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
|
|
|
+/* return i; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+ uint16_t chan = CR_CHAN(insn->chanspec);
|
|
|
+ uint16_t range = CR_RANGE(insn->chanspec);
|
|
|
+ uint16_t AdcSpec = 0;
|
|
|
+ uint32_t GpioImage;
|
|
|
+ int n;
|
|
|
+
|
|
|
+/* //interrupt call test */
|
|
|
+/* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */
|
|
|
+/* //into any of the RPS_PSR */
|
|
|
+/* //bits causes the */
|
|
|
+/* //corresponding interrupt */
|
|
|
+/* //to be generated if */
|
|
|
+/* //enabled */
|
|
|
+
|
|
|
+ DEBUG("s626_ai_insn_read: entering\n");
|
|
|
+
|
|
|
+ // Convert application's ADC specification into form
|
|
|
+ // appropriate for register programming.
|
|
|
+ if (range == 0)
|
|
|
+ AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
|
|
|
+ else
|
|
|
+ AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
|
|
|
+
|
|
|
+ // Switch ADC analog gain.
|
|
|
+ DEBIwrite(dev, LP_GSEL, AdcSpec); // Set gain.
|
|
|
+
|
|
|
+ // Select ADC analog input channel.
|
|
|
+ DEBIwrite(dev, LP_ISEL, AdcSpec); // Select channel.
|
|
|
+
|
|
|
+ for (n = 0; n < insn->n; n++) {
|
|
|
+
|
|
|
+ // Delay 10 microseconds for analog input settling.
|
|
|
+ comedi_udelay(10);
|
|
|
+
|
|
|
+ // Start ADC by pulsing GPIO1 low.
|
|
|
+ GpioImage = RR7146(P_GPIO);
|
|
|
+ // Assert ADC Start command
|
|
|
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
+ // and stretch it out.
|
|
|
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
+ // Negate ADC Start command.
|
|
|
+ WR7146(P_GPIO, GpioImage | GPIO1_HI);
|
|
|
+
|
|
|
+ // Wait for ADC to complete (GPIO2 is asserted high when
|
|
|
+ // ADC not busy) and for data from previous conversion to
|
|
|
+ // shift into FB BUFFER 1 register.
|
|
|
+
|
|
|
+ // Wait for ADC done.
|
|
|
+ while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
|
|
|
+
|
|
|
+ // Fetch ADC data.
|
|
|
+ if (n != 0)
|
|
|
+ data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
|
|
|
+
|
|
|
+ // Allow the ADC to stabilize for 4 microseconds before
|
|
|
+ // starting the next (final) conversion. This delay is
|
|
|
+ // necessary to allow sufficient time between last
|
|
|
+ // conversion finished and the start of the next
|
|
|
+ // conversion. Without this delay, the last conversion's
|
|
|
+ // data value is sometimes set to the previous
|
|
|
+ // conversion's data value.
|
|
|
+ comedi_udelay(4);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Start a dummy conversion to cause the data from the
|
|
|
+ // previous conversion to be shifted in.
|
|
|
+ GpioImage = RR7146(P_GPIO);
|
|
|
+
|
|
|
+ //Assert ADC Start command
|
|
|
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
+ // and stretch it out.
|
|
|
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
+ WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
|
|
|
+ // Negate ADC Start command.
|
|
|
+ WR7146(P_GPIO, GpioImage | GPIO1_HI);
|
|
|
+
|
|
|
+ // Wait for the data to arrive in FB BUFFER 1 register.
|
|
|
+
|
|
|
+ // Wait for ADC done.
|
|
|
+ while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
|
|
|
+
|
|
|
+ // Fetch ADC data from audio interface's input shift
|
|
|
+ // register.
|
|
|
+
|
|
|
+ // Fetch ADC data.
|
|
|
+ if (n != 0)
|
|
|
+ data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
|
|
|
+
|
|
|
+ DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
|
|
|
+
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd)
|
|
|
+{
|
|
|
+
|
|
|
+ int n;
|
|
|
+
|
|
|
+ for (n = 0; n < cmd->chanlist_len; n++) {
|
|
|
+ if (CR_RANGE((cmd->chanlist)[n]) == 0)
|
|
|
+ ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
|
|
|
+ else
|
|
|
+ ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
|
|
|
+ }
|
|
|
+ ppl[n - 1] |= EOPL;
|
|
|
+
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ unsigned int trignum)
|
|
|
+{
|
|
|
+ if (trignum != 0)
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ DEBUG("s626_ai_inttrig: trigger adc start...");
|
|
|
+
|
|
|
+ // Start executing the RPS program.
|
|
|
+ MC_ENABLE(P_MC1, MC1_ERPS1);
|
|
|
+
|
|
|
+ s->async->inttrig = NULL;
|
|
|
+
|
|
|
+ DEBUG(" done\n");
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+/* TO COMPLETE */
|
|
|
+static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
|
|
|
+{
|
|
|
+
|
|
|
+ uint8_t ppl[16];
|
|
|
+ comedi_cmd *cmd = &s->async->cmd;
|
|
|
+ enc_private *k;
|
|
|
+ int tick;
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: entering command function\n");
|
|
|
+
|
|
|
+ if (devpriv->ai_cmd_running) {
|
|
|
+ printk("s626_ai_cmd: Another ai_cmd is running %d\n",
|
|
|
+ dev->minor);
|
|
|
+ return -EBUSY;
|
|
|
+ }
|
|
|
+ //disable interrupt
|
|
|
+ writel(0, devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ //clear interrupt request
|
|
|
+ writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
|
|
|
+
|
|
|
+ //clear any pending interrupt
|
|
|
+ s626_dio_clear_irq(dev);
|
|
|
+ // s626_enc_clear_irq(dev);
|
|
|
+
|
|
|
+ //reset ai_cmd_running flag
|
|
|
+ devpriv->ai_cmd_running = 0;
|
|
|
+
|
|
|
+ // test if cmd is valid
|
|
|
+ if (cmd == NULL) {
|
|
|
+ DEBUG("s626_ai_cmd: NULL command\n");
|
|
|
+ return -EINVAL;
|
|
|
+ } else {
|
|
|
+ DEBUG("s626_ai_cmd: command recieved!!!\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (dev->irq == 0) {
|
|
|
+ comedi_error(dev,
|
|
|
+ "s626_ai_cmd: cannot run command without an irq");
|
|
|
+ return -EIO;
|
|
|
+ }
|
|
|
+
|
|
|
+ s626_ai_load_polllist(ppl, cmd);
|
|
|
+ devpriv->ai_cmd_running = 1;
|
|
|
+ devpriv->ai_convert_count = 0;
|
|
|
+
|
|
|
+ switch (cmd->scan_begin_src) {
|
|
|
+ case TRIG_FOLLOW:
|
|
|
+ break;
|
|
|
+ case TRIG_TIMER:
|
|
|
+ // set a conter to generate adc trigger at scan_begin_arg interval
|
|
|
+ k = &encpriv[5];
|
|
|
+ tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
|
|
|
+ cmd->flags & TRIG_ROUND_MASK);
|
|
|
+
|
|
|
+ //load timer value and enable interrupt
|
|
|
+ s626_timer_load(dev, k, tick);
|
|
|
+ k->SetEnable(dev, k, CLKENAB_ALWAYS);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
|
|
|
+ tick);
|
|
|
+
|
|
|
+ break;
|
|
|
+ case TRIG_EXT:
|
|
|
+ // set the digital line and interrupt for scan trigger
|
|
|
+ if (cmd->start_src != TRIG_EXT)
|
|
|
+ s626_dio_set_irq(dev, cmd->scan_begin_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
|
|
|
+
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (cmd->convert_src) {
|
|
|
+ case TRIG_NOW:
|
|
|
+ break;
|
|
|
+ case TRIG_TIMER:
|
|
|
+ // set a conter to generate adc trigger at convert_arg interval
|
|
|
+ k = &encpriv[4];
|
|
|
+ tick = s626_ns_to_timer((int *)&cmd->convert_arg,
|
|
|
+ cmd->flags & TRIG_ROUND_MASK);
|
|
|
+
|
|
|
+ //load timer value and enable interrupt
|
|
|
+ s626_timer_load(dev, k, tick);
|
|
|
+ k->SetEnable(dev, k, CLKENAB_INDEX);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
|
|
|
+ break;
|
|
|
+ case TRIG_EXT:
|
|
|
+ // set the digital line and interrupt for convert trigger
|
|
|
+ if (cmd->scan_begin_src != TRIG_EXT
|
|
|
+ && cmd->start_src == TRIG_EXT)
|
|
|
+ s626_dio_set_irq(dev, cmd->convert_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
|
|
|
+
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (cmd->stop_src) {
|
|
|
+ case TRIG_COUNT:
|
|
|
+ // data arrives as one packet
|
|
|
+ devpriv->ai_sample_count = cmd->stop_arg;
|
|
|
+ devpriv->ai_continous = 0;
|
|
|
+ break;
|
|
|
+ case TRIG_NONE:
|
|
|
+ // continous aquisition
|
|
|
+ devpriv->ai_continous = 1;
|
|
|
+ devpriv->ai_sample_count = 0;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ ResetADC(dev, ppl);
|
|
|
+
|
|
|
+ switch (cmd->start_src) {
|
|
|
+ case TRIG_NOW:
|
|
|
+ // Trigger ADC scan loop start by setting RPS Signal 0.
|
|
|
+ // MC_ENABLE( P_MC2, MC2_ADC_RPS );
|
|
|
+
|
|
|
+ // Start executing the RPS program.
|
|
|
+ MC_ENABLE(P_MC1, MC1_ERPS1);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: ADC triggered\n");
|
|
|
+ s->async->inttrig = NULL;
|
|
|
+ break;
|
|
|
+ case TRIG_EXT:
|
|
|
+ //configure DIO channel for acquisition trigger
|
|
|
+ s626_dio_set_irq(dev, cmd->start_arg);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
|
|
|
+
|
|
|
+ s->async->inttrig = NULL;
|
|
|
+ break;
|
|
|
+ case TRIG_INT:
|
|
|
+ s->async->inttrig = s626_ai_inttrig;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ //enable interrupt
|
|
|
+ writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ DEBUG("s626_ai_cmd: command function terminated\n");
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_cmd * cmd)
|
|
|
+{
|
|
|
+ int err = 0;
|
|
|
+ int tmp;
|
|
|
+
|
|
|
+ /* cmdtest tests a particular command to see if it is valid. Using
|
|
|
+ * the cmdtest ioctl, a user can create a valid cmd and then have it
|
|
|
+ * executes by the cmd ioctl.
|
|
|
+ *
|
|
|
+ * cmdtest returns 1,2,3,4 or 0, depending on which tests the
|
|
|
+ * command passes. */
|
|
|
+
|
|
|
+ /* step 1: make sure trigger sources are trivially valid */
|
|
|
+
|
|
|
+ tmp = cmd->start_src;
|
|
|
+ cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
|
|
|
+ if (!cmd->start_src || tmp != cmd->start_src)
|
|
|
+ err++;
|
|
|
+
|
|
|
+ tmp = cmd->scan_begin_src;
|
|
|
+ cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
|
|
|
+ if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
|
|
|
+ err++;
|
|
|
+
|
|
|
+ tmp = cmd->convert_src;
|
|
|
+ cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
|
|
|
+ if (!cmd->convert_src || tmp != cmd->convert_src)
|
|
|
+ err++;
|
|
|
+
|
|
|
+ tmp = cmd->scan_end_src;
|
|
|
+ cmd->scan_end_src &= TRIG_COUNT;
|
|
|
+ if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
|
|
|
+ err++;
|
|
|
+
|
|
|
+ tmp = cmd->stop_src;
|
|
|
+ cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
|
|
|
+ if (!cmd->stop_src || tmp != cmd->stop_src)
|
|
|
+ err++;
|
|
|
+
|
|
|
+ if (err)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ /* step 2: make sure trigger sources are unique and mutually
|
|
|
+ compatible */
|
|
|
+
|
|
|
+ /* note that mutual compatiblity is not an issue here */
|
|
|
+ if (cmd->scan_begin_src != TRIG_TIMER &&
|
|
|
+ cmd->scan_begin_src != TRIG_EXT
|
|
|
+ && cmd->scan_begin_src != TRIG_FOLLOW)
|
|
|
+ err++;
|
|
|
+ if (cmd->convert_src != TRIG_TIMER &&
|
|
|
+ cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
|
|
|
+ err++;
|
|
|
+ if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
|
|
|
+ err++;
|
|
|
+
|
|
|
+ if (err)
|
|
|
+ return 2;
|
|
|
+
|
|
|
+ /* step 3: make sure arguments are trivially compatible */
|
|
|
+
|
|
|
+ if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
|
|
|
+ cmd->start_arg = 0;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
|
|
|
+ cmd->start_arg = 0;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
|
|
|
+ cmd->start_arg = 39;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
|
|
|
+ cmd->scan_begin_arg = 0;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
|
|
|
+ cmd->scan_begin_arg = 39;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
|
|
|
+ cmd->convert_arg = 0;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
|
|
|
+ cmd->convert_arg = 39;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+#define MAX_SPEED 200000 /* in nanoseconds */
|
|
|
+#define MIN_SPEED 2000000000 /* in nanoseconds */
|
|
|
+
|
|
|
+ if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
|
+ if (cmd->scan_begin_arg < MAX_SPEED) {
|
|
|
+ cmd->scan_begin_arg = MAX_SPEED;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ if (cmd->scan_begin_arg > MIN_SPEED) {
|
|
|
+ cmd->scan_begin_arg = MIN_SPEED;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* external trigger */
|
|
|
+ /* should be level/edge, hi/lo specification here */
|
|
|
+ /* should specify multiple external triggers */
|
|
|
+/* if(cmd->scan_begin_arg>9){ */
|
|
|
+/* cmd->scan_begin_arg=9; */
|
|
|
+/* err++; */
|
|
|
+/* } */
|
|
|
+ }
|
|
|
+ if (cmd->convert_src == TRIG_TIMER) {
|
|
|
+ if (cmd->convert_arg < MAX_SPEED) {
|
|
|
+ cmd->convert_arg = MAX_SPEED;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ if (cmd->convert_arg > MIN_SPEED) {
|
|
|
+ cmd->convert_arg = MIN_SPEED;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* external trigger */
|
|
|
+ /* see above */
|
|
|
+/* if(cmd->convert_arg>9){ */
|
|
|
+/* cmd->convert_arg=9; */
|
|
|
+/* err++; */
|
|
|
+/* } */
|
|
|
+ }
|
|
|
+
|
|
|
+ if (cmd->scan_end_arg != cmd->chanlist_len) {
|
|
|
+ cmd->scan_end_arg = cmd->chanlist_len;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ if (cmd->stop_src == TRIG_COUNT) {
|
|
|
+ if (cmd->stop_arg > 0x00ffffff) {
|
|
|
+ cmd->stop_arg = 0x00ffffff;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* TRIG_NONE */
|
|
|
+ if (cmd->stop_arg != 0) {
|
|
|
+ cmd->stop_arg = 0;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (err)
|
|
|
+ return 3;
|
|
|
+
|
|
|
+ /* step 4: fix up any arguments */
|
|
|
+
|
|
|
+ if (cmd->scan_begin_src == TRIG_TIMER) {
|
|
|
+ tmp = cmd->scan_begin_arg;
|
|
|
+ s626_ns_to_timer((int *)&cmd->scan_begin_arg,
|
|
|
+ cmd->flags & TRIG_ROUND_MASK);
|
|
|
+ if (tmp != cmd->scan_begin_arg)
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ if (cmd->convert_src == TRIG_TIMER) {
|
|
|
+ tmp = cmd->convert_arg;
|
|
|
+ s626_ns_to_timer((int *)&cmd->convert_arg,
|
|
|
+ cmd->flags & TRIG_ROUND_MASK);
|
|
|
+ if (tmp != cmd->convert_arg)
|
|
|
+ err++;
|
|
|
+ if (cmd->scan_begin_src == TRIG_TIMER &&
|
|
|
+ cmd->scan_begin_arg <
|
|
|
+ cmd->convert_arg * cmd->scan_end_arg) {
|
|
|
+ cmd->scan_begin_arg =
|
|
|
+ cmd->convert_arg * cmd->scan_end_arg;
|
|
|
+ err++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (err)
|
|
|
+ return 4;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s)
|
|
|
+{
|
|
|
+ // Stop RPS program in case it is currently running.
|
|
|
+ MC_DISABLE(P_MC1, MC1_ERPS1);
|
|
|
+
|
|
|
+ //disable master interrupt
|
|
|
+ writel(0, devpriv->base_addr + P_IER);
|
|
|
+
|
|
|
+ devpriv->ai_cmd_running = 0;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* This function doesn't require a particular form, this is just what
|
|
|
+ * happens to be used in some of the drivers. It should convert ns
|
|
|
+ * nanoseconds to a counter value suitable for programming the device.
|
|
|
+ * Also, it should adjust ns so that it cooresponds to the actual time
|
|
|
+ * that the device will use. */
|
|
|
+static int s626_ns_to_timer(int *nanosec, int round_mode)
|
|
|
+{
|
|
|
+ int divider, base;
|
|
|
+
|
|
|
+ base = 500; //2MHz internal clock
|
|
|
+
|
|
|
+ switch (round_mode) {
|
|
|
+ case TRIG_ROUND_NEAREST:
|
|
|
+ default:
|
|
|
+ divider = (*nanosec + base / 2) / base;
|
|
|
+ break;
|
|
|
+ case TRIG_ROUND_DOWN:
|
|
|
+ divider = (*nanosec) / base;
|
|
|
+ break;
|
|
|
+ case TRIG_ROUND_UP:
|
|
|
+ divider = (*nanosec + base - 1) / base;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ *nanosec = base * divider;
|
|
|
+ return divider - 1;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+
|
|
|
+ int i;
|
|
|
+ uint16_t chan = CR_CHAN(insn->chanspec);
|
|
|
+ int16_t dacdata;
|
|
|
+
|
|
|
+ for (i = 0; i < insn->n; i++) {
|
|
|
+ dacdata = (int16_t) data[i];
|
|
|
+ devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
|
|
|
+ dacdata -= (0x1fff);
|
|
|
+
|
|
|
+ SetDAC(dev, chan, dacdata);
|
|
|
+ }
|
|
|
+
|
|
|
+ return i;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for (i = 0; i < insn->n; i++) {
|
|
|
+ data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
|
|
|
+ }
|
|
|
+
|
|
|
+ return i;
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////
|
|
|
+/////////////// DIGITAL I/O FUNCTIONS /////////////////////////////
|
|
|
+/////////////////////////////////////////////////////////////////////
|
|
|
+// All DIO functions address a group of DIO channels by means of
|
|
|
+// "group" argument. group may be 0, 1 or 2, which correspond to DIO
|
|
|
+// ports A, B and C, respectively.
|
|
|
+/////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+static void s626_dio_init(comedi_device * dev)
|
|
|
+{
|
|
|
+ uint16_t group;
|
|
|
+ comedi_subdevice *s;
|
|
|
+
|
|
|
+ // Prepare to treat writes to WRCapSel as capture disables.
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
|
|
|
+
|
|
|
+ // For each group of sixteen channels ...
|
|
|
+ for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
|
+ s = dev->subdevices + 2 + group;
|
|
|
+ DEBIwrite(dev, diopriv->WRIntSel, 0); // Disable all interrupts.
|
|
|
+ DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); // Disable all event
|
|
|
+ // captures.
|
|
|
+ DEBIwrite(dev, diopriv->WREdgSel, 0); // Init all DIOs to
|
|
|
+ // default edge
|
|
|
+ // polarity.
|
|
|
+ DEBIwrite(dev, diopriv->WRDOut, 0); // Program all outputs
|
|
|
+ // to inactive state.
|
|
|
+ }
|
|
|
+ DEBUG("s626_dio_init: DIO initialized \n");
|
|
|
+}
|
|
|
+
|
|
|
+/* DIO devices are slightly special. Although it is possible to
|
|
|
+ * implement the insn_read/insn_write interface, it is much more
|
|
|
+ * useful to applications if you implement the insn_bits interface.
|
|
|
+ * This allows packed reading/writing of the DIO channels. The comedi
|
|
|
+ * core can convert between insn_bits and insn_read/write */
|
|
|
+
|
|
|
+static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+
|
|
|
+ /* Length of data must be 2 (mask and new data, see below) */
|
|
|
+ if (insn->n == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ if (insn->n != 2) {
|
|
|
+ printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The insn data consists of a mask in data[0] and the new data in
|
|
|
+ * data[1]. The mask defines which bits we are concerning about.
|
|
|
+ * The new data must be anded with the mask. Each channel
|
|
|
+ * corresponds to a bit.
|
|
|
+ */
|
|
|
+ if (data[0]) {
|
|
|
+ /* Check if requested ports are configured for output */
|
|
|
+ if ((s->io_bits & data[0]) != data[0])
|
|
|
+ return -EIO;
|
|
|
+
|
|
|
+ s->state &= ~data[0];
|
|
|
+ s->state |= data[0] & data[1];
|
|
|
+
|
|
|
+ /* Write out the new digital output lines */
|
|
|
+
|
|
|
+ DEBIwrite(dev, diopriv->WRDOut, s->state);
|
|
|
+ }
|
|
|
+ data[1] = DEBIread(dev, diopriv->RDDIn);
|
|
|
+
|
|
|
+ return 2;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+
|
|
|
+ switch (data[0]) {
|
|
|
+ case INSN_CONFIG_DIO_QUERY:
|
|
|
+ data[1] =
|
|
|
+ (s->io_bits & (1 << CR_CHAN(insn->
|
|
|
+ chanspec))) ? COMEDI_OUTPUT :
|
|
|
+ COMEDI_INPUT;
|
|
|
+ return insn->n;
|
|
|
+ break;
|
|
|
+ case COMEDI_INPUT:
|
|
|
+ s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
|
|
|
+ break;
|
|
|
+ case COMEDI_OUTPUT:
|
|
|
+ s->io_bits |= 1 << CR_CHAN(insn->chanspec);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return -EINVAL;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
|
|
|
+{
|
|
|
+ unsigned int group;
|
|
|
+ unsigned int bitmask;
|
|
|
+ unsigned int status;
|
|
|
+
|
|
|
+ //select dio bank
|
|
|
+ group = chan / 16;
|
|
|
+ bitmask = 1 << (chan - (16 * group));
|
|
|
+ DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
|
|
|
+ chan - (16 * group), group);
|
|
|
+
|
|
|
+ //set channel to capture positive edge
|
|
|
+ status = DEBIread(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->RDEdgSel);
|
|
|
+ DEBIwrite(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->WREdgSel, bitmask | status);
|
|
|
+
|
|
|
+ //enable interrupt on selected channel
|
|
|
+ status = DEBIread(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->RDIntSel);
|
|
|
+ DEBIwrite(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->WRIntSel, bitmask | status);
|
|
|
+
|
|
|
+ //enable edge capture write command
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
|
|
|
+
|
|
|
+ //enable edge capture on selected channel
|
|
|
+ status = DEBIread(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->RDCapSel);
|
|
|
+ DEBIwrite(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->WRCapSel, bitmask | status);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_dio_reset_irq(comedi_device * dev, unsigned int group,
|
|
|
+ unsigned int mask)
|
|
|
+{
|
|
|
+ DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
|
|
|
+
|
|
|
+ //disable edge capture write command
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
|
|
|
+
|
|
|
+ //enable edge capture on selected channel
|
|
|
+ DEBIwrite(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->WRCapSel, mask);
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_dio_clear_irq(comedi_device * dev)
|
|
|
+{
|
|
|
+ unsigned int group;
|
|
|
+
|
|
|
+ //disable edge capture write command
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
|
|
|
+
|
|
|
+ for (group = 0; group < S626_DIO_BANKS; group++) {
|
|
|
+ //clear pending events and interrupt
|
|
|
+ DEBIwrite(dev,
|
|
|
+ ((dio_private *) (dev->subdevices + 2 +
|
|
|
+ group)->private)->WRCapSel, 0xffff);
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/* Now this function initializes the value of the counter (data[0])
|
|
|
+ and set the subdevice. To complete with trigger and interrupt
|
|
|
+ configuration */
|
|
|
+static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
|
|
|
+ // index.
|
|
|
+ (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
|
|
|
+ (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is Counter.
|
|
|
+ (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
|
|
|
+ //( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down.
|
|
|
+ (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
|
|
|
+ (CLKENAB_INDEX << BF_CLKENAB);
|
|
|
+ /* uint16_t DisableIntSrc=TRUE; */
|
|
|
+ // uint32_t Preloadvalue; //Counter initial value
|
|
|
+ uint16_t valueSrclatch = LATCHSRC_AB_READ;
|
|
|
+ uint16_t enab = CLKENAB_ALWAYS;
|
|
|
+ enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
|
|
|
+
|
|
|
+ DEBUG("s626_enc_insn_config: encoder config\n");
|
|
|
+
|
|
|
+ // (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]);
|
|
|
+
|
|
|
+ k->SetMode(dev, k, Setup, TRUE);
|
|
|
+ Preload(dev, k, *(insn->data));
|
|
|
+ k->PulseIndex(dev, k);
|
|
|
+ SetLatchSource(dev, k, valueSrclatch);
|
|
|
+ k->SetEnable(dev, k, (uint16_t) (enab != 0));
|
|
|
+
|
|
|
+ return insn->n;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+
|
|
|
+ int n;
|
|
|
+ enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
|
|
|
+
|
|
|
+ DEBUG("s626_enc_insn_read: encoder read channel %d \n",
|
|
|
+ CR_CHAN(insn->chanspec));
|
|
|
+
|
|
|
+ for (n = 0; n < insn->n; n++)
|
|
|
+ data[n] = ReadLatch(dev, k);
|
|
|
+
|
|
|
+ DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
|
|
|
+
|
|
|
+ return n;
|
|
|
+}
|
|
|
+
|
|
|
+static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
|
|
|
+ comedi_insn * insn, lsampl_t * data)
|
|
|
+{
|
|
|
+
|
|
|
+ enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
|
|
|
+
|
|
|
+ DEBUG("s626_enc_insn_write: encoder write channel %d \n",
|
|
|
+ CR_CHAN(insn->chanspec));
|
|
|
+
|
|
|
+ // Set the preload register
|
|
|
+ Preload(dev, k, data[0]);
|
|
|
+
|
|
|
+ // Software index pulse forces the preload register to load
|
|
|
+ // into the counter
|
|
|
+ k->SetLoadTrig(dev, k, 0);
|
|
|
+ k->PulseIndex(dev, k);
|
|
|
+ k->SetLoadTrig(dev, k, 2);
|
|
|
+
|
|
|
+ DEBUG("s626_enc_insn_write: End encoder write\n");
|
|
|
+
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+static void s626_timer_load(comedi_device * dev, enc_private * k, int tick)
|
|
|
+{
|
|
|
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
|
|
|
+ // index.
|
|
|
+ (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
|
|
|
+ (CLKSRC_TIMER << BF_CLKSRC) | // Operating mode is Timer.
|
|
|
+ (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
|
|
|
+ (CNTDIR_DOWN << BF_CLKPOL) | // Count direction is Down.
|
|
|
+ (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
|
|
|
+ (CLKENAB_INDEX << BF_CLKENAB);
|
|
|
+ uint16_t valueSrclatch = LATCHSRC_A_INDXA;
|
|
|
+ // uint16_t enab=CLKENAB_ALWAYS;
|
|
|
+
|
|
|
+ k->SetMode(dev, k, Setup, FALSE);
|
|
|
+
|
|
|
+ // Set the preload register
|
|
|
+ Preload(dev, k, tick);
|
|
|
+
|
|
|
+ // Software index pulse forces the preload register to load
|
|
|
+ // into the counter
|
|
|
+ k->SetLoadTrig(dev, k, 0);
|
|
|
+ k->PulseIndex(dev, k);
|
|
|
+
|
|
|
+ //set reload on counter overflow
|
|
|
+ k->SetLoadTrig(dev, k, 1);
|
|
|
+
|
|
|
+ //set interrupt on overflow
|
|
|
+ k->SetIntSrc(dev, k, INTSRC_OVER);
|
|
|
+
|
|
|
+ SetLatchSource(dev, k, valueSrclatch);
|
|
|
+ // k->SetEnable(dev,k,(uint16_t)(enab != 0));
|
|
|
+}
|
|
|
+
|
|
|
+///////////////////////////////////////////////////////////////////////
|
|
|
+///////////////////// DAC FUNCTIONS /////////////////////////////////
|
|
|
+///////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+// Slot 0 base settings.
|
|
|
+#define VECT0 ( XSD2 | RSD3 | SIB_A2 ) // Slot 0 always shifts in
|
|
|
+ // 0xFF and store it to
|
|
|
+ // FB_BUFFER2.
|
|
|
+
|
|
|
+// TrimDac LogicalChan-to-PhysicalChan mapping table.
|
|
|
+static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
|
|
|
+
|
|
|
+// TrimDac LogicalChan-to-EepromAdrs mapping table.
|
|
|
+static uint8_t trimadrs[] =
|
|
|
+ { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
|
|
|
+
|
|
|
+static void LoadTrimDACs(comedi_device * dev)
|
|
|
+{
|
|
|
+ register uint8_t i;
|
|
|
+
|
|
|
+ // Copy TrimDac setpoint values from EEPROM to TrimDacs.
|
|
|
+ for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
|
|
|
+ WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
|
|
|
+}
|
|
|
+
|
|
|
+static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
|
|
|
+ uint8_t DacData)
|
|
|
+{
|
|
|
+ uint32_t chan;
|
|
|
+
|
|
|
+ // Save the new setpoint in case the application needs to read it back later.
|
|
|
+ devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
|
|
|
+
|
|
|
+ // Map logical channel number to physical channel number.
|
|
|
+ chan = (uint32_t) trimchan[LogicalChan];
|
|
|
+
|
|
|
+ // Set up TSL2 records for TrimDac write operation. All slots shift
|
|
|
+ // 0xFF in from pulled-up SD3 so that the end of the slot sequence
|
|
|
+ // can be detected.
|
|
|
+ SETVECT(2, XSD2 | XFIFO_1 | WS3); // Slot 2: Send high uint8_t
|
|
|
+ // to target TrimDac.
|
|
|
+ SETVECT(3, XSD2 | XFIFO_0 | WS3); // Slot 3: Send low uint8_t to
|
|
|
+ // target TrimDac.
|
|
|
+ SETVECT(4, XSD2 | XFIFO_3 | WS1); // Slot 4: Send NOP high
|
|
|
+ // uint8_t to DAC0 to keep
|
|
|
+ // clock running.
|
|
|
+ SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); // Slot 5: Send NOP low
|
|
|
+ // uint8_t to DAC0.
|
|
|
+
|
|
|
+ // Construct and transmit target DAC's serial packet: ( 0000 AAAA
|
|
|
+ // ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC
|
|
|
+ // channel's address, and D<7:0> is the DAC setpoint. Append a WORD
|
|
|
+ // value (that writes a channel 0 NOP command to a non-existent main
|
|
|
+ // DAC channel) that serves to keep the clock running after the
|
|
|
+ // packet has been sent to the target DAC.
|
|
|
+
|
|
|
+ SendDAC(dev, ((uint32_t) chan << 8) // Address the DAC channel
|
|
|
+ // within the trimdac device.
|
|
|
+ | (uint32_t) DacData); // Include DAC setpoint data.
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////
|
|
|
+//////////////// EEPROM ACCESS FUNCTIONS //////////////////////////////
|
|
|
+/////////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+///////////////////////////////////////////
|
|
|
+// Read uint8_t from EEPROM.
|
|
|
+
|
|
|
+static uint8_t I2Cread(comedi_device * dev, uint8_t addr)
|
|
|
+{
|
|
|
+ uint8_t rtnval;
|
|
|
+
|
|
|
+ // Send EEPROM target address.
|
|
|
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) // Byte2 = I2C
|
|
|
+ // command:
|
|
|
+ // write to
|
|
|
+ // I2C EEPROM
|
|
|
+ // device.
|
|
|
+ | I2C_B1(I2C_ATTRSTOP, addr) // Byte1 = EEPROM
|
|
|
+ // internal target
|
|
|
+ // address.
|
|
|
+ | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
|
|
|
+ // sent.
|
|
|
+ {
|
|
|
+ // Abort function and declare error if handshake failed.
|
|
|
+ DEBUG("I2Cread: error handshake I2Cread a\n");
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ // Execute EEPROM read.
|
|
|
+ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) // Byte2 = I2C
|
|
|
+ // command: read
|
|
|
+ // from I2C EEPROM
|
|
|
+ // device.
|
|
|
+ | I2C_B1(I2C_ATTRSTOP, 0) // Byte1 receives
|
|
|
+ // uint8_t from
|
|
|
+ // EEPROM.
|
|
|
+ | I2C_B0(I2C_ATTRNOP, 0))) // Byte0 = Not
|
|
|
+ // sent.
|
|
|
+ {
|
|
|
+ // Abort function and declare error if handshake failed.
|
|
|
+ DEBUG("I2Cread: error handshake I2Cread b\n");
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ // Return copy of EEPROM value.
|
|
|
+ rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
|
|
|
+ return rtnval;
|
|
|
+}
|
|
|
+
|
|
|
+static uint32_t I2Chandshake(comedi_device * dev, uint32_t val)
|
|
|
+{
|
|
|
+ // Write I2C command to I2C Transfer Control shadow register.
|
|
|
+ WR7146(P_I2CCTRL, val);
|
|
|
+
|
|
|
+ // Upload I2C shadow registers into working registers and wait for
|
|
|
+ // upload confirmation.
|
|
|
+
|
|
|
+ MC_ENABLE(P_MC2, MC2_UPLD_IIC);
|
|
|
+ while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
|
|
|
+
|
|
|
+ // Wait until I2C bus transfer is finished or an error occurs.
|
|
|
+ while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
|
|
|
+
|
|
|
+ // Return non-zero if I2C error occured.
|
|
|
+ return RR7146(P_I2CCTRL) & I2C_ERR;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+// Private helper function: Write setpoint to an application DAC channel.
|
|
|
+
|
|
|
+static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
|
|
|
+{
|
|
|
+ register uint16_t signmask;
|
|
|
+ register uint32_t WSImage;
|
|
|
+
|
|
|
+ // Adjust DAC data polarity and set up Polarity Control Register
|
|
|
+ // image.
|
|
|
+ signmask = 1 << chan;
|
|
|
+ if (dacdata < 0) {
|
|
|
+ dacdata = -dacdata;
|
|
|
+ devpriv->Dacpol |= signmask;
|
|
|
+ } else
|
|
|
+ devpriv->Dacpol &= ~signmask;
|
|
|
+
|
|
|
+ // Limit DAC setpoint value to valid range.
|
|
|
+ if ((uint16_t) dacdata > 0x1FFF)
|
|
|
+ dacdata = 0x1FFF;
|
|
|
+
|
|
|
+ // Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
|
|
|
+ // and V3 transmit the setpoint to the target DAC. V4 and V5 send
|
|
|
+ // data to a non-existent TrimDac channel just to keep the clock
|
|
|
+ // running after sending data to the target DAC. This is necessary
|
|
|
+ // to eliminate the clock glitch that would otherwise occur at the
|
|
|
+ // end of the target DAC's serial data stream. When the sequence
|
|
|
+ // restarts at V0 (after executing V5), the gate array automatically
|
|
|
+ // disables gating for the DAC clock and all DAC chip selects.
|
|
|
+ WSImage = (chan & 2) ? WS1 : WS2; // Choose DAC chip select to
|
|
|
+ // be asserted.
|
|
|
+ SETVECT(2, XSD2 | XFIFO_1 | WSImage); // Slot 2: Transmit high
|
|
|
+ // data byte to target DAC.
|
|
|
+ SETVECT(3, XSD2 | XFIFO_0 | WSImage); // Slot 3: Transmit low data
|
|
|
+ // byte to target DAC.
|
|
|
+ SETVECT(4, XSD2 | XFIFO_3 | WS3); // Slot 4: Transmit to
|
|
|
+ // non-existent TrimDac
|
|
|
+ // channel to keep clock
|
|
|
+ SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); // Slot 5: running after
|
|
|
+ // writing target DAC's
|
|
|
+ // low data byte.
|
|
|
+
|
|
|
+ // Construct and transmit target DAC's serial packet: ( A10D DDDD
|
|
|
+ // ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0>
|
|
|
+ // is the DAC setpoint. Append a WORD value (that writes to a
|
|
|
+ // non-existent TrimDac channel) that serves to keep the clock
|
|
|
+ // running after the packet has been sent to the target DAC.
|
|
|
+ SendDAC(dev, 0x0F000000 //Continue clock after target DAC
|
|
|
+ //data (write to non-existent
|
|
|
+ //trimdac).
|
|
|
+ | 0x00004000 // Address the two main dual-DAC
|
|
|
+ // devices (TSL's chip select enables
|
|
|
+ // target device).
|
|
|
+ | ((uint32_t) (chan & 1) << 15) // Address the DAC
|
|
|
+ // channel within the
|
|
|
+ // device.
|
|
|
+ | (uint32_t) dacdata); // Include DAC setpoint data.
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////
|
|
|
+// Private helper function: Transmit serial data to DAC via Audio
|
|
|
+// channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
|
|
|
+// Dacpol contains valid target image.
|
|
|
+
|
|
|
+static void SendDAC(comedi_device * dev, uint32_t val)
|
|
|
+{
|
|
|
+
|
|
|
+ // START THE SERIAL CLOCK RUNNING -------------
|
|
|
+
|
|
|
+ // Assert DAC polarity control and enable gating of DAC serial clock
|
|
|
+ // and audio bit stream signals. At this point in time we must be
|
|
|
+ // assured of being in time slot 0. If we are not in slot 0, the
|
|
|
+ // serial clock and audio stream signals will be disabled; this is
|
|
|
+ // because the following DEBIwrite statement (which enables signals
|
|
|
+ // to be passed through the gate array) would execute before the
|
|
|
+ // trailing edge of WS1/WS3 (which turns off the signals), thus
|
|
|
+ // causing the signals to be inactive during the DAC write.
|
|
|
+ DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
|
|
|
+
|
|
|
+ // TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ----------------
|
|
|
+
|
|
|
+ // Copy DAC setpoint value to DAC's output DMA buffer.
|
|
|
+
|
|
|
+ //WR7146( (uint32_t)devpriv->pDacWBuf, val );
|
|
|
+ *devpriv->pDacWBuf = val;
|
|
|
+
|
|
|
+ // enab the output DMA transfer. This will cause the DMAC to copy
|
|
|
+ // the DAC's data value to A2's output FIFO. The DMA transfer will
|
|
|
+ // then immediately terminate because the protection address is
|
|
|
+ // reached upon transfer of the first DWORD value.
|
|
|
+ MC_ENABLE(P_MC1, MC1_A2OUT);
|
|
|
+
|
|
|
+ // While the DMA transfer is executing ...
|
|
|
+
|
|
|
+ // Reset Audio2 output FIFO's underflow flag (along with any other
|
|
|
+ // FIFO underflow/overflow flags). When set, this flag will
|
|
|
+ // indicate that we have emerged from slot 0.
|
|
|
+ WR7146(P_ISR, ISR_AFOU);
|
|
|
+
|
|
|
+ // Wait for the DMA transfer to finish so that there will be data
|
|
|
+ // available in the FIFO when time slot 1 tries to transfer a DWORD
|
|
|
+ // from the FIFO to the output buffer register. We test for DMA
|
|
|
+ // Done by polling the DMAC enable flag; this flag is automatically
|
|
|
+ // cleared when the transfer has finished.
|
|
|
+ while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
|
|
|
+
|
|
|
+ // START THE OUTPUT STREAM TO THE TARGET DAC --------------------
|
|
|
+
|
|
|
+ // FIFO data is now available, so we enable execution of time slots
|
|
|
+ // 1 and higher by clearing the EOS flag in slot 0. Note that SD3
|
|
|
+ // will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
|
|
|
+ // detection.
|
|
|
+ SETVECT(0, XSD2 | RSD3 | SIB_A2);
|
|
|
+
|
|
|
+ // Wait for slot 1 to execute to ensure that the Packet will be
|
|
|
+ // transmitted. This is detected by polling the Audio2 output FIFO
|
|
|
+ // underflow flag, which will be set when slot 1 execution has
|
|
|
+ // finished transferring the DAC's data DWORD from the output FIFO
|
|
|
+ // to the output buffer register.
|
|
|
+ while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
|
|
|
+
|
|
|
+ // Set up to trap execution at slot 0 when the TSL sequencer cycles
|
|
|
+ // back to slot 0 after executing the EOS in slot 5. Also,
|
|
|
+ // simultaneously shift out and in the 0x00 that is ALWAYS the value
|
|
|
+ // stored in the last byte to be shifted out of the FIFO's DWORD
|
|
|
+ // buffer register.
|
|
|
+ SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
|
|
|
+
|
|
|
+ // WAIT FOR THE TRANSACTION TO FINISH -----------------------
|
|
|
+
|
|
|
+ // Wait for the TSL to finish executing all time slots before
|
|
|
+ // exiting this function. We must do this so that the next DAC
|
|
|
+ // write doesn't start, thereby enabling clock/chip select signals:
|
|
|
+ // 1. Before the TSL sequence cycles back to slot 0, which disables
|
|
|
+ // the clock/cs signal gating and traps slot // list execution. If
|
|
|
+ // we have not yet finished slot 5 then the clock/cs signals are
|
|
|
+ // still gated and we have // not finished transmitting the stream.
|
|
|
+ // 2. While slots 2-5 are executing due to a late slot 0 trap. In
|
|
|
+ // this case, the slot sequence is currently // repeating, but with
|
|
|
+ // clock/cs signals disabled. We must wait for slot 0 to trap
|
|
|
+ // execution before setting // up the next DAC setpoint DMA transfer
|
|
|
+ // and enabling the clock/cs signals. To detect the end of slot 5,
|
|
|
+ // we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
|
|
|
+ // the TSL has not yet finished executing slot 5 ...
|
|
|
+ if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
|
|
|
+ // The trap was set on time and we are still executing somewhere
|
|
|
+ // in slots 2-5, so we now wait for slot 0 to execute and trap
|
|
|
+ // TSL execution. This is detected when FB_BUFFER2 MSB changes
|
|
|
+ // from 0xFF to 0x00, which slot 0 causes to happen by shifting
|
|
|
+ // out/in on SD2 the 0x00 that is always referenced by slot 5.
|
|
|
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
|
|
|
+ }
|
|
|
+ // Either (1) we were too late setting the slot 0 trap; the TSL
|
|
|
+ // sequencer restarted slot 0 before we could set the EOS trap flag,
|
|
|
+ // or (2) we were not late and execution is now trapped at slot 0.
|
|
|
+ // In either case, we must now change slot 0 so that it will store
|
|
|
+ // value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
|
|
|
+ // In order to do this, we reprogram slot 0 so that it will shift in
|
|
|
+ // SD3, which is driven only by a pull-up resistor.
|
|
|
+ SETVECT(0, RSD3 | SIB_A2 | EOS);
|
|
|
+
|
|
|
+ // Wait for slot 0 to execute, at which time the TSL is setup for
|
|
|
+ // the next DAC write. This is detected when FB_BUFFER2 MSB changes
|
|
|
+ // from 0x00 to 0xFF.
|
|
|
+ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
|
|
|
+}
|
|
|
+
|
|
|
+static void WriteMISC2(comedi_device * dev, uint16_t NewImage)
|
|
|
+{
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); // enab writes to
|
|
|
+ // MISC2 register.
|
|
|
+ DEBIwrite(dev, LP_WRMISC2, NewImage); // Write new image to MISC2.
|
|
|
+ DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); // Disable writes to MISC2.
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////
|
|
|
+// Initialize the DEBI interface for all transfers.
|
|
|
+
|
|
|
+static uint16_t DEBIread(comedi_device * dev, uint16_t addr)
|
|
|
+{
|
|
|
+ uint16_t retval;
|
|
|
+
|
|
|
+ // Set up DEBI control register value in shadow RAM.
|
|
|
+ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
|
|
|
+
|
|
|
+ // Execute the DEBI transfer.
|
|
|
+ DEBItransfer(dev);
|
|
|
+
|
|
|
+ // Fetch target register value.
|
|
|
+ retval = (uint16_t) RR7146(P_DEBIAD);
|
|
|
+
|
|
|
+ // Return register value.
|
|
|
+ return retval;
|
|
|
+}
|
|
|
+
|
|
|
+// Execute a DEBI transfer. This must be called from within a
|
|
|
+// critical section.
|
|
|
+static void DEBItransfer(comedi_device * dev)
|
|
|
+{
|
|
|
+ // Initiate upload of shadow RAM to DEBI control register.
|
|
|
+ MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
|
|
|
+
|
|
|
+ // Wait for completion of upload from shadow RAM to DEBI control
|
|
|
+ // register.
|
|
|
+ while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
|
|
|
+
|
|
|
+ // Wait until DEBI transfer is done.
|
|
|
+ while (RR7146(P_PSR) & PSR_DEBI_S) ;
|
|
|
+}
|
|
|
+
|
|
|
+// Write a value to a gate array register.
|
|
|
+static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata)
|
|
|
+{
|
|
|
+
|
|
|
+ // Set up DEBI control register value in shadow RAM.
|
|
|
+ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
|
|
|
+ WR7146(P_DEBIAD, wdata);
|
|
|
+
|
|
|
+ // Execute the DEBI transfer.
|
|
|
+ DEBItransfer(dev);
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////////
|
|
|
+// Replace the specified bits in a gate array register. Imports: mask
|
|
|
+// specifies bits that are to be preserved, wdata is new value to be
|
|
|
+// or'd with the masked original.
|
|
|
+static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
|
|
|
+ uint16_t wdata)
|
|
|
+{
|
|
|
+
|
|
|
+ // Copy target gate array register into P_DEBIAD register.
|
|
|
+ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); // Set up DEBI control
|
|
|
+ // reg value in shadow
|
|
|
+ // RAM.
|
|
|
+ DEBItransfer(dev); // Execute the DEBI
|
|
|
+ // Read transfer.
|
|
|
+
|
|
|
+ // Write back the modified image.
|
|
|
+ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); // Set up DEBI control
|
|
|
+ // reg value in shadow
|
|
|
+ // RAM.
|
|
|
+
|
|
|
+ WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); // Modify the register image.
|
|
|
+ DEBItransfer(dev); // Execute the DEBI Write transfer.
|
|
|
+}
|
|
|
+
|
|
|
+static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
|
|
|
+{
|
|
|
+ void *vbptr;
|
|
|
+ dma_addr_t vpptr;
|
|
|
+
|
|
|
+ DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
|
|
|
+ if (pdma == NULL)
|
|
|
+ return;
|
|
|
+ //find the matching allocation from the board struct
|
|
|
+
|
|
|
+ vbptr = pdma->LogicalBase;
|
|
|
+ vpptr = pdma->PhysicalBase;
|
|
|
+ if (vbptr) {
|
|
|
+ pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
|
|
|
+ pdma->LogicalBase = 0;
|
|
|
+ pdma->PhysicalBase = 0;
|
|
|
+
|
|
|
+ DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
|
|
|
+ vbptr, bsize, (uint32_t) vpptr);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////
|
|
|
+///////////////// COUNTER FUNCTIONS //////////////////////////////////
|
|
|
+////////////////////////////////////////////////////////////////////////
|
|
|
+// All counter functions address a specific counter by means of the
|
|
|
+// "Counter" argument, which is a logical counter number. The Counter
|
|
|
+// argument may have any of the following legal values: 0=0A, 1=1A,
|
|
|
+// 2=2A, 3=0B, 4=1B, 5=2B.
|
|
|
+////////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+// Forward declarations for functions that are common to both A and B
|
|
|
+// counters:
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////
|
|
|
+//////////////////// PRIVATE COUNTER FUNCTIONS /////////////////////
|
|
|
+/////////////////////////////////////////////////////////////////////
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////
|
|
|
+// Read a counter's output latch.
|
|
|
+
|
|
|
+static uint32_t ReadLatch(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ register uint32_t value;
|
|
|
+ //DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n");
|
|
|
+
|
|
|
+ // Latch counts and fetch LSW of latched counts value.
|
|
|
+ value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
|
|
|
+
|
|
|
+ // Fetch MSW of latched counts and combine with LSW.
|
|
|
+ value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
|
|
|
+
|
|
|
+ // DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n");
|
|
|
+
|
|
|
+ // Return latched counts.
|
|
|
+ return value;
|
|
|
+}
|
|
|
+
|
|
|
+///////////////////////////////////////////////////////////////////
|
|
|
+// Reset a counter's index and overflow event capture flags.
|
|
|
+
|
|
|
+static void ResetCapFlags_A(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
|
|
|
+ CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
|
|
|
+}
|
|
|
+
|
|
|
+static void ResetCapFlags_B(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
|
|
|
+ CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////
|
|
|
+// Return counter setup in a format (COUNTER_SETUP) that is consistent
|
|
|
+// for both A and B counters.
|
|
|
+
|
|
|
+static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ register uint16_t cra;
|
|
|
+ register uint16_t crb;
|
|
|
+ register uint16_t setup;
|
|
|
+
|
|
|
+ // Fetch CRA and CRB register images.
|
|
|
+ cra = DEBIread(dev, k->MyCRA);
|
|
|
+ crb = DEBIread(dev, k->MyCRB);
|
|
|
+
|
|
|
+ // Populate the standardized counter setup bit fields. Note:
|
|
|
+ // IndexSrc is restricted to ENC_X or IndxPol.
|
|
|
+ setup = ((cra & STDMSK_LOADSRC) // LoadSrc = LoadSrcA.
|
|
|
+ | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcA.
|
|
|
+ | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) // IntSrc = IntSrcA.
|
|
|
+ | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) // IndxSrc = IndxSrcA<1>.
|
|
|
+ | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) // IndxPol = IndxPolA.
|
|
|
+ | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); // ClkEnab = ClkEnabA.
|
|
|
+
|
|
|
+ // Adjust mode-dependent parameters.
|
|
|
+ if (cra & (2 << CRABIT_CLKSRC_A)) // If Timer mode (ClkSrcA<1> == 1):
|
|
|
+ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
|
|
|
+ | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) // Set ClkPol to indicate count direction (ClkSrcA<0>).
|
|
|
+ | (MULT_X1 << STDBIT_CLKMULT)); // ClkMult must be 1x in Timer mode.
|
|
|
+
|
|
|
+ else // If Counter mode (ClkSrcA<1> == 0):
|
|
|
+ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Counter mode.
|
|
|
+ | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) // Pass through ClkPol.
|
|
|
+ | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? // Force ClkMult to 1x if not legal, else pass through.
|
|
|
+ (MULT_X1 << STDBIT_CLKMULT) :
|
|
|
+ ((cra >> (CRABIT_CLKMULT_A -
|
|
|
+ STDBIT_CLKMULT)) &
|
|
|
+ STDMSK_CLKMULT)));
|
|
|
+
|
|
|
+ // Return adjusted counter setup.
|
|
|
+ return setup;
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetMode_B(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ register uint16_t cra;
|
|
|
+ register uint16_t crb;
|
|
|
+ register uint16_t setup;
|
|
|
+
|
|
|
+ // Fetch CRA and CRB register images.
|
|
|
+ cra = DEBIread(dev, k->MyCRA);
|
|
|
+ crb = DEBIread(dev, k->MyCRB);
|
|
|
+
|
|
|
+ // Populate the standardized counter setup bit fields. Note:
|
|
|
+ // IndexSrc is restricted to ENC_X or IndxPol.
|
|
|
+ setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) // IntSrc = IntSrcB.
|
|
|
+ | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) // LatchSrc = LatchSrcB.
|
|
|
+ | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) // LoadSrc = LoadSrcB.
|
|
|
+ | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) // IndxPol = IndxPolB.
|
|
|
+ | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) // ClkEnab = ClkEnabB.
|
|
|
+ | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); // IndxSrc = IndxSrcB<1>.
|
|
|
+
|
|
|
+ // Adjust mode-dependent parameters.
|
|
|
+ if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) // If Extender mode (ClkMultB == MULT_X0):
|
|
|
+ setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) // Indicate Extender mode.
|
|
|
+ | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
|
|
|
+ | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
|
|
|
+
|
|
|
+ else if (cra & (2 << CRABIT_CLKSRC_B)) // If Timer mode (ClkSrcB<1> == 1):
|
|
|
+ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) // Indicate Timer mode.
|
|
|
+ | (MULT_X1 << STDBIT_CLKMULT) // Indicate multiplier is 1x.
|
|
|
+ | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); // Set ClkPol equal to Timer count direction (ClkSrcB<0>).
|
|
|
+
|
|
|
+ else // If Counter mode (ClkSrcB<1> == 0):
|
|
|
+ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) // Indicate Timer mode.
|
|
|
+ | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) // Clock multiplier is passed through.
|
|
|
+ | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); // Clock polarity is passed through.
|
|
|
+
|
|
|
+ // Return adjusted counter setup.
|
|
|
+ return setup;
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
+// Set the operating mode for the specified counter. The setup
|
|
|
+// parameter is treated as a COUNTER_SETUP data type. The following
|
|
|
+// parameters are programmable (all other parms are ignored): ClkMult,
|
|
|
+// ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
|
|
|
+
|
|
|
+static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
|
|
|
+ uint16_t DisableIntSrc)
|
|
|
+{
|
|
|
+ register uint16_t cra;
|
|
|
+ register uint16_t crb;
|
|
|
+ register uint16_t setup = Setup; // Cache the Standard Setup.
|
|
|
+
|
|
|
+ // Initialize CRA and CRB images.
|
|
|
+ cra = ((setup & CRAMSK_LOADSRC_A) // Preload trigger is passed through.
|
|
|
+ | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); // IndexSrc is restricted to ENC_X or IndxPol.
|
|
|
+
|
|
|
+ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A // Reset any pending CounterA event captures.
|
|
|
+ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); // Clock enable is passed through.
|
|
|
+
|
|
|
+ // Force IntSrc to Disabled if DisableIntSrc is asserted.
|
|
|
+ if (!DisableIntSrc)
|
|
|
+ cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
|
|
|
+ CRABIT_INTSRC_A));
|
|
|
+
|
|
|
+ // Populate all mode-dependent attributes of CRA & CRB images.
|
|
|
+ switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
|
|
|
+ case CLKSRC_EXTENDER: // Extender Mode: Force to Timer mode
|
|
|
+ // (Extender valid only for B counters).
|
|
|
+
|
|
|
+ case CLKSRC_TIMER: // Timer Mode:
|
|
|
+ cra |= ((2 << CRABIT_CLKSRC_A) // ClkSrcA<1> selects system clock
|
|
|
+ | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) // with count direction (ClkSrcA<0>) obtained from ClkPol.
|
|
|
+ | (1 << CRABIT_CLKPOL_A) // ClkPolA behaves as always-on clock enable.
|
|
|
+ | (MULT_X1 << CRABIT_CLKMULT_A)); // ClkMult must be 1x.
|
|
|
+ break;
|
|
|
+
|
|
|
+ default: // Counter Mode:
|
|
|
+ cra |= (CLKSRC_COUNTER // Select ENC_C and ENC_D as clock/direction inputs.
|
|
|
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) // Clock polarity is passed through.
|
|
|
+ | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force multiplier to x1 if not legal, otherwise pass through.
|
|
|
+ (MULT_X1 << CRABIT_CLKMULT_A) :
|
|
|
+ ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
|
|
|
+ STDBIT_CLKMULT))));
|
|
|
+ }
|
|
|
+
|
|
|
+ // Force positive index polarity if IndxSrc is software-driven only,
|
|
|
+ // otherwise pass it through.
|
|
|
+ if (~setup & STDMSK_INDXSRC)
|
|
|
+ cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
|
|
|
+ STDBIT_INDXPOL));
|
|
|
+
|
|
|
+ // If IntSrc has been forced to Disabled, update the MISC2 interrupt
|
|
|
+ // enable mask to indicate the counter interrupt is disabled.
|
|
|
+ if (DisableIntSrc)
|
|
|
+ devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
|
|
|
+
|
|
|
+ // While retaining CounterB and LatchSrc configurations, program the
|
|
|
+ // new counter operating mode.
|
|
|
+ DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
|
|
|
+ DEBIreplace(dev, k->MyCRB,
|
|
|
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
|
|
|
+}
|
|
|
+
|
|
|
+static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
|
|
|
+ uint16_t DisableIntSrc)
|
|
|
+{
|
|
|
+ register uint16_t cra;
|
|
|
+ register uint16_t crb;
|
|
|
+ register uint16_t setup = Setup; // Cache the Standard Setup.
|
|
|
+
|
|
|
+ // Initialize CRA and CRB images.
|
|
|
+ cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); // IndexSrc field is restricted to ENC_X or IndxPol.
|
|
|
+
|
|
|
+ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B // Reset event captures and disable interrupts.
|
|
|
+ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) // Clock enable is passed through.
|
|
|
+ | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); // Preload trigger source is passed through.
|
|
|
+
|
|
|
+ // Force IntSrc to Disabled if DisableIntSrc is asserted.
|
|
|
+ if (!DisableIntSrc)
|
|
|
+ crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
|
|
|
+ CRBBIT_INTSRC_B));
|
|
|
+
|
|
|
+ // Populate all mode-dependent attributes of CRA & CRB images.
|
|
|
+ switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
|
|
|
+ case CLKSRC_TIMER: // Timer Mode:
|
|
|
+ cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB<1> selects system clock
|
|
|
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction (ClkSrcB<0>) obtained from ClkPol.
|
|
|
+ crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB behaves as always-on clock enable.
|
|
|
+ | (MULT_X1 << CRBBIT_CLKMULT_B)); // ClkMultB must be 1x.
|
|
|
+ break;
|
|
|
+
|
|
|
+ case CLKSRC_EXTENDER: // Extender Mode:
|
|
|
+ cra |= ((2 << CRABIT_CLKSRC_B) // ClkSrcB source is OverflowA (same as "timer")
|
|
|
+ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); // with direction obtained from ClkPol.
|
|
|
+ crb |= ((1 << CRBBIT_CLKPOL_B) // ClkPolB controls IndexB -- always set to active.
|
|
|
+ | (MULT_X0 << CRBBIT_CLKMULT_B)); // ClkMultB selects OverflowA as the clock source.
|
|
|
+ break;
|
|
|
+
|
|
|
+ default: // Counter Mode:
|
|
|
+ cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); // Select ENC_C and ENC_D as clock/direction inputs.
|
|
|
+ crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) // ClkPol is passed through.
|
|
|
+ | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? // Force ClkMult to x1 if not legal, otherwise pass through.
|
|
|
+ (MULT_X1 << CRBBIT_CLKMULT_B) :
|
|
|
+ ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
|
|
|
+ STDBIT_CLKMULT))));
|
|
|
+ }
|
|
|
+
|
|
|
+ // Force positive index polarity if IndxSrc is software-driven only,
|
|
|
+ // otherwise pass it through.
|
|
|
+ if (~setup & STDMSK_INDXSRC)
|
|
|
+ crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
|
|
|
+ CRBBIT_INDXPOL_B));
|
|
|
+
|
|
|
+ // If IntSrc has been forced to Disabled, update the MISC2 interrupt
|
|
|
+ // enable mask to indicate the counter interrupt is disabled.
|
|
|
+ if (DisableIntSrc)
|
|
|
+ devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
|
|
|
+
|
|
|
+ // While retaining CounterA and LatchSrc configurations, program the
|
|
|
+ // new counter operating mode.
|
|
|
+ DEBIreplace(dev, k->MyCRA,
|
|
|
+ (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
|
|
|
+ DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////
|
|
|
+// Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index.
|
|
|
+
|
|
|
+static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab)
|
|
|
+{
|
|
|
+ DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
|
|
|
+ DEBIreplace(dev, k->MyCRB,
|
|
|
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
|
|
|
+ (uint16_t) (enab << CRBBIT_CLKENAB_A));
|
|
|
+}
|
|
|
+
|
|
|
+static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab)
|
|
|
+{
|
|
|
+ DEBIreplace(dev, k->MyCRB,
|
|
|
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
|
|
|
+ (uint16_t) (enab << CRBBIT_CLKENAB_B));
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetEnable_A(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetEnable_B(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////////////////////////////////////////////////////////
|
|
|
+// Return/set a counter pair's latch trigger source. 0: On read
|
|
|
+// access, 1: A index latches A, 2: B index latches B, 3: A overflow
|
|
|
+// latches B.
|
|
|
+
|
|
|
+static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
|
|
|
+{
|
|
|
+ DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
|
|
|
+ DEBIreplace(dev, k->MyCRB,
|
|
|
+ (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
|
|
|
+ (uint16_t) (value << CRBBIT_LATCHSRC));
|
|
|
+
|
|
|
+ DEBUG("SetLatchSource: SetLatchSource exit \n");
|
|
|
+}
|
|
|
+
|
|
|
+/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */
|
|
|
+/* { */
|
|
|
+/* return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////
|
|
|
+// Return/set the event that will trigger transfer of the preload
|
|
|
+// register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
|
|
|
+// 2=OverflowA (B counters only), 3=disabled.
|
|
|
+
|
|
|
+static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig)
|
|
|
+{
|
|
|
+ DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
|
|
|
+ (uint16_t) (Trig << CRABIT_LOADSRC_A));
|
|
|
+}
|
|
|
+
|
|
|
+static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig)
|
|
|
+{
|
|
|
+ DEBIreplace(dev, k->MyCRB,
|
|
|
+ (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
|
|
|
+ (uint16_t) (Trig << CRBBIT_LOADSRC_B));
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
|
|
|
+}
|
|
|
+
|
|
|
+////////////////////
|
|
|
+// Return/set counter interrupt source and clear any captured
|
|
|
+// index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
|
|
|
+// 2=IndexOnly, 3=IndexAndOverflow.
|
|
|
+
|
|
|
+static void SetIntSrc_A(comedi_device * dev, enc_private * k,
|
|
|
+ uint16_t IntSource)
|
|
|
+{
|
|
|
+ // Reset any pending counter overflow or index captures.
|
|
|
+ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
|
|
|
+ CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
|
|
|
+
|
|
|
+ // Program counter interrupt source.
|
|
|
+ DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
|
|
|
+ (uint16_t) (IntSource << CRABIT_INTSRC_A));
|
|
|
+
|
|
|
+ // Update MISC2 interrupt enable mask.
|
|
|
+ devpriv->CounterIntEnabs =
|
|
|
+ (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
|
|
|
+ MyEventBits[IntSource];
|
|
|
+}
|
|
|
+
|
|
|
+static void SetIntSrc_B(comedi_device * dev, enc_private * k,
|
|
|
+ uint16_t IntSource)
|
|
|
+{
|
|
|
+ uint16_t crb;
|
|
|
+
|
|
|
+ // Cache writeable CRB register image.
|
|
|
+ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
|
|
|
+
|
|
|
+ // Reset any pending counter overflow or index captures.
|
|
|
+ DEBIwrite(dev, k->MyCRB,
|
|
|
+ (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
|
|
|
+
|
|
|
+ // Program counter interrupt source.
|
|
|
+ DEBIwrite(dev, k->MyCRB,
|
|
|
+ (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
|
|
|
+ CRBBIT_INTSRC_B)));
|
|
|
+
|
|
|
+ // Update MISC2 interrupt enable mask.
|
|
|
+ devpriv->CounterIntEnabs =
|
|
|
+ (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
|
|
|
+ MyEventBits[IntSource];
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
|
|
|
+}
|
|
|
+
|
|
|
+static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////////////////////
|
|
|
+// Return/set the clock multiplier.
|
|
|
+
|
|
|
+/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) */
|
|
|
+/* { */
|
|
|
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) */
|
|
|
+/* { */
|
|
|
+/* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* ////////////////////////////////////////////////////////////////////////// */
|
|
|
+/* // Return/set the clock polarity. */
|
|
|
+
|
|
|
+/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value ) */
|
|
|
+/* { */
|
|
|
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) */
|
|
|
+/* { */
|
|
|
+/* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* /////////////////////////////////////////////////////////////////////// */
|
|
|
+/* // Return/set the clock source. */
|
|
|
+
|
|
|
+/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value ) */
|
|
|
+/* { */
|
|
|
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k ) */
|
|
|
+/* { */
|
|
|
+/* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* //////////////////////////////////////////////////////////////////////// */
|
|
|
+/* // Return/set the index polarity. */
|
|
|
+
|
|
|
+/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ) */
|
|
|
+/* { */
|
|
|
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k ) */
|
|
|
+/* { */
|
|
|
+/* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* //////////////////////////////////////////////////////////////////////// */
|
|
|
+/* // Return/set the index source. */
|
|
|
+
|
|
|
+/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value ) */
|
|
|
+/* { */
|
|
|
+/* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
|
|
|
+/* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
|
|
|
+/* } */
|
|
|
+
|
|
|
+/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k ) */
|
|
|
+/* { */
|
|
|
+/* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
|
|
|
+/* } */
|
|
|
+
|
|
|
+///////////////////////////////////////////////////////////////////
|
|
|
+// Generate an index pulse.
|
|
|
+
|
|
|
+static void PulseIndex_A(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ register uint16_t cra;
|
|
|
+
|
|
|
+ DEBUG("PulseIndex_A: pulse index enter\n");
|
|
|
+
|
|
|
+ cra = DEBIread(dev, k->MyCRA); // Pulse index.
|
|
|
+ DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
|
|
|
+ DEBUG("PulseIndex_A: pulse index step1\n");
|
|
|
+ DEBIwrite(dev, k->MyCRA, cra);
|
|
|
+}
|
|
|
+
|
|
|
+static void PulseIndex_B(comedi_device * dev, enc_private * k)
|
|
|
+{
|
|
|
+ register uint16_t crb;
|
|
|
+
|
|
|
+ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; // Pulse index.
|
|
|
+ DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
|
|
|
+ DEBIwrite(dev, k->MyCRB, crb);
|
|
|
+}
|
|
|
+
|
|
|
+/////////////////////////////////////////////////////////
|
|
|
+// Write value into counter preload register.
|
|
|
+
|
|
|
+static void Preload(comedi_device * dev, enc_private * k, uint32_t value)
|
|
|
+{
|
|
|
+ DEBUG("Preload: preload enter\n");
|
|
|
+ DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); // Write value to preload register.
|
|
|
+ DEBUG("Preload: preload step 1\n");
|
|
|
+ DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
|
|
|
+ (uint16_t) (value >> 16));
|
|
|
+}
|
|
|
+
|
|
|
+static void CountersInit(comedi_device * dev)
|
|
|
+{
|
|
|
+ int chan;
|
|
|
+ enc_private *k;
|
|
|
+ uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | // Preload upon
|
|
|
+ // index.
|
|
|
+ (INDXSRC_SOFT << BF_INDXSRC) | // Disable hardware index.
|
|
|
+ (CLKSRC_COUNTER << BF_CLKSRC) | // Operating mode is counter.
|
|
|
+ (CLKPOL_POS << BF_CLKPOL) | // Active high clock.
|
|
|
+ (CNTDIR_UP << BF_CLKPOL) | // Count direction is up.
|
|
|
+ (CLKMULT_1X << BF_CLKMULT) | // Clock multiplier is 1x.
|
|
|
+ (CLKENAB_INDEX << BF_CLKENAB); // Enabled by index
|
|
|
+
|
|
|
+ // Disable all counter interrupts and clear any captured counter events.
|
|
|
+ for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
|
|
|
+ k = &encpriv[chan];
|
|
|
+ k->SetMode(dev, k, Setup, TRUE);
|
|
|
+ k->SetIntSrc(dev, k, 0);
|
|
|
+ k->ResetCapFlags(dev, k);
|
|
|
+ k->SetEnable(dev, k, CLKENAB_ALWAYS);
|
|
|
+ }
|
|
|
+ DEBUG("CountersInit: counters initialized \n");
|
|
|
+
|
|
|
+}
|