Browse Source

Staging: comedi: add s626 driver

This adds the s626 comedi driver to the build.

From: Gianluca Palli <gpalli@deis.unibo.it>
Cc: David Schleef <ds@schleef.org>
Cc: Frank Mori Hess <fmhess@users.sourceforge.net>
Cc: Ian Abbott <abbotti@mev.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Gianluca Palli 16 years ago
parent
commit
11e865c1da

+ 1 - 0
drivers/staging/comedi/drivers/Makefile

@@ -11,6 +11,7 @@ obj-$(CONFIG_COMEDI)			+= comedi_parport.o
 obj-$(CONFIG_COMEDI_PCI_DRIVERS)	+= mite.o
 obj-$(CONFIG_COMEDI_PCI_DRIVERS)	+= icp_multi.o
 obj-$(CONFIG_COMEDI_PCI_DRIVERS)	+= me4000.o
+obj-$(CONFIG_COMEDI_PCI_DRIVERS)	+= s626.o
 
 # Comedi USB drivers
 obj-$(CONFIG_COMEDI_USB_DRIVERS)	+= usbdux.o

+ 3254 - 0
drivers/staging/comedi/drivers/s626.c

@@ -0,0 +1,3254 @@
+/*
+  comedi/drivers/s626.c
+  Sensoray s626 Comedi driver
+
+  COMEDI - Linux Control and Measurement Device Interface
+  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
+
+  Based on Sensoray Model 626 Linux driver Version 0.2
+  Copyright (C) 2002-2004 Sensoray Co., Inc.
+
+  This program is free software; you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation; either version 2 of the License, or
+  (at your option) any later version.
+
+  This program is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with this program; if not, write to the Free Software
+  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+*/
+
+/*
+Driver: s626
+Description: Sensoray 626 driver
+Devices: [Sensoray] 626 (s626)
+Authors: Gianluca Palli <gpalli@deis.unibo.it>,
+Updated: Fri, 15 Feb 2008 10:28:42 +0000
+Status: experimental
+
+Configuration options:
+  [0] - PCI bus of device (optional)
+  [1] - PCI slot of device (optional)
+  If bus/slot is not specified, the first supported
+  PCI device found will be used.
+
+INSN_CONFIG instructions:
+  analog input:
+   none
+
+  analog output:
+   none
+
+  digital channel:
+   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
+   supported configuration options:
+   INSN_CONFIG_DIO_QUERY
+   COMEDI_INPUT
+   COMEDI_OUTPUT
+
+  encoder:
+   Every channel must be configured before reading.
+
+   Example code
+
+   insn.insn=INSN_CONFIG;   //configuration instruction
+   insn.n=1;                //number of operation (must be 1)
+   insn.data=&initialvalue; //initial value loaded into encoder
+                            //during configuration
+   insn.subdev=5;           //encoder subdevice
+   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
+                                                        //to configure
+
+   comedi_do_insn(cf,&insn); //executing configuration
+*/
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+
+#include "../comedidev.h"
+
+#include "comedi_pci.h"
+
+#include "comedi_fc.h"
+#include "s626.h"
+
+MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
+MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
+MODULE_LICENSE("GPL");
+
+typedef struct s626_board_struct {
+	const char *name;
+	int ai_chans;
+	int ai_bits;
+	int ao_chans;
+	int ao_bits;
+	int dio_chans;
+	int dio_banks;
+	int enc_chans;
+} s626_board;
+
+static const s626_board s626_boards[] = {
+	{
+	      name:	"s626",
+	      ai_chans:S626_ADC_CHANNELS,
+	      ai_bits:	14,
+	      ao_chans:S626_DAC_CHANNELS,
+	      ao_bits:	13,
+	      dio_chans:S626_DIO_CHANNELS,
+	      dio_banks:S626_DIO_BANKS,
+	      enc_chans:S626_ENCODER_CHANNELS,
+		}
+};
+
+#define thisboard ((const s626_board *)dev->board_ptr)
+#define PCI_VENDOR_ID_S626 0x1131
+#define PCI_DEVICE_ID_S626 0x7146
+
+static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
+	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
+		0},
+	{0}
+};
+
+MODULE_DEVICE_TABLE(pci, s626_pci_table);
+
+static int s626_attach(comedi_device * dev, comedi_devconfig * it);
+static int s626_detach(comedi_device * dev);
+
+static comedi_driver driver_s626 = {
+      driver_name:"s626",
+      module:THIS_MODULE,
+      attach:s626_attach,
+      detach:s626_detach,
+};
+
+typedef struct {
+	struct pci_dev *pdev;
+	void *base_addr;
+	int got_regions;
+	short allocatedBuf;
+	uint8_t ai_cmd_running;	// ai_cmd is running
+	uint8_t ai_continous;	// continous aquisition
+	int ai_sample_count;	// number of samples to aquire
+	unsigned int ai_sample_timer;	// time between samples in
+	// units of the timer
+	int ai_convert_count;	// conversion counter
+	unsigned int ai_convert_timer;	// time between conversion in
+	// units of the timer
+	uint16_t CounterIntEnabs;	//Counter interrupt enable
+	//mask for MISC2 register.
+	uint8_t AdcItems;	//Number of items in ADC poll
+	//list.
+	DMABUF RPSBuf;		//DMA buffer used to hold ADC
+	//(RPS1) program.
+	DMABUF ANABuf;		//DMA buffer used to receive
+	//ADC data and hold DAC data.
+	uint32_t *pDacWBuf;	//Pointer to logical adrs of
+	//DMA buffer used to hold DAC
+	//data.
+	uint16_t Dacpol;	//Image of DAC polarity
+	//register.
+	uint8_t TrimSetpoint[12];	//Images of TrimDAC setpoints.
+	//registers.
+	uint16_t ChargeEnabled;	//Image of MISC2 Battery
+	//Charge Enabled (0 or
+	//WRMISC2_CHARGE_ENABLE).
+	uint16_t WDInterval;	//Image of MISC2 watchdog
+	//interval control bits.
+	uint32_t I2CAdrs;	//I2C device address for
+	//onboard EEPROM (board rev
+	//dependent).
+	//  short         I2Cards;
+	lsampl_t ao_readback[S626_DAC_CHANNELS];
+} s626_private;
+
+typedef struct {
+	uint16_t RDDIn;
+	uint16_t WRDOut;
+	uint16_t RDEdgSel;
+	uint16_t WREdgSel;
+	uint16_t RDCapSel;
+	uint16_t WRCapSel;
+	uint16_t RDCapFlg;
+	uint16_t RDIntSel;
+	uint16_t WRIntSel;
+} dio_private;
+
+static dio_private dio_private_A = {
+      RDDIn:LP_RDDINA,
+      WRDOut:LP_WRDOUTA,
+      RDEdgSel:LP_RDEDGSELA,
+      WREdgSel:LP_WREDGSELA,
+      RDCapSel:LP_RDCAPSELA,
+      WRCapSel:LP_WRCAPSELA,
+      RDCapFlg:LP_RDCAPFLGA,
+      RDIntSel:LP_RDINTSELA,
+      WRIntSel:LP_WRINTSELA,
+};
+
+static dio_private dio_private_B = {
+      RDDIn:LP_RDDINB,
+      WRDOut:LP_WRDOUTB,
+      RDEdgSel:LP_RDEDGSELB,
+      WREdgSel:LP_WREDGSELB,
+      RDCapSel:LP_RDCAPSELB,
+      WRCapSel:LP_WRCAPSELB,
+      RDCapFlg:LP_RDCAPFLGB,
+      RDIntSel:LP_RDINTSELB,
+      WRIntSel:LP_WRINTSELB,
+};
+
+static dio_private dio_private_C = {
+      RDDIn:LP_RDDINC,
+      WRDOut:LP_WRDOUTC,
+      RDEdgSel:LP_RDEDGSELC,
+      WREdgSel:LP_WREDGSELC,
+      RDCapSel:LP_RDCAPSELC,
+      WRCapSel:LP_WRCAPSELC,
+      RDCapFlg:LP_RDCAPFLGC,
+      RDIntSel:LP_RDINTSELC,
+      WRIntSel:LP_WRINTSELC,
+};
+
+/* to group dio devices (48 bits mask and data are not allowed ???)
+static dio_private *dio_private_word[]={
+  &dio_private_A,
+  &dio_private_B,
+  &dio_private_C,
+};
+*/
+
+#define devpriv ((s626_private *)dev->private)
+#define diopriv ((dio_private *)s->private)
+
+COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
+
+//ioctl routines
+static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
+static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s);
+static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
+	comedi_cmd * cmd);
+static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s);
+static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_dio_set_irq(comedi_device * dev, unsigned int chan);
+static int s626_dio_reset_irq(comedi_device * dev, unsigned int gruop,
+	unsigned int mask);
+static int s626_dio_clear_irq(comedi_device * dev);
+static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data);
+static int s626_ns_to_timer(int *nanosec, int round_mode);
+static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd);
+static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
+	unsigned int trignum);
+static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
+static lsampl_t s626_ai_reg_to_uint(int data);
+/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
+
+//end ioctl routines
+
+//internal routines
+static void s626_dio_init(comedi_device * dev);
+static void ResetADC(comedi_device * dev, uint8_t * ppl);
+static void LoadTrimDACs(comedi_device * dev);
+static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
+	uint8_t DacData);
+static uint8_t I2Cread(comedi_device * dev, uint8_t addr);
+static uint32_t I2Chandshake(comedi_device * dev, uint32_t val);
+static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata);
+static void SendDAC(comedi_device * dev, uint32_t val);
+static void WriteMISC2(comedi_device * dev, uint16_t NewImage);
+static void DEBItransfer(comedi_device * dev);
+static uint16_t DEBIread(comedi_device * dev, uint16_t addr);
+static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata);
+static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
+	uint16_t wdata);
+static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize);
+
+// COUNTER OBJECT ------------------------------------------------
+typedef struct enc_private_struct {
+	// Pointers to functions that differ for A and B counters:
+	uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *);	//Return clock enable.
+	uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *);	//Return interrupt source.
+	uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *);	//Return preload trigger source.
+	uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *);	//Return standardized operating mode.
+	void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *);	//Generate soft index strobe.
+	void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab);	//Program clock enable.
+	void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource);	//Program interrupt source.
+	void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig);	//Program preload trigger source.
+	void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc);	//Program standardized operating mode.
+	void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *);	//Reset event capture flags.
+
+	uint16_t MyCRA;		//   Address of CRA register.
+	uint16_t MyCRB;		//   Address of CRB register.
+	uint16_t MyLatchLsw;	//   Address of Latch least-significant-word
+	//   register.
+	uint16_t MyEventBits[4];	//   Bit translations for IntSrc -->RDMISC2.
+} enc_private;			//counter object
+
+#define encpriv ((enc_private *)(dev->subdevices+5)->private)
+
+//counters routines
+static void s626_timer_load(comedi_device * dev, enc_private * k, int tick);
+static uint32_t ReadLatch(comedi_device * dev, enc_private * k);
+static void ResetCapFlags_A(comedi_device * dev, enc_private * k);
+static void ResetCapFlags_B(comedi_device * dev, enc_private * k);
+static uint16_t GetMode_A(comedi_device * dev, enc_private * k);
+static uint16_t GetMode_B(comedi_device * dev, enc_private * k);
+static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
+	uint16_t DisableIntSrc);
+static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
+	uint16_t DisableIntSrc);
+static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab);
+static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab);
+static uint16_t GetEnable_A(comedi_device * dev, enc_private * k);
+static uint16_t GetEnable_B(comedi_device * dev, enc_private * k);
+static void SetLatchSource(comedi_device * dev, enc_private * k,
+	uint16_t value);
+/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
+static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig);
+static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig);
+static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k);
+static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k);
+static void SetIntSrc_B(comedi_device * dev, enc_private * k,
+	uint16_t IntSource);
+static void SetIntSrc_A(comedi_device * dev, enc_private * k,
+	uint16_t IntSource);
+static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k);
+static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k);
+/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
+/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
+/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
+/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
+/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
+/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k );  */
+/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
+/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k );  */
+static void PulseIndex_A(comedi_device * dev, enc_private * k);
+static void PulseIndex_B(comedi_device * dev, enc_private * k);
+static void Preload(comedi_device * dev, enc_private * k, uint32_t value);
+static void CountersInit(comedi_device * dev);
+//end internal routines
+
+/////////////////////////////////////////////////////////////////////////
+// Counter objects constructor.
+
+// Counter overflow/index event flag masks for RDMISC2.
+#define INDXMASK(C)		( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 +  4 ) ) )
+#define OVERMASK(C)		( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
+#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
+
+// Translation table to map IntSrc into equivalent RDMISC2 event flag
+// bits.
+//static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };
+
+/* enc_private; */
+static enc_private enc_private_data[] = {
+	{
+	      GetEnable:GetEnable_A,
+	      GetIntSrc:GetIntSrc_A,
+	      GetLoadTrig:GetLoadTrig_A,
+	      GetMode:	GetMode_A,
+	      PulseIndex:PulseIndex_A,
+	      SetEnable:SetEnable_A,
+	      SetIntSrc:SetIntSrc_A,
+	      SetLoadTrig:SetLoadTrig_A,
+	      SetMode:	SetMode_A,
+	      ResetCapFlags:ResetCapFlags_A,
+	      MyCRA:	LP_CR0A,
+	      MyCRB:	LP_CR0B,
+	      MyLatchLsw:LP_CNTR0ALSW,
+	      MyEventBits:EVBITS(0),
+		},
+	{
+	      GetEnable:GetEnable_A,
+	      GetIntSrc:GetIntSrc_A,
+	      GetLoadTrig:GetLoadTrig_A,
+	      GetMode:	GetMode_A,
+	      PulseIndex:PulseIndex_A,
+	      SetEnable:SetEnable_A,
+	      SetIntSrc:SetIntSrc_A,
+	      SetLoadTrig:SetLoadTrig_A,
+	      SetMode:	SetMode_A,
+	      ResetCapFlags:ResetCapFlags_A,
+	      MyCRA:	LP_CR1A,
+	      MyCRB:	LP_CR1B,
+	      MyLatchLsw:LP_CNTR1ALSW,
+	      MyEventBits:EVBITS(1),
+		},
+	{
+	      GetEnable:GetEnable_A,
+	      GetIntSrc:GetIntSrc_A,
+	      GetLoadTrig:GetLoadTrig_A,
+	      GetMode:	GetMode_A,
+	      PulseIndex:PulseIndex_A,
+	      SetEnable:SetEnable_A,
+	      SetIntSrc:SetIntSrc_A,
+	      SetLoadTrig:SetLoadTrig_A,
+	      SetMode:	SetMode_A,
+	      ResetCapFlags:ResetCapFlags_A,
+	      MyCRA:	LP_CR2A,
+	      MyCRB:	LP_CR2B,
+	      MyLatchLsw:LP_CNTR2ALSW,
+	      MyEventBits:EVBITS(2),
+		},
+	{
+	      GetEnable:GetEnable_B,
+	      GetIntSrc:GetIntSrc_B,
+	      GetLoadTrig:GetLoadTrig_B,
+	      GetMode:	GetMode_B,
+	      PulseIndex:PulseIndex_B,
+	      SetEnable:SetEnable_B,
+	      SetIntSrc:SetIntSrc_B,
+	      SetLoadTrig:SetLoadTrig_B,
+	      SetMode:	SetMode_B,
+	      ResetCapFlags:ResetCapFlags_B,
+	      MyCRA:	LP_CR0A,
+	      MyCRB:	LP_CR0B,
+	      MyLatchLsw:LP_CNTR0BLSW,
+	      MyEventBits:EVBITS(3),
+		},
+	{
+	      GetEnable:GetEnable_B,
+	      GetIntSrc:GetIntSrc_B,
+	      GetLoadTrig:GetLoadTrig_B,
+	      GetMode:	GetMode_B,
+	      PulseIndex:PulseIndex_B,
+	      SetEnable:SetEnable_B,
+	      SetIntSrc:SetIntSrc_B,
+	      SetLoadTrig:SetLoadTrig_B,
+	      SetMode:	SetMode_B,
+	      ResetCapFlags:ResetCapFlags_B,
+	      MyCRA:	LP_CR1A,
+	      MyCRB:	LP_CR1B,
+	      MyLatchLsw:LP_CNTR1BLSW,
+	      MyEventBits:EVBITS(4),
+		},
+	{
+	      GetEnable:GetEnable_B,
+	      GetIntSrc:GetIntSrc_B,
+	      GetLoadTrig:GetLoadTrig_B,
+	      GetMode:	GetMode_B,
+	      PulseIndex:PulseIndex_B,
+	      SetEnable:SetEnable_B,
+	      SetIntSrc:SetIntSrc_B,
+	      SetLoadTrig:SetLoadTrig_B,
+	      SetMode:	SetMode_B,
+	      ResetCapFlags:ResetCapFlags_B,
+	      MyCRA:	LP_CR2A,
+	      MyCRB:	LP_CR2B,
+	      MyLatchLsw:LP_CNTR2BLSW,
+	      MyEventBits:EVBITS(5),
+		},
+};
+
+// enab/disable a function or test status bit(s) that are accessed
+// through Main Control Registers 1 or 2.
+#define MC_ENABLE( REGADRS, CTRLWORD )	writel(  ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) )
+
+#define MC_DISABLE( REGADRS, CTRLWORD )	writel(  (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )
+
+#define MC_TEST( REGADRS, CTRLWORD )	( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 )
+
+/* #define WR7146(REGARDS,CTRLWORD)
+    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
+#define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,devpriv->base_addr+(REGARDS))
+
+/* #define RR7146(REGARDS)
+    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
+#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
+
+#define BUGFIX_STREG(REGADRS)   ( REGADRS - 4 )
+
+// Write a time slot control record to TSL2.
+#define VECTPORT( VECTNUM )		(P_TSL2 + ( (VECTNUM) << 2 ))
+#define SETVECT( VECTNUM, VECTVAL )	WR7146(VECTPORT( VECTNUM ), (VECTVAL))
+
+// Code macros used for constructing I2C command bytes.
+#define I2C_B2(ATTR,VAL)	( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
+#define I2C_B1(ATTR,VAL)	( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
+#define I2C_B0(ATTR,VAL)	( ( (ATTR) << 2 ) | ( (VAL) <<  8 ) )
+
+static const comedi_lrange s626_range_table = { 2, {
+			RANGE(-5, 5),
+			RANGE(-10, 10),
+	}
+};
+
+static int s626_attach(comedi_device * dev, comedi_devconfig * it)
+{
+/*   uint8_t	PollList; */
+/*   uint16_t	AdcData; */
+/*   uint16_t	StartVal; */
+/*   uint16_t	index; */
+/*   unsigned int data[16]; */
+	int result;
+	int i;
+	int ret;
+	resource_size_t resourceStart;
+	dma_addr_t appdma;
+	comedi_subdevice *s;
+	struct pci_dev *pdev;
+
+	if (alloc_private(dev, sizeof(s626_private)) < 0)
+		return -ENOMEM;
+
+	for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
+			NULL); pdev != NULL;
+		pdev = pci_get_device(PCI_VENDOR_ID_S626,
+			PCI_DEVICE_ID_S626, pdev)) {
+		if (it->options[0] || it->options[1]) {
+			if (pdev->bus->number == it->options[0] &&
+				PCI_SLOT(pdev->devfn) == it->options[1]) {
+				/* matches requested bus/slot */
+				break;
+			}
+		} else {
+			/* no bus/slot specified */
+			break;
+		}
+	}
+	devpriv->pdev = pdev;
+
+	if (pdev == NULL) {
+		printk("s626_attach: Board not present!!!\n");
+		return -ENODEV;
+	}
+
+	if ((result = comedi_pci_enable(pdev, "s626")) < 0) {
+		printk("s626_attach: comedi_pci_enable fails\n");
+		return -ENODEV;
+	}
+	devpriv->got_regions = 1;
+
+	resourceStart = pci_resource_start(devpriv->pdev, 0);
+
+	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
+	if (devpriv->base_addr == NULL) {
+		printk("s626_attach: IOREMAP failed\n");
+		return -ENODEV;
+	}
+
+	if (devpriv->base_addr) {
+		//disable master interrupt
+		writel(0, devpriv->base_addr + P_IER);
+
+		//soft reset
+		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
+
+		//DMA FIXME DMA//
+		DEBUG("s626_attach: DMA ALLOCATION\n");
+
+		//adc buffer allocation
+		devpriv->allocatedBuf = 0;
+
+		if ((devpriv->ANABuf.LogicalBase =
+				pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
+					&appdma)) == NULL) {
+			printk("s626_attach: DMA Memory mapping error\n");
+			return -ENOMEM;
+		}
+
+		devpriv->ANABuf.PhysicalBase = appdma;
+
+		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
+
+		devpriv->allocatedBuf++;
+
+		if ((devpriv->RPSBuf.LogicalBase =
+				pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
+					&appdma)) == NULL) {
+			printk("s626_attach: DMA Memory mapping error\n");
+			return -ENOMEM;
+		}
+
+		devpriv->RPSBuf.PhysicalBase = appdma;
+
+		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
+
+		devpriv->allocatedBuf++;
+
+	}
+
+	dev->board_ptr = s626_boards;
+	dev->board_name = thisboard->name;
+
+	if (alloc_subdevices(dev, 6) < 0)
+		return -ENOMEM;
+
+	dev->iobase = (unsigned long)devpriv->base_addr;
+	dev->irq = devpriv->pdev->irq;
+
+	//set up interrupt handler
+	if (dev->irq == 0) {
+		printk(" unknown irq (bad)\n");
+	} else {
+		if ((ret = comedi_request_irq(dev->irq, s626_irq_handler,
+					IRQF_SHARED, "s626", dev)) < 0) {
+			printk(" irq not available\n");
+			dev->irq = 0;
+		}
+	}
+
+	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
+		it->options[0], it->options[1]);
+
+	s = dev->subdevices + 0;
+	/* analog input subdevice */
+	dev->read_subdev = s;
+	/* we support single-ended (ground) and differential */
+	s->type = COMEDI_SUBD_AI;
+	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
+	s->n_chan = thisboard->ai_chans;
+	s->maxdata = (0xffff >> 2);
+	s->range_table = &s626_range_table;
+	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
+						   length that the board can
+						   handle */
+	s->insn_config = s626_ai_insn_config;
+	s->insn_read = s626_ai_insn_read;
+	s->do_cmd = s626_ai_cmd;
+	s->do_cmdtest = s626_ai_cmdtest;
+	s->cancel = s626_ai_cancel;
+
+	s = dev->subdevices + 1;
+	/* analog output subdevice */
+	s->type = COMEDI_SUBD_AO;
+	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+	s->n_chan = thisboard->ao_chans;
+	s->maxdata = (0x3fff);
+	s->range_table = &range_bipolar10;
+	s->insn_write = s626_ao_winsn;
+	s->insn_read = s626_ao_rinsn;
+
+	s = dev->subdevices + 2;
+	/* digital I/O subdevice */
+	s->type = COMEDI_SUBD_DIO;
+	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+	s->n_chan = S626_DIO_CHANNELS;
+	s->maxdata = 1;
+	s->io_bits = 0xffff;
+	s->private = &dio_private_A;
+	s->range_table = &range_digital;
+	s->insn_config = s626_dio_insn_config;
+	s->insn_bits = s626_dio_insn_bits;
+
+	s = dev->subdevices + 3;
+	/* digital I/O subdevice */
+	s->type = COMEDI_SUBD_DIO;
+	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+	s->n_chan = 16;
+	s->maxdata = 1;
+	s->io_bits = 0xffff;
+	s->private = &dio_private_B;
+	s->range_table = &range_digital;
+	s->insn_config = s626_dio_insn_config;
+	s->insn_bits = s626_dio_insn_bits;
+
+	s = dev->subdevices + 4;
+	/* digital I/O subdevice */
+	s->type = COMEDI_SUBD_DIO;
+	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
+	s->n_chan = 16;
+	s->maxdata = 1;
+	s->io_bits = 0xffff;
+	s->private = &dio_private_C;
+	s->range_table = &range_digital;
+	s->insn_config = s626_dio_insn_config;
+	s->insn_bits = s626_dio_insn_bits;
+
+	s = dev->subdevices + 5;
+	/* encoder (counter) subdevice */
+	s->type = COMEDI_SUBD_COUNTER;
+	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
+	s->n_chan = thisboard->enc_chans;
+	s->private = enc_private_data;
+	s->insn_config = s626_enc_insn_config;
+	s->insn_read = s626_enc_insn_read;
+	s->insn_write = s626_enc_insn_write;
+	s->maxdata = 0xffffff;
+	s->range_table = &range_unknown;
+
+	//stop ai_command
+	devpriv->ai_cmd_running = 0;
+
+	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
+		dma_addr_t pPhysBuf;
+		uint16_t chan;
+
+		// enab DEBI and audio pins, enable I2C interface.
+		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
+		// Configure DEBI operating mode.
+		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	// Local bus is 16
+			// bits wide.
+			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	// Declare DEBI
+			// transfer timeout
+			// interval.
+			| DEBI_SWAP	// Set up byte lane
+			// steering.
+			| DEBI_CFG_INTEL);	// Intel-compatible
+		// local bus (DEBI
+		// never times out).
+		DEBUG("s626_attach: %d debi init -- %d\n",
+			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
+			DEBI_SWAP | DEBI_CFG_INTEL,
+			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
+			DEBI_CFG_16Q);
+
+		//DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ
+		//| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end
+
+		// Paging is disabled.
+		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	// Disable MMU paging.
+
+		// Init GPIO so that ADC Start* is negated.
+		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
+
+		//IsBoardRevA is a boolean that indicates whether the board is
+		//RevA.
+
+		// VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
+		// EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
+		// is used to access the onboard serial EEPROM.  The EEPROM's I2C
+		// DeviceAddress is hardwired to a value that is dependent on the
+		// 626 board revision.  On all board revisions, the EEPROM stores
+		// TrimDAC calibration constants for analog I/O.  On RevB and
+		// higher boards, the DeviceAddress is hardwired to 0 to enable
+		// the EEPROM to also store the PCI SubVendorID and SubDeviceID;
+		// this is the address at which the SAA7146 expects a
+		// configuration EEPROM to reside.  On RevA boards, the EEPROM
+		// device address, which is hardwired to 4, prevents the SAA7146
+		// from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
+		// default values, instead.
+
+		//    devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM
+		// DeviceType (0xA0)
+		// and DeviceAddress<<1.
+
+		devpriv->I2CAdrs = 0xA0;	// I2C device address for onboard
+		// eeprom(revb)
+
+		// Issue an I2C ABORT command to halt any I2C operation in
+		//progress and reset BUSY flag.
+		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);	// Write I2C control:
+		// abort any I2C
+		// activity.
+		MC_ENABLE(P_MC2, MC2_UPLD_IIC);	// Invoke command
+		// upload
+		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ;	// and wait for
+		// upload to
+		// complete.
+
+		// Per SAA7146 data sheet, write to STATUS reg twice to reset all
+		// I2C error flags.
+		for (i = 0; i < 2; i++) {
+			WR7146(P_I2CSTAT, I2C_CLKSEL);	// Write I2C control: reset
+			// error flags.
+			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	// Invoke command upload
+			while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;	//   and wait for
+			//   upload to
+			//   complete.
+		}
+
+		// Init audio interface functional attributes: set DAC/ADC serial
+		// clock rates, invert DAC serial clock so that DAC data setup
+		// times are satisfied, enable DAC serial clock out.
+		WR7146(P_ACON2, ACON2_INIT);
+
+		// Set up TSL1 slot list, which is used to control the
+		// accumulation of ADC data: RSD1 = shift data in on SD1.  SIB_A1
+		// = store data uint8_t at next available location in FB BUFFER1
+		// register.
+		WR7146(P_TSL1, RSD1 | SIB_A1);	// Fetch ADC high data
+		// uint8_t.
+		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);	// Fetch ADC low data
+		// uint8_t; end of
+		// TSL1.
+
+		// enab TSL1 slot list so that it executes all the time.
+		WR7146(P_ACON1, ACON1_ADCSTART);
+
+		// Initialize RPS registers used for ADC.
+
+		//Physical start of RPS program.
+		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
+
+		WR7146(P_RPSPAGE1, 0);	// RPS program performs no
+		// explicit mem writes.
+		WR7146(P_RPS1_TOUT, 0);	// Disable RPS timeouts.
+
+		// SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface to a
+		// known state by invoking ADCs until FB BUFFER 1 register shows
+		// that it is correctly receiving ADC data.  This is necessary
+		// because the SAA7146 ADC interface does not start up in a
+		// defined state after a PCI reset.
+
+/*     PollList = EOPL;			// Create a simple polling */
+/* 					// list for analog input */
+/* 					// channel 0. */
+/*     ResetADC( dev, &PollList ); */
+
+/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
+/* 						  //Get initial ADC */
+/* 						  //value. */
+
+/*     StartVal = data[0]; */
+
+/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
+/*     // Invoke ADCs until the new ADC value differs from the initial */
+/*     // value or a timeout occurs.  The timeout protects against the */
+/*     // possibility that the driver is restarting and the ADC data is a */
+/*     // fixed value resulting from the applied ADC analog input being */
+/*     // unusually quiet or at the rail. */
+
+/*     for ( index = 0; index < 500; index++ ) */
+/*       { */
+/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
+/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
+/* 	if ( AdcData != StartVal ) */
+/* 	  break; */
+/*       } */
+
+		// end initADC
+
+		// init the DAC interface
+
+		// Init Audio2's output DMAC attributes: burst length = 1 DWORD,
+		// threshold = 1 DWORD.
+		WR7146(P_PCI_BT_A, 0);
+
+		// Init Audio2's output DMA physical addresses.  The protection
+		// address is set to 1 DWORD past the base address so that a
+		// single DWORD will be transferred each time a DMA transfer is
+		// enabled.
+
+		pPhysBuf =
+			devpriv->ANABuf.PhysicalBase +
+			(DAC_WDMABUF_OS * sizeof(uint32_t));
+
+		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	// Buffer base adrs.
+		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	// Protection address.
+
+		// Cache Audio2's output DMA buffer logical address.  This is
+		// where DAC data is buffered for A2 output DMA transfers.
+		devpriv->pDacWBuf =
+			(uint32_t *) devpriv->ANABuf.LogicalBase +
+			DAC_WDMABUF_OS;
+
+		// Audio2's output channels does not use paging.  The protection
+		// violation handling bit is set so that the DMAC will
+		// automatically halt and its PCI address pointer will be reset
+		// when the protection address is reached.
+		WR7146(P_PAGEA2_OUT, 8);
+
+		// Initialize time slot list 2 (TSL2), which is used to control
+		// the clock generation for and serialization of data to be sent
+		// to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
+		// execution; this permits other slots to be safely modified
+		// without first turning off the TSL sequencer (which is
+		// apparently impossible to do).  Also, SD3 (which is driven by a
+		// pull-up resistor) is shifted in and stored to the MSB of
+		// FB_BUFFER2 to be used as evidence that the slot sequence has
+		// not yet finished executing.
+		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);	// Slot 0: Trap TSL
+		// execution, shift 0xFF
+		// into FB_BUFFER2.
+
+		// Initialize slot 1, which is constant.  Slot 1 causes a DWORD to
+		// be transferred from audio channel 2's output FIFO to the FIFO's
+		// output buffer so that it can be serialized and sent to the DAC
+		// during subsequent slots.  All remaining slots are dynamically
+		// populated as required by the target DAC device.
+		SETVECT(1, LF_A2);	// Slot 1: Fetch DWORD from Audio2's
+		// output FIFO.
+
+		// Start DAC's audio interface (TSL2) running.
+		WR7146(P_ACON1, ACON1_DACSTART);
+
+		////////////////////////////////////////////////////////
+
+		// end init DAC interface
+
+		// Init Trim DACs to calibrated values.  Do it twice because the
+		// SAA7146 audio channel does not always reset properly and
+		// sometimes causes the first few TrimDAC writes to malfunction.
+
+		LoadTrimDACs(dev);
+		LoadTrimDACs(dev);	// Insurance.
+
+		//////////////////////////////////////////////////////////////////
+		// Manually init all gate array hardware in case this is a soft
+		// reset (we have no way of determining whether this is a warm or
+		// cold start).  This is necessary because the gate array will
+		// reset only in response to a PCI hard reset; there is no soft
+		// reset function.
+
+		// Init all DAC outputs to 0V and init all DAC setpoint and
+		// polarity images.
+		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
+			SetDAC(dev, chan, 0);
+
+		// Init image of WRMISC2 Battery Charger Enabled control bit.
+		// This image is used when the state of the charger control bit,
+		// which has no direct hardware readback mechanism, is queried.
+		devpriv->ChargeEnabled = 0;
+
+		// Init image of watchdog timer interval in WRMISC2.  This image
+		// maintains the value of the control bits of MISC2 are
+		// continuously reset to zero as long as the WD timer is disabled.
+		devpriv->WDInterval = 0;
+
+		// Init Counter Interrupt enab mask for RDMISC2.  This mask is
+		// applied against MISC2 when testing to determine which timer
+		// events are requesting interrupt service.
+		devpriv->CounterIntEnabs = 0;
+
+		// Init counters.
+		CountersInit(dev);
+
+		// Without modifying the state of the Battery Backup enab, disable
+		// the watchdog timer, set DIO channels 0-5 to operate in the
+		// standard DIO (vs. counter overflow) mode, disable the battery
+		// charger, and reset the watchdog interval selector to zero.
+		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
+					LP_RDMISC2) & MISC2_BATT_ENABLE));
+
+		// Initialize the digital I/O subsystem.
+		s626_dio_init(dev);
+
+		//enable interrupt test
+		// writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER);
+	}
+
+	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
+		(uint32_t) devpriv->base_addr);
+
+	return 1;
+}
+
+static lsampl_t s626_ai_reg_to_uint(int data)
+{
+	lsampl_t tempdata;
+
+	tempdata = (data >> 18);
+	if (tempdata & 0x2000)
+		tempdata &= 0x1fff;
+	else
+		tempdata += (1 << 13);
+
+	return tempdata;
+}
+
+/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
+/*   return 0; */
+/* } */
+
+static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
+{
+	comedi_device *dev = d;
+	comedi_subdevice *s;
+	comedi_cmd *cmd;
+	enc_private *k;
+	unsigned long flags;
+	int32_t *readaddr;
+	uint32_t irqtype, irqstatus;
+	int i = 0;
+	sampl_t tempdata;
+	uint8_t group;
+	uint16_t irqbit;
+
+	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
+
+	if (dev->attached == 0)
+		return IRQ_NONE;
+	// lock to avoid race with comedi_poll
+	comedi_spin_lock_irqsave(&dev->spinlock, flags);
+
+	//save interrupt enable register state
+	irqstatus = readl(devpriv->base_addr + P_IER);
+
+	//read interrupt type
+	irqtype = readl(devpriv->base_addr + P_ISR);
+
+	//disable master interrupt
+	writel(0, devpriv->base_addr + P_IER);
+
+	//clear interrupt
+	writel(irqtype, devpriv->base_addr + P_ISR);
+
+	//do somethings
+	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
+
+	switch (irqtype) {
+	case IRQ_RPS1:		// end_of_scan occurs
+
+		DEBUG("s626_irq_handler: RPS1 irq detected\n");
+
+		// manage ai subdevice
+		s = dev->subdevices;
+		cmd = &(s->async->cmd);
+
+		// Init ptr to DMA buffer that holds new ADC data.  We skip the
+		// first uint16_t in the buffer because it contains junk data from
+		// the final ADC of the previous poll list scan.
+		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
+
+		// get the data and hand it over to comedi
+		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
+			// Convert ADC data to 16-bit integer values and copy to application
+			// buffer.
+			tempdata = s626_ai_reg_to_uint((int)*readaddr);
+			readaddr++;
+
+			//put data into read buffer
+			// comedi_buf_put(s->async, tempdata);
+			if (cfc_write_to_buffer(s, tempdata) == 0)
+				printk("s626_irq_handler: cfc_write_to_buffer error!\n");
+
+			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
+				i, tempdata);
+		}
+
+		//end of scan occurs
+		s->async->events |= COMEDI_CB_EOS;
+
+		if (!(devpriv->ai_continous))
+			devpriv->ai_sample_count--;
+		if (devpriv->ai_sample_count <= 0) {
+			devpriv->ai_cmd_running = 0;
+
+			// Stop RPS program.
+			MC_DISABLE(P_MC1, MC1_ERPS1);
+
+			//send end of acquisition
+			s->async->events |= COMEDI_CB_EOA;
+
+			//disable master interrupt
+			irqstatus = 0;
+		}
+
+		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
+			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
+
+			s626_dio_set_irq(dev, cmd->scan_begin_arg);
+
+			DEBUG("s626_irq_handler: External trigger is set!!!\n");
+		}
+		// tell comedi that data is there
+		DEBUG("s626_irq_handler: events %d\n", s->async->events);
+		comedi_event(dev, s);
+		break;
+	case IRQ_GPIO3:	//check dio and conter interrupt
+
+		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
+
+		// manage ai subdevice
+		s = dev->subdevices;
+		cmd = &(s->async->cmd);
+
+		//s626_dio_clear_irq(dev);
+
+		for (group = 0; group < S626_DIO_BANKS; group++) {
+			irqbit = 0;
+			//read interrupt type
+			irqbit = DEBIread(dev,
+				((dio_private *) (dev->subdevices + 2 +
+						group)->private)->RDCapFlg);
+
+			//check if interrupt is generated from dio channels
+			if (irqbit) {
+				s626_dio_reset_irq(dev, group, irqbit);
+				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
+				if (devpriv->ai_cmd_running) {
+					//check if interrupt is an ai acquisition start trigger
+					if ((irqbit >> (cmd->start_arg -
+								(16 * group)))
+						== 1
+						&& cmd->start_src == TRIG_EXT) {
+						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
+
+						// Start executing the RPS program.
+						MC_ENABLE(P_MC1, MC1_ERPS1);
+
+						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
+
+						if (cmd->scan_begin_src ==
+							TRIG_EXT) {
+							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
+
+							s626_dio_set_irq(dev,
+								cmd->
+								scan_begin_arg);
+
+							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
+						}
+					}
+					if ((irqbit >> (cmd->scan_begin_arg -
+								(16 * group)))
+						== 1
+						&& cmd->scan_begin_src ==
+						TRIG_EXT) {
+						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
+
+						// Trigger ADC scan loop start by setting RPS Signal 0.
+						MC_ENABLE(P_MC2, MC2_ADC_RPS);
+
+						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
+						if (cmd->convert_src ==
+							TRIG_EXT) {
+
+							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
+
+							devpriv->
+								ai_convert_count
+								=
+								cmd->
+								chanlist_len;
+
+							s626_dio_set_irq(dev,
+								cmd->
+								convert_arg);
+
+							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
+						}
+
+						if (cmd->convert_src ==
+							TRIG_TIMER) {
+							k = &encpriv[5];
+							devpriv->
+								ai_convert_count
+								=
+								cmd->
+								chanlist_len;
+							k->SetEnable(dev, k,
+								CLKENAB_ALWAYS);
+						}
+					}
+					if ((irqbit >> (cmd->convert_arg -
+								(16 * group)))
+						== 1
+						&& cmd->convert_src ==
+						TRIG_EXT) {
+						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
+
+						// Trigger ADC scan loop start by setting RPS Signal 0.
+						MC_ENABLE(P_MC2, MC2_ADC_RPS);
+
+						DEBUG("s626_irq_handler: adc convert triggered!!!\n");
+
+						devpriv->ai_convert_count--;
+
+						if (devpriv->ai_convert_count >
+							0) {
+
+							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
+
+							s626_dio_set_irq(dev,
+								cmd->
+								convert_arg);
+
+							DEBUG("s626_irq_handler: External trigger is set!!!\n");
+						}
+					}
+				}
+				break;
+			}
+		}
+
+		//read interrupt type
+		irqbit = DEBIread(dev, LP_RDMISC2);
+
+		//check interrupt on counters
+		DEBUG("s626_irq_handler: check counters interrupt %d\n",
+			irqbit);
+
+		if (irqbit & IRQ_COINT1A) {
+			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
+			k = &encpriv[0];
+
+			//clear interrupt capture flag
+			k->ResetCapFlags(dev, k);
+		}
+		if (irqbit & IRQ_COINT2A) {
+			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
+			k = &encpriv[1];
+
+			//clear interrupt capture flag
+			k->ResetCapFlags(dev, k);
+		}
+		if (irqbit & IRQ_COINT3A) {
+			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
+			k = &encpriv[2];
+
+			//clear interrupt capture flag
+			k->ResetCapFlags(dev, k);
+		}
+		if (irqbit & IRQ_COINT1B) {
+			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
+			k = &encpriv[3];
+
+			//clear interrupt capture flag
+			k->ResetCapFlags(dev, k);
+		}
+		if (irqbit & IRQ_COINT2B) {
+			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
+			k = &encpriv[4];
+
+			//clear interrupt capture flag
+			k->ResetCapFlags(dev, k);
+
+			if (devpriv->ai_convert_count > 0) {
+				devpriv->ai_convert_count--;
+				if (devpriv->ai_convert_count == 0)
+					k->SetEnable(dev, k, CLKENAB_INDEX);
+
+				if (cmd->convert_src == TRIG_TIMER) {
+					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
+
+					// Trigger ADC scan loop start by setting RPS Signal 0.
+					MC_ENABLE(P_MC2, MC2_ADC_RPS);
+				}
+			}
+		}
+		if (irqbit & IRQ_COINT3B) {
+			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
+			k = &encpriv[5];
+
+			//clear interrupt capture flag
+			k->ResetCapFlags(dev, k);
+
+			if (cmd->scan_begin_src == TRIG_TIMER) {
+				DEBUG("s626_irq_handler: scan timer trigger!!!\n");
+
+				// Trigger ADC scan loop start by setting RPS Signal 0.
+				MC_ENABLE(P_MC2, MC2_ADC_RPS);
+			}
+
+			if (cmd->convert_src == TRIG_TIMER) {
+				DEBUG("s626_irq_handler: convert timer trigger is set\n");
+				k = &encpriv[4];
+				devpriv->ai_convert_count = cmd->chanlist_len;
+				k->SetEnable(dev, k, CLKENAB_ALWAYS);
+			}
+		}
+	}
+
+	//enable interrupt
+	writel(irqstatus, devpriv->base_addr + P_IER);
+
+	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
+
+	comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
+	return IRQ_HANDLED;
+}
+
+static int s626_detach(comedi_device * dev)
+{
+	if (devpriv) {
+		//stop ai_command
+		devpriv->ai_cmd_running = 0;
+
+		if (devpriv->base_addr) {
+			//interrupt mask
+			WR7146(P_IER, 0);	// Disable master interrupt.
+			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	// Clear board's IRQ status flag.
+
+			// Disable the watchdog timer and battery charger.
+			WriteMISC2(dev, 0);
+
+			// Close all interfaces on 7146 device.
+			WR7146(P_MC1, MC1_SHUTDOWN);
+			WR7146(P_ACON1, ACON1_BASE);
+
+			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
+			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
+		}
+
+		if (dev->irq) {
+			comedi_free_irq(dev->irq, dev);
+		}
+
+		if (devpriv->base_addr) {
+			iounmap(devpriv->base_addr);
+		}
+
+		if (devpriv->pdev) {
+			if (devpriv->got_regions) {
+				comedi_pci_disable(devpriv->pdev);
+			}
+			pci_dev_put(devpriv->pdev);
+		}
+	}
+
+	DEBUG("s626_detach: S626 detached!\n");
+
+	return 0;
+}
+
+/*
+ * this functions build the RPS program for hardware driven acquistion
+ */
+void ResetADC(comedi_device * dev, uint8_t * ppl)
+{
+	register uint32_t *pRPS;
+	uint32_t JmpAdrs;
+	uint16_t i;
+	uint16_t n;
+	uint32_t LocalPPL;
+	comedi_cmd *cmd = &(dev->subdevices->async->cmd);
+
+	// Stop RPS program in case it is currently running.
+	MC_DISABLE(P_MC1, MC1_ERPS1);
+
+	// Set starting logical address to write RPS commands.
+	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
+
+	// Initialize RPS instruction pointer.
+	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
+
+	// Construct RPS program in RPSBuf DMA buffer
+
+	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
+		DEBUG("ResetADC: scan_begin pause inserted\n");
+		// Wait for Start trigger.
+		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
+		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+	}
+	// SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
+	// because the first RPS DEBI Write following a non-RPS DEBI write
+	// seems to always fail.  If we don't do this dummy write, the ADC
+	// gain might not be set to the value required for the first slot in
+	// the poll list; the ADC gain would instead remain unchanged from
+	// the previously programmed value.
+	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	// Write DEBI Write command
+	// and address to shadow RAM.
+	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
+	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	// Write DEBI immediate data
+	// to shadow RAM:
+	*pRPS++ = GSEL_BIPOLAR5V;	// arbitrary immediate data
+	// value.
+	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	// Reset "shadow RAM
+	// uploaded" flag.
+	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	// Invoke shadow RAM upload.
+	*pRPS++ = RPS_PAUSE | RPS_DEBI;	// Wait for shadow upload to finish.
+
+	// Digitize all slots in the poll list. This is implemented as a
+	// for loop to limit the slot count to 16 in case the application
+	// forgot to set the EOPL flag in the final slot.
+	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
+		// Convert application's poll list item to private board class
+		// format.  Each app poll list item is an uint8_t with form
+		// (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
+		// +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
+		LocalPPL =
+			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
+			GSEL_BIPOLAR10V);
+
+		// Switch ADC analog gain.
+		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	// Write DEBI command
+		// and address to
+		// shadow RAM.
+		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
+		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	// Write DEBI
+		// immediate data to
+		// shadow RAM.
+		*pRPS++ = LocalPPL;
+		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	// Reset "shadow RAM uploaded"
+		// flag.
+		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	// Invoke shadow RAM upload.
+		*pRPS++ = RPS_PAUSE | RPS_DEBI;	// Wait for shadow upload to
+		// finish.
+
+		// Select ADC analog input channel.
+		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	// Write DEBI command
+		// and address to
+		// shadow RAM.
+		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
+		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	// Write DEBI
+		// immediate data to
+		// shadow RAM.
+		*pRPS++ = LocalPPL;
+		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	// Reset "shadow RAM uploaded"
+		// flag.
+		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	// Invoke shadow RAM upload.
+		*pRPS++ = RPS_PAUSE | RPS_DEBI;	// Wait for shadow upload to
+		// finish.
+
+		// Delay at least 10 microseconds for analog input settling.
+		// Instead of padding with NOPs, we use RPS_JUMP instructions
+		// here; this allows us to produce a longer delay than is
+		// possible with NOPs because each RPS_JUMP flushes the RPS'
+		// instruction prefetch pipeline.
+		JmpAdrs =
+			(uint32_t) devpriv->RPSBuf.PhysicalBase +
+			(uint32_t) ((unsigned long)pRPS -
+			(unsigned long)devpriv->RPSBuf.LogicalBase);
+		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
+			JmpAdrs += 8;	// Repeat to implement time delay:
+			*pRPS++ = RPS_JUMP;	// Jump to next RPS instruction.
+			*pRPS++ = JmpAdrs;
+		}
+
+		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
+			DEBUG("ResetADC: convert pause inserted\n");
+			// Wait for Start trigger.
+			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
+			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
+		}
+		// Start ADC by pulsing GPIO1.
+		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// Begin ADC Start pulse.
+		*pRPS++ = GPIO_BASE | GPIO1_LO;
+		*pRPS++ = RPS_NOP;
+		// VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
+		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// End ADC Start pulse.
+		*pRPS++ = GPIO_BASE | GPIO1_HI;
+
+		// Wait for ADC to complete (GPIO2 is asserted high when ADC not
+		// busy) and for data from previous conversion to shift into FB
+		// BUFFER 1 register.
+		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	// Wait for ADC done.
+
+		// Transfer ADC data from FB BUFFER 1 register to DMA buffer.
+		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
+		*pRPS++ =
+			(uint32_t) devpriv->ANABuf.PhysicalBase +
+			(devpriv->AdcItems << 2);
+
+		// If this slot's EndOfPollList flag is set, all channels have
+		// now been processed.
+		if (*ppl++ & EOPL) {
+			devpriv->AdcItems++;	// Adjust poll list item count.
+			break;	// Exit poll list processing loop.
+		}
+	}
+	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
+
+	// VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
+	// ADC to stabilize for 2 microseconds before starting the final
+	// (dummy) conversion.  This delay is necessary to allow sufficient
+	// time between last conversion finished and the start of the dummy
+	// conversion.  Without this delay, the last conversion's data value
+	// is sometimes set to the previous conversion's data value.
+	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
+		*pRPS++ = RPS_NOP;
+
+	// Start a dummy conversion to cause the data from the last
+	// conversion of interest to be shifted in.
+	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// Begin ADC Start pulse.
+	*pRPS++ = GPIO_BASE | GPIO1_LO;
+	*pRPS++ = RPS_NOP;
+	// VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
+	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// End ADC Start pulse.
+	*pRPS++ = GPIO_BASE | GPIO1_HI;
+
+	// Wait for the data from the last conversion of interest to arrive
+	// in FB BUFFER 1 register.
+	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	// Wait for ADC done.
+
+	// Transfer final ADC data from FB BUFFER 1 register to DMA buffer.
+	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	//
+	*pRPS++ =
+		(uint32_t) devpriv->ANABuf.PhysicalBase +
+		(devpriv->AdcItems << 2);
+
+	// Indicate ADC scan loop is finished.
+	// *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done.
+
+	//invoke interrupt
+	if (devpriv->ai_cmd_running == 1) {
+		DEBUG("ResetADC: insert irq in ADC RPS task\n");
+		*pRPS++ = RPS_IRQ;
+	}
+	// Restart RPS program at its beginning.
+	*pRPS++ = RPS_JUMP;	// Branch to start of RPS program.
+	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
+
+	// End of RPS program build
+	// ------------------------------------------------------------
+}
+
+/* TO COMPLETE, IF NECESSARY */
+static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+
+	return -EINVAL;
+}
+
+/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
+/* { */
+/*   register uint8_t	i; */
+/*   register int32_t	*readaddr; */
+
+/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
+
+/*   // Trigger ADC scan loop start by setting RPS Signal 0. */
+/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
+
+/*   // Wait until ADC scan loop is finished (RPS Signal 0 reset). */
+/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
+
+/*   // Init ptr to DMA buffer that holds new ADC data.  We skip the */
+/*   // first uint16_t in the buffer because it contains junk data from */
+/*   // the final ADC of the previous poll list scan. */
+/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
+
+/*   // Convert ADC data to 16-bit integer values and copy to application */
+/*   // buffer.	 */
+/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
+/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
+/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
+/*     data++; */
+/*   } */
+
+/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
+/*   return i; */
+/* } */
+
+static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+	uint16_t chan = CR_CHAN(insn->chanspec);
+	uint16_t range = CR_RANGE(insn->chanspec);
+	uint16_t AdcSpec = 0;
+	uint32_t GpioImage;
+	int n;
+
+/*   //interrupt call test  */
+/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */
+/* 					     //into any of the RPS_PSR */
+/* 					     //bits causes the */
+/* 					     //corresponding interrupt */
+/* 					     //to be generated if */
+/* 					     //enabled */
+
+	DEBUG("s626_ai_insn_read: entering\n");
+
+	// Convert application's ADC specification into form
+	// appropriate for register programming.
+	if (range == 0)
+		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
+	else
+		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
+
+	// Switch ADC analog gain.
+	DEBIwrite(dev, LP_GSEL, AdcSpec);	// Set gain.
+
+	// Select ADC analog input channel.
+	DEBIwrite(dev, LP_ISEL, AdcSpec);	// Select channel.
+
+	for (n = 0; n < insn->n; n++) {
+
+		// Delay 10 microseconds for analog input settling.
+		comedi_udelay(10);
+
+		// Start ADC by pulsing GPIO1 low.
+		GpioImage = RR7146(P_GPIO);
+		// Assert ADC Start command
+		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+		//   and stretch it out.
+		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+		// Negate ADC Start command.
+		WR7146(P_GPIO, GpioImage | GPIO1_HI);
+
+		// Wait for ADC to complete (GPIO2 is asserted high when
+		// ADC not busy) and for data from previous conversion to
+		// shift into FB BUFFER 1 register.
+
+		// Wait for ADC done.
+		while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
+
+		// Fetch ADC data.
+		if (n != 0)
+			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
+
+		// Allow the ADC to stabilize for 4 microseconds before
+		// starting the next (final) conversion.  This delay is
+		// necessary to allow sufficient time between last
+		// conversion finished and the start of the next
+		// conversion.  Without this delay, the last conversion's
+		// data value is sometimes set to the previous
+		// conversion's data value.
+		comedi_udelay(4);
+	}
+
+	// Start a dummy conversion to cause the data from the
+	// previous conversion to be shifted in.
+	GpioImage = RR7146(P_GPIO);
+
+	//Assert ADC Start command
+	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+	//   and stretch it out.
+	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
+	// Negate ADC Start command.
+	WR7146(P_GPIO, GpioImage | GPIO1_HI);
+
+	// Wait for the data to arrive in FB BUFFER 1 register.
+
+	// Wait for ADC done.
+	while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
+
+	// Fetch ADC data from audio interface's input shift
+	// register.
+
+	// Fetch ADC data.
+	if (n != 0)
+		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
+
+	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
+
+	return n;
+}
+
+static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd)
+{
+
+	int n;
+
+	for (n = 0; n < cmd->chanlist_len; n++) {
+		if (CR_RANGE((cmd->chanlist)[n]) == 0)
+			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
+		else
+			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
+	}
+	ppl[n - 1] |= EOPL;
+
+	return n;
+}
+
+static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
+	unsigned int trignum)
+{
+	if (trignum != 0)
+		return -EINVAL;
+
+	DEBUG("s626_ai_inttrig: trigger adc start...");
+
+	// Start executing the RPS program.
+	MC_ENABLE(P_MC1, MC1_ERPS1);
+
+	s->async->inttrig = NULL;
+
+	DEBUG(" done\n");
+
+	return 1;
+}
+
+/*  TO COMPLETE  */
+static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
+{
+
+	uint8_t ppl[16];
+	comedi_cmd *cmd = &s->async->cmd;
+	enc_private *k;
+	int tick;
+
+	DEBUG("s626_ai_cmd: entering command function\n");
+
+	if (devpriv->ai_cmd_running) {
+		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
+			dev->minor);
+		return -EBUSY;
+	}
+	//disable interrupt
+	writel(0, devpriv->base_addr + P_IER);
+
+	//clear interrupt request
+	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
+
+	//clear any pending interrupt
+	s626_dio_clear_irq(dev);
+	//  s626_enc_clear_irq(dev);
+
+	//reset ai_cmd_running flag
+	devpriv->ai_cmd_running = 0;
+
+	// test if cmd is valid
+	if (cmd == NULL) {
+		DEBUG("s626_ai_cmd: NULL command\n");
+		return -EINVAL;
+	} else {
+		DEBUG("s626_ai_cmd: command recieved!!!\n");
+	}
+
+	if (dev->irq == 0) {
+		comedi_error(dev,
+			"s626_ai_cmd: cannot run command without an irq");
+		return -EIO;
+	}
+
+	s626_ai_load_polllist(ppl, cmd);
+	devpriv->ai_cmd_running = 1;
+	devpriv->ai_convert_count = 0;
+
+	switch (cmd->scan_begin_src) {
+	case TRIG_FOLLOW:
+		break;
+	case TRIG_TIMER:
+		// set a conter to generate adc trigger at scan_begin_arg interval
+		k = &encpriv[5];
+		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
+			cmd->flags & TRIG_ROUND_MASK);
+
+		//load timer value and enable interrupt
+		s626_timer_load(dev, k, tick);
+		k->SetEnable(dev, k, CLKENAB_ALWAYS);
+
+		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
+			tick);
+
+		break;
+	case TRIG_EXT:
+		// set the digital line and interrupt for scan trigger
+		if (cmd->start_src != TRIG_EXT)
+			s626_dio_set_irq(dev, cmd->scan_begin_arg);
+
+		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
+
+		break;
+	}
+
+	switch (cmd->convert_src) {
+	case TRIG_NOW:
+		break;
+	case TRIG_TIMER:
+		// set a conter to generate adc trigger at convert_arg interval
+		k = &encpriv[4];
+		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
+			cmd->flags & TRIG_ROUND_MASK);
+
+		//load timer value and enable interrupt
+		s626_timer_load(dev, k, tick);
+		k->SetEnable(dev, k, CLKENAB_INDEX);
+
+		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
+		break;
+	case TRIG_EXT:
+		// set the digital line and interrupt for convert trigger
+		if (cmd->scan_begin_src != TRIG_EXT
+			&& cmd->start_src == TRIG_EXT)
+			s626_dio_set_irq(dev, cmd->convert_arg);
+
+		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
+
+		break;
+	}
+
+	switch (cmd->stop_src) {
+	case TRIG_COUNT:
+		// data arrives as one packet
+		devpriv->ai_sample_count = cmd->stop_arg;
+		devpriv->ai_continous = 0;
+		break;
+	case TRIG_NONE:
+		// continous aquisition
+		devpriv->ai_continous = 1;
+		devpriv->ai_sample_count = 0;
+		break;
+	}
+
+	ResetADC(dev, ppl);
+
+	switch (cmd->start_src) {
+	case TRIG_NOW:
+		// Trigger ADC scan loop start by setting RPS Signal 0.
+		// MC_ENABLE( P_MC2, MC2_ADC_RPS );
+
+		// Start executing the RPS program.
+		MC_ENABLE(P_MC1, MC1_ERPS1);
+
+		DEBUG("s626_ai_cmd: ADC triggered\n");
+		s->async->inttrig = NULL;
+		break;
+	case TRIG_EXT:
+		//configure DIO channel for acquisition trigger
+		s626_dio_set_irq(dev, cmd->start_arg);
+
+		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
+
+		s->async->inttrig = NULL;
+		break;
+	case TRIG_INT:
+		s->async->inttrig = s626_ai_inttrig;
+		break;
+	}
+
+	//enable interrupt
+	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
+
+	DEBUG("s626_ai_cmd: command function terminated\n");
+
+	return 0;
+}
+
+static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
+	comedi_cmd * cmd)
+{
+	int err = 0;
+	int tmp;
+
+	/* cmdtest tests a particular command to see if it is valid.  Using
+	 * the cmdtest ioctl, a user can create a valid cmd and then have it
+	 * executes by the cmd ioctl.
+	 *
+	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
+	 * command passes. */
+
+	/* step 1: make sure trigger sources are trivially valid */
+
+	tmp = cmd->start_src;
+	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
+	if (!cmd->start_src || tmp != cmd->start_src)
+		err++;
+
+	tmp = cmd->scan_begin_src;
+	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
+	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
+		err++;
+
+	tmp = cmd->convert_src;
+	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
+	if (!cmd->convert_src || tmp != cmd->convert_src)
+		err++;
+
+	tmp = cmd->scan_end_src;
+	cmd->scan_end_src &= TRIG_COUNT;
+	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
+		err++;
+
+	tmp = cmd->stop_src;
+	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
+	if (!cmd->stop_src || tmp != cmd->stop_src)
+		err++;
+
+	if (err)
+		return 1;
+
+	/* step 2: make sure trigger sources are unique and mutually
+	   compatible */
+
+	/* note that mutual compatiblity is not an issue here */
+	if (cmd->scan_begin_src != TRIG_TIMER &&
+		cmd->scan_begin_src != TRIG_EXT
+		&& cmd->scan_begin_src != TRIG_FOLLOW)
+		err++;
+	if (cmd->convert_src != TRIG_TIMER &&
+		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
+		err++;
+	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
+		err++;
+
+	if (err)
+		return 2;
+
+	/* step 3: make sure arguments are trivially compatible */
+
+	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
+		cmd->start_arg = 0;
+		err++;
+	}
+
+	if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
+		cmd->start_arg = 0;
+		err++;
+	}
+
+	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
+		cmd->start_arg = 39;
+		err++;
+	}
+
+	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
+		cmd->scan_begin_arg = 0;
+		err++;
+	}
+
+	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
+		cmd->scan_begin_arg = 39;
+		err++;
+	}
+
+	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
+		cmd->convert_arg = 0;
+		err++;
+	}
+
+	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
+		cmd->convert_arg = 39;
+		err++;
+	}
+#define MAX_SPEED	200000	/* in nanoseconds */
+#define MIN_SPEED	2000000000	/* in nanoseconds */
+
+	if (cmd->scan_begin_src == TRIG_TIMER) {
+		if (cmd->scan_begin_arg < MAX_SPEED) {
+			cmd->scan_begin_arg = MAX_SPEED;
+			err++;
+		}
+		if (cmd->scan_begin_arg > MIN_SPEED) {
+			cmd->scan_begin_arg = MIN_SPEED;
+			err++;
+		}
+	} else {
+		/* external trigger */
+		/* should be level/edge, hi/lo specification here */
+		/* should specify multiple external triggers */
+/*     if(cmd->scan_begin_arg>9){ */
+/*       cmd->scan_begin_arg=9; */
+/*       err++; */
+/*     } */
+	}
+	if (cmd->convert_src == TRIG_TIMER) {
+		if (cmd->convert_arg < MAX_SPEED) {
+			cmd->convert_arg = MAX_SPEED;
+			err++;
+		}
+		if (cmd->convert_arg > MIN_SPEED) {
+			cmd->convert_arg = MIN_SPEED;
+			err++;
+		}
+	} else {
+		/* external trigger */
+		/* see above */
+/*     if(cmd->convert_arg>9){ */
+/*       cmd->convert_arg=9; */
+/*       err++; */
+/*     } */
+	}
+
+	if (cmd->scan_end_arg != cmd->chanlist_len) {
+		cmd->scan_end_arg = cmd->chanlist_len;
+		err++;
+	}
+	if (cmd->stop_src == TRIG_COUNT) {
+		if (cmd->stop_arg > 0x00ffffff) {
+			cmd->stop_arg = 0x00ffffff;
+			err++;
+		}
+	} else {
+		/* TRIG_NONE */
+		if (cmd->stop_arg != 0) {
+			cmd->stop_arg = 0;
+			err++;
+		}
+	}
+
+	if (err)
+		return 3;
+
+	/* step 4: fix up any arguments */
+
+	if (cmd->scan_begin_src == TRIG_TIMER) {
+		tmp = cmd->scan_begin_arg;
+		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
+			cmd->flags & TRIG_ROUND_MASK);
+		if (tmp != cmd->scan_begin_arg)
+			err++;
+	}
+	if (cmd->convert_src == TRIG_TIMER) {
+		tmp = cmd->convert_arg;
+		s626_ns_to_timer((int *)&cmd->convert_arg,
+			cmd->flags & TRIG_ROUND_MASK);
+		if (tmp != cmd->convert_arg)
+			err++;
+		if (cmd->scan_begin_src == TRIG_TIMER &&
+			cmd->scan_begin_arg <
+			cmd->convert_arg * cmd->scan_end_arg) {
+			cmd->scan_begin_arg =
+				cmd->convert_arg * cmd->scan_end_arg;
+			err++;
+		}
+	}
+
+	if (err)
+		return 4;
+
+	return 0;
+}
+
+static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s)
+{
+	// Stop RPS program in case it is currently running.
+	MC_DISABLE(P_MC1, MC1_ERPS1);
+
+	//disable master interrupt
+	writel(0, devpriv->base_addr + P_IER);
+
+	devpriv->ai_cmd_running = 0;
+
+	return 0;
+}
+
+/* This function doesn't require a particular form, this is just what
+ * happens to be used in some of the drivers.  It should convert ns
+ * nanoseconds to a counter value suitable for programming the device.
+ * Also, it should adjust ns so that it cooresponds to the actual time
+ * that the device will use. */
+static int s626_ns_to_timer(int *nanosec, int round_mode)
+{
+	int divider, base;
+
+	base = 500;		//2MHz internal clock
+
+	switch (round_mode) {
+	case TRIG_ROUND_NEAREST:
+	default:
+		divider = (*nanosec + base / 2) / base;
+		break;
+	case TRIG_ROUND_DOWN:
+		divider = (*nanosec) / base;
+		break;
+	case TRIG_ROUND_UP:
+		divider = (*nanosec + base - 1) / base;
+		break;
+	}
+
+	*nanosec = base * divider;
+	return divider - 1;
+}
+
+static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+
+	int i;
+	uint16_t chan = CR_CHAN(insn->chanspec);
+	int16_t dacdata;
+
+	for (i = 0; i < insn->n; i++) {
+		dacdata = (int16_t) data[i];
+		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
+		dacdata -= (0x1fff);
+
+		SetDAC(dev, chan, dacdata);
+	}
+
+	return i;
+}
+
+static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+	int i;
+
+	for (i = 0; i < insn->n; i++) {
+		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
+	}
+
+	return i;
+}
+
+/////////////////////////////////////////////////////////////////////
+///////////////  DIGITAL I/O FUNCTIONS  /////////////////////////////
+/////////////////////////////////////////////////////////////////////
+// All DIO functions address a group of DIO channels by means of
+// "group" argument.  group may be 0, 1 or 2, which correspond to DIO
+// ports A, B and C, respectively.
+/////////////////////////////////////////////////////////////////////
+
+static void s626_dio_init(comedi_device * dev)
+{
+	uint16_t group;
+	comedi_subdevice *s;
+
+	// Prepare to treat writes to WRCapSel as capture disables.
+	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
+
+	// For each group of sixteen channels ...
+	for (group = 0; group < S626_DIO_BANKS; group++) {
+		s = dev->subdevices + 2 + group;
+		DEBIwrite(dev, diopriv->WRIntSel, 0);	// Disable all interrupts.
+		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	// Disable all event
+		// captures.
+		DEBIwrite(dev, diopriv->WREdgSel, 0);	// Init all DIOs to
+		// default edge
+		// polarity.
+		DEBIwrite(dev, diopriv->WRDOut, 0);	// Program all outputs
+		// to inactive state.
+	}
+	DEBUG("s626_dio_init: DIO initialized \n");
+}
+
+/* DIO devices are slightly special.  Although it is possible to
+ * implement the insn_read/insn_write interface, it is much more
+ * useful to applications if you implement the insn_bits interface.
+ * This allows packed reading/writing of the DIO channels.  The comedi
+ * core can convert between insn_bits and insn_read/write */
+
+static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+
+	/* Length of data must be 2 (mask and new data, see below) */
+	if (insn->n == 0) {
+		return 0;
+	}
+	if (insn->n != 2) {
+		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
+		return -EINVAL;
+	}
+
+	/*
+	 * The insn data consists of a mask in data[0] and the new data in
+	 * data[1]. The mask defines which bits we are concerning about.
+	 * The new data must be anded with the mask.  Each channel
+	 * corresponds to a bit.
+	 */
+	if (data[0]) {
+		/* Check if requested ports are configured for output */
+		if ((s->io_bits & data[0]) != data[0])
+			return -EIO;
+
+		s->state &= ~data[0];
+		s->state |= data[0] & data[1];
+
+		/* Write out the new digital output lines */
+
+		DEBIwrite(dev, diopriv->WRDOut, s->state);
+	}
+	data[1] = DEBIread(dev, diopriv->RDDIn);
+
+	return 2;
+}
+
+static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+
+	switch (data[0]) {
+	case INSN_CONFIG_DIO_QUERY:
+		data[1] =
+			(s->io_bits & (1 << CR_CHAN(insn->
+					chanspec))) ? COMEDI_OUTPUT :
+			COMEDI_INPUT;
+		return insn->n;
+		break;
+	case COMEDI_INPUT:
+		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
+		break;
+	case COMEDI_OUTPUT:
+		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
+		break;
+	default:
+		return -EINVAL;
+		break;
+	}
+	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
+
+	return 1;
+}
+
+static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
+{
+	unsigned int group;
+	unsigned int bitmask;
+	unsigned int status;
+
+	//select dio bank
+	group = chan / 16;
+	bitmask = 1 << (chan - (16 * group));
+	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
+		chan - (16 * group), group);
+
+	//set channel to capture positive edge
+	status = DEBIread(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->RDEdgSel);
+	DEBIwrite(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->WREdgSel, bitmask | status);
+
+	//enable interrupt on selected channel
+	status = DEBIread(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->RDIntSel);
+	DEBIwrite(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->WRIntSel, bitmask | status);
+
+	//enable edge capture write command
+	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
+
+	//enable edge capture on selected channel
+	status = DEBIread(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->RDCapSel);
+	DEBIwrite(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->WRCapSel, bitmask | status);
+
+	return 0;
+}
+
+static int s626_dio_reset_irq(comedi_device * dev, unsigned int group,
+	unsigned int mask)
+{
+	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);
+
+	//disable edge capture write command
+	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
+
+	//enable edge capture on selected channel
+	DEBIwrite(dev,
+		((dio_private *) (dev->subdevices + 2 +
+				group)->private)->WRCapSel, mask);
+
+	return 0;
+}
+
+static int s626_dio_clear_irq(comedi_device * dev)
+{
+	unsigned int group;
+
+	//disable edge capture write command
+	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
+
+	for (group = 0; group < S626_DIO_BANKS; group++) {
+		//clear pending events and interrupt
+		DEBIwrite(dev,
+			((dio_private *) (dev->subdevices + 2 +
+					group)->private)->WRCapSel, 0xffff);
+	}
+
+	return 0;
+}
+
+/* Now this function initializes the value of the counter (data[0])
+   and set the subdevice. To complete with trigger and interrupt
+   configuration */
+static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	// Preload upon
+		// index.
+		(INDXSRC_SOFT << BF_INDXSRC) |	// Disable hardware index.
+		(CLKSRC_COUNTER << BF_CLKSRC) |	// Operating mode is Counter.
+		(CLKPOL_POS << BF_CLKPOL) |	// Active high clock.
+		//( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down.
+		(CLKMULT_1X << BF_CLKMULT) |	// Clock multiplier is 1x.
+		(CLKENAB_INDEX << BF_CLKENAB);
+	/*   uint16_t DisableIntSrc=TRUE; */
+	// uint32_t Preloadvalue;              //Counter initial value
+	uint16_t valueSrclatch = LATCHSRC_AB_READ;
+	uint16_t enab = CLKENAB_ALWAYS;
+	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
+
+	DEBUG("s626_enc_insn_config: encoder config\n");
+
+	//  (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]);
+
+	k->SetMode(dev, k, Setup, TRUE);
+	Preload(dev, k, *(insn->data));
+	k->PulseIndex(dev, k);
+	SetLatchSource(dev, k, valueSrclatch);
+	k->SetEnable(dev, k, (uint16_t) (enab != 0));
+
+	return insn->n;
+}
+
+static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+
+	int n;
+	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
+
+	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
+		CR_CHAN(insn->chanspec));
+
+	for (n = 0; n < insn->n; n++)
+		data[n] = ReadLatch(dev, k);
+
+	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
+
+	return n;
+}
+
+static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
+	comedi_insn * insn, lsampl_t * data)
+{
+
+	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
+
+	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
+		CR_CHAN(insn->chanspec));
+
+	// Set the preload register
+	Preload(dev, k, data[0]);
+
+	// Software index pulse forces the preload register to load
+	// into the counter
+	k->SetLoadTrig(dev, k, 0);
+	k->PulseIndex(dev, k);
+	k->SetLoadTrig(dev, k, 2);
+
+	DEBUG("s626_enc_insn_write: End encoder write\n");
+
+	return 1;
+}
+
+static void s626_timer_load(comedi_device * dev, enc_private * k, int tick)
+{
+	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	// Preload upon
+		// index.
+		(INDXSRC_SOFT << BF_INDXSRC) |	// Disable hardware index.
+		(CLKSRC_TIMER << BF_CLKSRC) |	// Operating mode is Timer.
+		(CLKPOL_POS << BF_CLKPOL) |	// Active high clock.
+		(CNTDIR_DOWN << BF_CLKPOL) |	// Count direction is Down.
+		(CLKMULT_1X << BF_CLKMULT) |	// Clock multiplier is 1x.
+		(CLKENAB_INDEX << BF_CLKENAB);
+	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
+	//  uint16_t enab=CLKENAB_ALWAYS;
+
+	k->SetMode(dev, k, Setup, FALSE);
+
+	// Set the preload register
+	Preload(dev, k, tick);
+
+	// Software index pulse forces the preload register to load
+	// into the counter
+	k->SetLoadTrig(dev, k, 0);
+	k->PulseIndex(dev, k);
+
+	//set reload on counter overflow
+	k->SetLoadTrig(dev, k, 1);
+
+	//set interrupt on overflow
+	k->SetIntSrc(dev, k, INTSRC_OVER);
+
+	SetLatchSource(dev, k, valueSrclatch);
+	//  k->SetEnable(dev,k,(uint16_t)(enab != 0));
+}
+
+///////////////////////////////////////////////////////////////////////
+/////////////////////  DAC FUNCTIONS /////////////////////////////////
+///////////////////////////////////////////////////////////////////////
+
+// Slot 0 base settings.
+#define VECT0	( XSD2 | RSD3 | SIB_A2 )	// Slot 0 always shifts in
+					 // 0xFF and store it to
+					 // FB_BUFFER2.
+
+// TrimDac LogicalChan-to-PhysicalChan mapping table.
+static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
+
+// TrimDac LogicalChan-to-EepromAdrs mapping table.
+static uint8_t trimadrs[] =
+	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
+
+static void LoadTrimDACs(comedi_device * dev)
+{
+	register uint8_t i;
+
+	// Copy TrimDac setpoint values from EEPROM to TrimDacs.
+	for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
+		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
+}
+
+static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
+	uint8_t DacData)
+{
+	uint32_t chan;
+
+	// Save the new setpoint in case the application needs to read it back later.
+	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
+
+	// Map logical channel number to physical channel number.
+	chan = (uint32_t) trimchan[LogicalChan];
+
+	// Set up TSL2 records for TrimDac write operation.  All slots shift
+	// 0xFF in from pulled-up SD3 so that the end of the slot sequence
+	// can be detected.
+	SETVECT(2, XSD2 | XFIFO_1 | WS3);	// Slot 2: Send high uint8_t
+	// to target TrimDac.
+	SETVECT(3, XSD2 | XFIFO_0 | WS3);	// Slot 3: Send low uint8_t to
+	// target TrimDac.
+	SETVECT(4, XSD2 | XFIFO_3 | WS1);	// Slot 4: Send NOP high
+	// uint8_t to DAC0 to keep
+	// clock running.
+	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);	// Slot 5: Send NOP low
+	// uint8_t to DAC0.
+
+	// Construct and transmit target DAC's serial packet: ( 0000 AAAA
+	// ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC
+	// channel's address, and D<7:0> is the DAC setpoint.  Append a WORD
+	// value (that writes a channel 0 NOP command to a non-existent main
+	// DAC channel) that serves to keep the clock running after the
+	// packet has been sent to the target DAC.
+
+	SendDAC(dev, ((uint32_t) chan << 8)	// Address the DAC channel
+		// within the trimdac device.
+		| (uint32_t) DacData);	// Include DAC setpoint data.
+}
+
+/////////////////////////////////////////////////////////////////////////
+////////////////  EEPROM ACCESS FUNCTIONS  //////////////////////////////
+/////////////////////////////////////////////////////////////////////////
+
+///////////////////////////////////////////
+// Read uint8_t from EEPROM.
+
+static uint8_t I2Cread(comedi_device * dev, uint8_t addr)
+{
+	uint8_t rtnval;
+
+	// Send EEPROM target address.
+	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)	// Byte2 = I2C
+			// command:
+			// write to
+			// I2C EEPROM
+			// device.
+			| I2C_B1(I2C_ATTRSTOP, addr)	// Byte1 = EEPROM
+			// internal target
+			// address.
+			| I2C_B0(I2C_ATTRNOP, 0)))	// Byte0 = Not
+		// sent.
+	{
+		// Abort function and declare error if handshake failed.
+		DEBUG("I2Cread: error handshake I2Cread  a\n");
+		return 0;
+	}
+	// Execute EEPROM read.
+	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	// Byte2 = I2C
+			// command: read
+			// from I2C EEPROM
+			// device.
+			| I2C_B1(I2C_ATTRSTOP, 0)	// Byte1 receives
+			// uint8_t from
+			// EEPROM.
+			| I2C_B0(I2C_ATTRNOP, 0)))	// Byte0 = Not
+		// sent.
+	{
+		// Abort function and declare error if handshake failed.
+		DEBUG("I2Cread: error handshake I2Cread b\n");
+		return 0;
+	}
+	// Return copy of EEPROM value.
+	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
+	return rtnval;
+}
+
+static uint32_t I2Chandshake(comedi_device * dev, uint32_t val)
+{
+	// Write I2C command to I2C Transfer Control shadow register.
+	WR7146(P_I2CCTRL, val);
+
+	// Upload I2C shadow registers into working registers and wait for
+	// upload confirmation.
+
+	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
+	while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
+
+	// Wait until I2C bus transfer is finished or an error occurs.
+	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
+
+	// Return non-zero if I2C error occured.
+	return RR7146(P_I2CCTRL) & I2C_ERR;
+
+}
+
+// Private helper function: Write setpoint to an application DAC channel.
+
+static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
+{
+	register uint16_t signmask;
+	register uint32_t WSImage;
+
+	// Adjust DAC data polarity and set up Polarity Control Register
+	// image.
+	signmask = 1 << chan;
+	if (dacdata < 0) {
+		dacdata = -dacdata;
+		devpriv->Dacpol |= signmask;
+	} else
+		devpriv->Dacpol &= ~signmask;
+
+	// Limit DAC setpoint value to valid range.
+	if ((uint16_t) dacdata > 0x1FFF)
+		dacdata = 0x1FFF;
+
+	// Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
+	// and V3 transmit the setpoint to the target DAC.  V4 and V5 send
+	// data to a non-existent TrimDac channel just to keep the clock
+	// running after sending data to the target DAC.  This is necessary
+	// to eliminate the clock glitch that would otherwise occur at the
+	// end of the target DAC's serial data stream.  When the sequence
+	// restarts at V0 (after executing V5), the gate array automatically
+	// disables gating for the DAC clock and all DAC chip selects.
+	WSImage = (chan & 2) ? WS1 : WS2;	// Choose DAC chip select to
+	// be asserted.
+	SETVECT(2, XSD2 | XFIFO_1 | WSImage);	// Slot 2: Transmit high
+	// data byte to target DAC.
+	SETVECT(3, XSD2 | XFIFO_0 | WSImage);	// Slot 3: Transmit low data
+	// byte to target DAC.
+	SETVECT(4, XSD2 | XFIFO_3 | WS3);	// Slot 4: Transmit to
+	// non-existent TrimDac
+	// channel to keep clock
+	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);	// Slot 5: running after
+	// writing target DAC's
+	// low data byte.
+
+	// Construct and transmit target DAC's serial packet: ( A10D DDDD
+	// ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0>
+	// is the DAC setpoint.  Append a WORD value (that writes to a
+	// non-existent TrimDac channel) that serves to keep the clock
+	// running after the packet has been sent to the target DAC.
+	SendDAC(dev, 0x0F000000	//Continue clock after target DAC
+		//data (write to non-existent
+		//trimdac).
+		| 0x00004000	// Address the two main dual-DAC
+		// devices (TSL's chip select enables
+		// target device).
+		| ((uint32_t) (chan & 1) << 15)	// Address the DAC
+		// channel within the
+		// device.
+		| (uint32_t) dacdata);	// Include DAC setpoint data.
+
+}
+
+////////////////////////////////////////////////////////
+// Private helper function: Transmit serial data to DAC via Audio
+// channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
+// Dacpol contains valid target image.
+
+static void SendDAC(comedi_device * dev, uint32_t val)
+{
+
+	// START THE SERIAL CLOCK RUNNING -------------
+
+	// Assert DAC polarity control and enable gating of DAC serial clock
+	// and audio bit stream signals.  At this point in time we must be
+	// assured of being in time slot 0.  If we are not in slot 0, the
+	// serial clock and audio stream signals will be disabled; this is
+	// because the following DEBIwrite statement (which enables signals
+	// to be passed through the gate array) would execute before the
+	// trailing edge of WS1/WS3 (which turns off the signals), thus
+	// causing the signals to be inactive during the DAC write.
+	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
+
+	// TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ----------------
+
+	// Copy DAC setpoint value to DAC's output DMA buffer.
+
+	//WR7146( (uint32_t)devpriv->pDacWBuf, val );
+	*devpriv->pDacWBuf = val;
+
+	// enab the output DMA transfer.  This will cause the DMAC to copy
+	// the DAC's data value to A2's output FIFO.  The DMA transfer will
+	// then immediately terminate because the protection address is
+	// reached upon transfer of the first DWORD value.
+	MC_ENABLE(P_MC1, MC1_A2OUT);
+
+	// While the DMA transfer is executing ...
+
+	// Reset Audio2 output FIFO's underflow flag (along with any other
+	// FIFO underflow/overflow flags).  When set, this flag will
+	// indicate that we have emerged from slot 0.
+	WR7146(P_ISR, ISR_AFOU);
+
+	// Wait for the DMA transfer to finish so that there will be data
+	// available in the FIFO when time slot 1 tries to transfer a DWORD
+	// from the FIFO to the output buffer register.  We test for DMA
+	// Done by polling the DMAC enable flag; this flag is automatically
+	// cleared when the transfer has finished.
+	while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
+
+	// START THE OUTPUT STREAM TO THE TARGET DAC --------------------
+
+	// FIFO data is now available, so we enable execution of time slots
+	// 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
+	// will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
+	// detection.
+	SETVECT(0, XSD2 | RSD3 | SIB_A2);
+
+	// Wait for slot 1 to execute to ensure that the Packet will be
+	// transmitted.  This is detected by polling the Audio2 output FIFO
+	// underflow flag, which will be set when slot 1 execution has
+	// finished transferring the DAC's data DWORD from the output FIFO
+	// to the output buffer register.
+	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
+
+	// Set up to trap execution at slot 0 when the TSL sequencer cycles
+	// back to slot 0 after executing the EOS in slot 5.  Also,
+	// simultaneously shift out and in the 0x00 that is ALWAYS the value
+	// stored in the last byte to be shifted out of the FIFO's DWORD
+	// buffer register.
+	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
+
+	// WAIT FOR THE TRANSACTION TO FINISH -----------------------
+
+	// Wait for the TSL to finish executing all time slots before
+	// exiting this function.  We must do this so that the next DAC
+	// write doesn't start, thereby enabling clock/chip select signals:
+	// 1. Before the TSL sequence cycles back to slot 0, which disables
+	// the clock/cs signal gating and traps slot // list execution.  If
+	// we have not yet finished slot 5 then the clock/cs signals are
+	// still gated and we have // not finished transmitting the stream.
+	// 2. While slots 2-5 are executing due to a late slot 0 trap.  In
+	// this case, the slot sequence is currently // repeating, but with
+	// clock/cs signals disabled.  We must wait for slot 0 to trap
+	// execution before setting // up the next DAC setpoint DMA transfer
+	// and enabling the clock/cs signals.  To detect the end of slot 5,
+	// we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
+	// the TSL has not yet finished executing slot 5 ...
+	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
+		// The trap was set on time and we are still executing somewhere
+		// in slots 2-5, so we now wait for slot 0 to execute and trap
+		// TSL execution.  This is detected when FB_BUFFER2 MSB changes
+		// from 0xFF to 0x00, which slot 0 causes to happen by shifting
+		// out/in on SD2 the 0x00 that is always referenced by slot 5.
+		while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
+	}
+	// Either (1) we were too late setting the slot 0 trap; the TSL
+	// sequencer restarted slot 0 before we could set the EOS trap flag,
+	// or (2) we were not late and execution is now trapped at slot 0.
+	// In either case, we must now change slot 0 so that it will store
+	// value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
+	// In order to do this, we reprogram slot 0 so that it will shift in
+	// SD3, which is driven only by a pull-up resistor.
+	SETVECT(0, RSD3 | SIB_A2 | EOS);
+
+	// Wait for slot 0 to execute, at which time the TSL is setup for
+	// the next DAC write.  This is detected when FB_BUFFER2 MSB changes
+	// from 0x00 to 0xFF.
+	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
+}
+
+static void WriteMISC2(comedi_device * dev, uint16_t NewImage)
+{
+	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	// enab writes to
+	// MISC2 register.
+	DEBIwrite(dev, LP_WRMISC2, NewImage);	// Write new image to MISC2.
+	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	// Disable writes to MISC2.
+}
+
+/////////////////////////////////////////////////////////////////////
+// Initialize the DEBI interface for all transfers.
+
+static uint16_t DEBIread(comedi_device * dev, uint16_t addr)
+{
+	uint16_t retval;
+
+	// Set up DEBI control register value in shadow RAM.
+	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
+
+	// Execute the DEBI transfer.
+	DEBItransfer(dev);
+
+	// Fetch target register value.
+	retval = (uint16_t) RR7146(P_DEBIAD);
+
+	// Return register value.
+	return retval;
+}
+
+// Execute a DEBI transfer.  This must be called from within a
+// critical section.
+static void DEBItransfer(comedi_device * dev)
+{
+	// Initiate upload of shadow RAM to DEBI control register.
+	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
+
+	// Wait for completion of upload from shadow RAM to DEBI control
+	// register.
+	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
+
+	// Wait until DEBI transfer is done.
+	while (RR7146(P_PSR) & PSR_DEBI_S) ;
+}
+
+// Write a value to a gate array register.
+static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata)
+{
+
+	// Set up DEBI control register value in shadow RAM.
+	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
+	WR7146(P_DEBIAD, wdata);
+
+	// Execute the DEBI transfer.
+	DEBItransfer(dev);
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// Replace the specified bits in a gate array register.  Imports: mask
+// specifies bits that are to be preserved, wdata is new value to be
+// or'd with the masked original.
+static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
+	uint16_t wdata)
+{
+
+	// Copy target gate array register into P_DEBIAD register.
+	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);	// Set up DEBI control
+	// reg value in shadow
+	// RAM.
+	DEBItransfer(dev);	// Execute the DEBI
+	// Read transfer.
+
+	// Write back the modified image.
+	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);	// Set up DEBI control
+	// reg value in shadow
+	// RAM.
+
+	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));	// Modify the register image.
+	DEBItransfer(dev);	// Execute the DEBI Write transfer.
+}
+
+static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
+{
+	void *vbptr;
+	dma_addr_t vpptr;
+
+	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
+	if (pdma == NULL)
+		return;
+	//find the matching allocation from the board struct
+
+	vbptr = pdma->LogicalBase;
+	vpptr = pdma->PhysicalBase;
+	if (vbptr) {
+		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
+		pdma->LogicalBase = 0;
+		pdma->PhysicalBase = 0;
+
+		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
+			vbptr, bsize, (uint32_t) vpptr);
+	}
+}
+
+////////////////////////////////////////////////////////////////////////
+/////////////////  COUNTER FUNCTIONS  //////////////////////////////////
+////////////////////////////////////////////////////////////////////////
+// All counter functions address a specific counter by means of the
+// "Counter" argument, which is a logical counter number.  The Counter
+// argument may have any of the following legal values: 0=0A, 1=1A,
+// 2=2A, 3=0B, 4=1B, 5=2B.
+////////////////////////////////////////////////////////////////////////
+
+// Forward declarations for functions that are common to both A and B
+// counters:
+
+/////////////////////////////////////////////////////////////////////
+//////////////////// PRIVATE COUNTER FUNCTIONS  /////////////////////
+/////////////////////////////////////////////////////////////////////
+
+/////////////////////////////////////////////////////////////////
+// Read a counter's output latch.
+
+static uint32_t ReadLatch(comedi_device * dev, enc_private * k)
+{
+	register uint32_t value;
+	//DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n");
+
+	// Latch counts and fetch LSW of latched counts value.
+	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
+
+	// Fetch MSW of latched counts and combine with LSW.
+	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
+
+	// DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n");
+
+	// Return latched counts.
+	return value;
+}
+
+///////////////////////////////////////////////////////////////////
+// Reset a counter's index and overflow event capture flags.
+
+static void ResetCapFlags_A(comedi_device * dev, enc_private * k)
+{
+	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
+		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
+}
+
+static void ResetCapFlags_B(comedi_device * dev, enc_private * k)
+{
+	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
+		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
+}
+
+/////////////////////////////////////////////////////////////////////////
+// Return counter setup in a format (COUNTER_SETUP) that is consistent
+// for both A and B counters.
+
+static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
+{
+	register uint16_t cra;
+	register uint16_t crb;
+	register uint16_t setup;
+
+	// Fetch CRA and CRB register images.
+	cra = DEBIread(dev, k->MyCRA);
+	crb = DEBIread(dev, k->MyCRB);
+
+	// Populate the standardized counter setup bit fields.  Note:
+	// IndexSrc is restricted to ENC_X or IndxPol.
+	setup = ((cra & STDMSK_LOADSRC)	// LoadSrc  = LoadSrcA.
+		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	// LatchSrc = LatchSrcA.
+		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	// IntSrc   = IntSrcA.
+		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	// IndxSrc  = IndxSrcA<1>.
+		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	// IndxPol  = IndxPolA.
+		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	// ClkEnab  = ClkEnabA.
+
+	// Adjust mode-dependent parameters.
+	if (cra & (2 << CRABIT_CLKSRC_A))	// If Timer mode (ClkSrcA<1> == 1):
+		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	//   Indicate Timer mode.
+			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	//   Set ClkPol to indicate count direction (ClkSrcA<0>).
+			| (MULT_X1 << STDBIT_CLKMULT));	//   ClkMult must be 1x in Timer mode.
+
+	else			// If Counter mode (ClkSrcA<1> == 0):
+		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	//   Indicate Counter mode.
+			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	//   Pass through ClkPol.
+			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	//   Force ClkMult to 1x if not legal, else pass through.
+				(MULT_X1 << STDBIT_CLKMULT) :
+				((cra >> (CRABIT_CLKMULT_A -
+							STDBIT_CLKMULT)) &
+					STDMSK_CLKMULT)));
+
+	// Return adjusted counter setup.
+	return setup;
+}
+
+static uint16_t GetMode_B(comedi_device * dev, enc_private * k)
+{
+	register uint16_t cra;
+	register uint16_t crb;
+	register uint16_t setup;
+
+	// Fetch CRA and CRB register images.
+	cra = DEBIread(dev, k->MyCRA);
+	crb = DEBIread(dev, k->MyCRB);
+
+	// Populate the standardized counter setup bit fields.  Note:
+	// IndexSrc is restricted to ENC_X or IndxPol.
+	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	// IntSrc   = IntSrcB.
+		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	// LatchSrc = LatchSrcB.
+		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	// LoadSrc  = LoadSrcB.
+		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	// IndxPol  = IndxPolB.
+		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	// ClkEnab  = ClkEnabB.
+		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	// IndxSrc  = IndxSrcB<1>.
+
+	// Adjust mode-dependent parameters.
+	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	// If Extender mode (ClkMultB == MULT_X0):
+		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	//   Indicate Extender mode.
+			| (MULT_X1 << STDBIT_CLKMULT)	//   Indicate multiplier is 1x.
+			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	//   Set ClkPol equal to Timer count direction (ClkSrcB<0>).
+
+	else if (cra & (2 << CRABIT_CLKSRC_B))	// If Timer mode (ClkSrcB<1> == 1):
+		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	//   Indicate Timer mode.
+			| (MULT_X1 << STDBIT_CLKMULT)	//   Indicate multiplier is 1x.
+			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	//   Set ClkPol equal to Timer count direction (ClkSrcB<0>).
+
+	else			// If Counter mode (ClkSrcB<1> == 0):
+		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	//   Indicate Timer mode.
+			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	//   Clock multiplier is passed through.
+			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	//   Clock polarity is passed through.
+
+	// Return adjusted counter setup.
+	return setup;
+}
+
+/////////////////////////////////////////////////////////////////////////////////////////////
+// Set the operating mode for the specified counter.  The setup
+// parameter is treated as a COUNTER_SETUP data type.  The following
+// parameters are programmable (all other parms are ignored): ClkMult,
+// ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
+
+static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
+	uint16_t DisableIntSrc)
+{
+	register uint16_t cra;
+	register uint16_t crb;
+	register uint16_t setup = Setup;	// Cache the Standard Setup.
+
+	// Initialize CRA and CRB images.
+	cra = ((setup & CRAMSK_LOADSRC_A)	// Preload trigger is passed through.
+		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	// IndexSrc is restricted to ENC_X or IndxPol.
+
+	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	// Reset any pending CounterA event captures.
+		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	// Clock enable is passed through.
+
+	// Force IntSrc to Disabled if DisableIntSrc is asserted.
+	if (!DisableIntSrc)
+		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
+				CRABIT_INTSRC_A));
+
+	// Populate all mode-dependent attributes of CRA & CRB images.
+	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
+	case CLKSRC_EXTENDER:	// Extender Mode: Force to Timer mode
+		// (Extender valid only for B counters).
+
+	case CLKSRC_TIMER:	// Timer Mode:
+		cra |= ((2 << CRABIT_CLKSRC_A)	//   ClkSrcA<1> selects system clock
+			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	//     with count direction (ClkSrcA<0>) obtained from ClkPol.
+			| (1 << CRABIT_CLKPOL_A)	//   ClkPolA behaves as always-on clock enable.
+			| (MULT_X1 << CRABIT_CLKMULT_A));	//   ClkMult must be 1x.
+		break;
+
+	default:		// Counter Mode:
+		cra |= (CLKSRC_COUNTER	//   Select ENC_C and ENC_D as clock/direction inputs.
+			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	//   Clock polarity is passed through.
+			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	//   Force multiplier to x1 if not legal, otherwise pass through.
+				(MULT_X1 << CRABIT_CLKMULT_A) :
+				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
+						STDBIT_CLKMULT))));
+	}
+
+	// Force positive index polarity if IndxSrc is software-driven only,
+	// otherwise pass it through.
+	if (~setup & STDMSK_INDXSRC)
+		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
+				STDBIT_INDXPOL));
+
+	// If IntSrc has been forced to Disabled, update the MISC2 interrupt
+	// enable mask to indicate the counter interrupt is disabled.
+	if (DisableIntSrc)
+		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
+
+	// While retaining CounterB and LatchSrc configurations, program the
+	// new counter operating mode.
+	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
+	DEBIreplace(dev, k->MyCRB,
+		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
+}
+
+static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
+	uint16_t DisableIntSrc)
+{
+	register uint16_t cra;
+	register uint16_t crb;
+	register uint16_t setup = Setup;	// Cache the Standard Setup.
+
+	// Initialize CRA and CRB images.
+	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	// IndexSrc field is restricted to ENC_X or IndxPol.
+
+	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	// Reset event captures and disable interrupts.
+		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	// Clock enable is passed through.
+		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	// Preload trigger source is passed through.
+
+	// Force IntSrc to Disabled if DisableIntSrc is asserted.
+	if (!DisableIntSrc)
+		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
+				CRBBIT_INTSRC_B));
+
+	// Populate all mode-dependent attributes of CRA & CRB images.
+	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
+	case CLKSRC_TIMER:	// Timer Mode:
+		cra |= ((2 << CRABIT_CLKSRC_B)	//   ClkSrcB<1> selects system clock
+			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	//     with direction (ClkSrcB<0>) obtained from ClkPol.
+		crb |= ((1 << CRBBIT_CLKPOL_B)	//   ClkPolB behaves as always-on clock enable.
+			| (MULT_X1 << CRBBIT_CLKMULT_B));	//   ClkMultB must be 1x.
+		break;
+
+	case CLKSRC_EXTENDER:	// Extender Mode:
+		cra |= ((2 << CRABIT_CLKSRC_B)	//   ClkSrcB source is OverflowA (same as "timer")
+			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	//     with direction obtained from ClkPol.
+		crb |= ((1 << CRBBIT_CLKPOL_B)	//   ClkPolB controls IndexB -- always set to active.
+			| (MULT_X0 << CRBBIT_CLKMULT_B));	//   ClkMultB selects OverflowA as the clock source.
+		break;
+
+	default:		// Counter Mode:
+		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	//   Select ENC_C and ENC_D as clock/direction inputs.
+		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	//   ClkPol is passed through.
+			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	//   Force ClkMult to x1 if not legal, otherwise pass through.
+				(MULT_X1 << CRBBIT_CLKMULT_B) :
+				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
+						STDBIT_CLKMULT))));
+	}
+
+	// Force positive index polarity if IndxSrc is software-driven only,
+	// otherwise pass it through.
+	if (~setup & STDMSK_INDXSRC)
+		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
+				CRBBIT_INDXPOL_B));
+
+	// If IntSrc has been forced to Disabled, update the MISC2 interrupt
+	// enable mask to indicate the counter interrupt is disabled.
+	if (DisableIntSrc)
+		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
+
+	// While retaining CounterA and LatchSrc configurations, program the
+	// new counter operating mode.
+	DEBIreplace(dev, k->MyCRA,
+		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
+	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
+}
+
+////////////////////////////////////////////////////////////////////////
+// Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
+
+static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab)
+{
+	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
+	DEBIreplace(dev, k->MyCRB,
+		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
+		(uint16_t) (enab << CRBBIT_CLKENAB_A));
+}
+
+static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab)
+{
+	DEBIreplace(dev, k->MyCRB,
+		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
+		(uint16_t) (enab << CRBBIT_CLKENAB_B));
+}
+
+static uint16_t GetEnable_A(comedi_device * dev, enc_private * k)
+{
+	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
+}
+
+static uint16_t GetEnable_B(comedi_device * dev, enc_private * k)
+{
+	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
+}
+
+////////////////////////////////////////////////////////////////////////
+// Return/set a counter pair's latch trigger source.  0: On read
+// access, 1: A index latches A, 2: B index latches B, 3: A overflow
+// latches B.
+
+static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
+{
+	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
+	DEBIreplace(dev, k->MyCRB,
+		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
+		(uint16_t) (value << CRBBIT_LATCHSRC));
+
+	DEBUG("SetLatchSource: SetLatchSource exit \n");
+}
+
+/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */
+/* { */
+/*   return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */
+/* } */
+
+/////////////////////////////////////////////////////////////////////////
+// Return/set the event that will trigger transfer of the preload
+// register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
+// 2=OverflowA (B counters only), 3=disabled.
+
+static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig)
+{
+	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
+		(uint16_t) (Trig << CRABIT_LOADSRC_A));
+}
+
+static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig)
+{
+	DEBIreplace(dev, k->MyCRB,
+		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
+		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
+}
+
+static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k)
+{
+	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
+}
+
+static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k)
+{
+	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
+}
+
+////////////////////
+// Return/set counter interrupt source and clear any captured
+// index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
+// 2=IndexOnly, 3=IndexAndOverflow.
+
+static void SetIntSrc_A(comedi_device * dev, enc_private * k,
+	uint16_t IntSource)
+{
+	// Reset any pending counter overflow or index captures.
+	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
+		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
+
+	// Program counter interrupt source.
+	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
+		(uint16_t) (IntSource << CRABIT_INTSRC_A));
+
+	// Update MISC2 interrupt enable mask.
+	devpriv->CounterIntEnabs =
+		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
+		MyEventBits[IntSource];
+}
+
+static void SetIntSrc_B(comedi_device * dev, enc_private * k,
+	uint16_t IntSource)
+{
+	uint16_t crb;
+
+	// Cache writeable CRB register image.
+	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
+
+	// Reset any pending counter overflow or index captures.
+	DEBIwrite(dev, k->MyCRB,
+		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
+
+	// Program counter interrupt source.
+	DEBIwrite(dev, k->MyCRB,
+		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
+				CRBBIT_INTSRC_B)));
+
+	// Update MISC2 interrupt enable mask.
+	devpriv->CounterIntEnabs =
+		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
+		MyEventBits[IntSource];
+}
+
+static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k)
+{
+	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
+}
+
+static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
+{
+	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
+}
+
+/////////////////////////////////////////////////////////////////////////
+// Return/set the clock multiplier.
+
+/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value )  */
+/* { */
+/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
+/* } */
+
+/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k )  */
+/* { */
+/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
+/* } */
+
+/* ////////////////////////////////////////////////////////////////////////// */
+/* // Return/set the clock polarity. */
+
+/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value )  */
+/* { */
+/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
+/* } */
+
+/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k )  */
+/* { */
+/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
+/* } */
+
+/* /////////////////////////////////////////////////////////////////////// */
+/* // Return/set the clock source. */
+
+/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value )  */
+/* { */
+/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
+/* } */
+
+/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k )  */
+/* { */
+/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
+/* } */
+
+/* //////////////////////////////////////////////////////////////////////// */
+/* // Return/set the index polarity. */
+
+/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value )  */
+/* { */
+/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
+/* } */
+
+/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k )  */
+/* { */
+/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
+/* } */
+
+/* //////////////////////////////////////////////////////////////////////// */
+/* // Return/set the index source. */
+
+/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value )  */
+/* { */
+/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
+/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
+/* } */
+
+/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k )  */
+/* { */
+/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
+/* } */
+
+///////////////////////////////////////////////////////////////////
+// Generate an index pulse.
+
+static void PulseIndex_A(comedi_device * dev, enc_private * k)
+{
+	register uint16_t cra;
+
+	DEBUG("PulseIndex_A: pulse index enter\n");
+
+	cra = DEBIread(dev, k->MyCRA);	// Pulse index.
+	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
+	DEBUG("PulseIndex_A: pulse index step1\n");
+	DEBIwrite(dev, k->MyCRA, cra);
+}
+
+static void PulseIndex_B(comedi_device * dev, enc_private * k)
+{
+	register uint16_t crb;
+
+	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	// Pulse index.
+	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
+	DEBIwrite(dev, k->MyCRB, crb);
+}
+
+/////////////////////////////////////////////////////////
+// Write value into counter preload register.
+
+static void Preload(comedi_device * dev, enc_private * k, uint32_t value)
+{
+	DEBUG("Preload: preload enter\n");
+	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	// Write value to preload register.
+	DEBUG("Preload: preload step 1\n");
+	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
+		(uint16_t) (value >> 16));
+}
+
+static void CountersInit(comedi_device * dev)
+{
+	int chan;
+	enc_private *k;
+	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	// Preload upon
+		// index.
+		(INDXSRC_SOFT << BF_INDXSRC) |	// Disable hardware index.
+		(CLKSRC_COUNTER << BF_CLKSRC) |	// Operating mode is counter.
+		(CLKPOL_POS << BF_CLKPOL) |	// Active high clock.
+		(CNTDIR_UP << BF_CLKPOL) |	// Count direction is up.
+		(CLKMULT_1X << BF_CLKMULT) |	// Clock multiplier is 1x.
+		(CLKENAB_INDEX << BF_CLKENAB);	// Enabled by index
+
+	// Disable all counter interrupts and clear any captured counter events.
+	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
+		k = &encpriv[chan];
+		k->SetMode(dev, k, Setup, TRUE);
+		k->SetIntSrc(dev, k, 0);
+		k->ResetCapFlags(dev, k);
+		k->SetEnable(dev, k, CLKENAB_ALWAYS);
+	}
+	DEBUG("CountersInit: counters initialized \n");
+
+}

+ 802 - 0
drivers/staging/comedi/drivers/s626.h

@@ -0,0 +1,802 @@
+/*
+  comedi/drivers/s626.h
+  Sensoray s626 Comedi driver, header file
+
+  COMEDI - Linux Control and Measurement Device Interface
+  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
+
+  Based on Sensoray Model 626 Linux driver Version 0.2
+  Copyright (C) 2002-2004 Sensoray Co., Inc.
+
+  This program is free software; you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation; either version 2 of the License, or
+  (at your option) any later version.
+
+  This program is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with this program; if not, write to the Free Software
+  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+*/
+
+/*
+  Driver: s626.o (s626.ko)
+  Description: Sensoray 626 driver
+  Devices: Sensoray s626
+  Authors: Gianluca Palli <gpalli@deis.unibo.it>,
+  Updated: Thu, 12 Jul 2005
+  Status: experimental
+
+  Configuration Options:
+  analog input:
+   none
+
+  analog output:
+   none
+
+  digital channel:
+   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
+   supported configuration options:
+   INSN_CONFIG_DIO_QUERY
+   COMEDI_INPUT
+   COMEDI_OUTPUT
+
+  encoder:
+   Every channel must be configured before reading.
+
+   Example code
+
+   insn.insn=INSN_CONFIG;   //configuration instruction
+   insn.n=1;                //number of operation (must be 1)
+   insn.data=&initialvalue; //initial value loaded into encoder
+                            //during configuration
+   insn.subdev=5;           //encoder subdevice
+   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
+                                                        //to configure
+
+   comedi_do_insn(cf,&insn); //executing configuration
+*/
+
+#ifdef _DEBUG_
+#define DEBUG(...);        rt_printk(__VA_ARGS__);
+#else
+#define DEBUG(...)
+#endif
+
+#if !defined(TRUE)
+#define TRUE    (1)
+#endif
+
+#if !defined(FALSE)
+#define FALSE   (0)
+#endif
+
+#if !defined(EXTERN)
+#if defined(__cplusplus)
+#define EXTERN extern "C"
+#else
+#define EXTERN extern
+#endif
+#endif
+
+#if !defined(INLINE)
+#define INLINE static __inline
+#endif
+
+/////////////////////////////////////////////////////
+#include<linux/slab.h>
+
+#define S626_SIZE 0x0200
+#define SIZEOF_ADDRESS_SPACE		0x0200
+#define DMABUF_SIZE			4096	// 4k pages
+
+#define S626_ADC_CHANNELS       16
+#define S626_DAC_CHANNELS       4
+#define S626_ENCODER_CHANNELS   6
+#define S626_DIO_CHANNELS       48
+#define S626_DIO_BANKS		3	// Number of DIO groups.
+#define S626_DIO_EXTCHANS	40	// Number of
+					// extended-capability
+					// DIO channels.
+
+#define NUM_TRIMDACS	12	// Number of valid TrimDAC channels.
+
+// PCI bus interface types.
+#define INTEL				1	// Intel bus type.
+#define MOTOROLA			2	// Motorola bus type.
+
+//////////////////////////////////////////////////////////
+
+//////////////////////////////////////////////////////////
+#define PLATFORM		INTEL	// *** SELECT PLATFORM TYPE ***
+//////////////////////////////////////////////////////////
+
+#define RANGE_5V                0x10	// +/-5V range
+#define RANGE_10V               0x00	// +/-10V range
+
+#define EOPL			0x80	// End of ADC poll list marker.
+#define GSEL_BIPOLAR5V		0x00F0	// LP_GSEL setting for 5V bipolar range.
+#define GSEL_BIPOLAR10V		0x00A0	// LP_GSEL setting for 10V bipolar range.
+
+// Error codes that must be visible to this base class.
+#define ERR_ILLEGAL_PARM	0x00010000	// Illegal function parameter value was specified.
+#define ERR_I2C			0x00020000	// I2C error.
+#define ERR_COUNTERSETUP	0x00200000	// Illegal setup specified for counter channel.
+#define ERR_DEBI_TIMEOUT	0x00400000	// DEBI transfer timed out.
+
+// Organization (physical order) and size (in DWORDs) of logical DMA buffers contained by ANA_DMABUF.
+#define ADC_DMABUF_DWORDS	40	// ADC DMA buffer must hold 16 samples, plus pre/post garbage samples.
+#define DAC_WDMABUF_DWORDS	1	// DAC output DMA buffer holds a single sample.
+
+// All remaining space in 4KB DMA buffer is available for the RPS1 program.
+
+// Address offsets, in DWORDS, from base of DMA buffer.
+#define DAC_WDMABUF_OS		ADC_DMABUF_DWORDS
+
+// Interrupt enab bit in ISR and IER.
+#define IRQ_GPIO3		0x00000040	// IRQ enable for GPIO3.
+#define IRQ_RPS1                0x10000000
+#define ISR_AFOU		0x00000800	// Audio fifo
+						// under/overflow
+						// detected.
+#define IRQ_COINT1A             0x0400	// conter 1A overflow
+						// interrupt mask
+#define IRQ_COINT1B             0x0800	// conter 1B overflow
+						// interrupt mask
+#define IRQ_COINT2A             0x1000	// conter 2A overflow
+						// interrupt mask
+#define IRQ_COINT2B             0x2000	// conter 2B overflow
+						// interrupt mask
+#define IRQ_COINT3A             0x4000	// conter 3A overflow
+						// interrupt mask
+#define IRQ_COINT3B             0x8000	// conter 3B overflow
+						// interrupt mask
+
+// RPS command codes.
+#define RPS_CLRSIGNAL		0x00000000	// CLEAR SIGNAL
+#define RPS_SETSIGNAL		0x10000000	// SET SIGNAL
+#define RPS_NOP			0x00000000	// NOP
+#define RPS_PAUSE		0x20000000	// PAUSE
+#define RPS_UPLOAD		0x40000000	// UPLOAD
+#define RPS_JUMP		0x80000000	// JUMP
+#define RPS_LDREG		0x90000100	// LDREG (1 uint32_t only)
+#define RPS_STREG		0xA0000100	// STREG (1 uint32_t only)
+#define RPS_STOP		0x50000000	// STOP
+#define RPS_IRQ                 0x60000000	// IRQ
+
+#define RPS_LOGICAL_OR		0x08000000	// Logical OR conditionals.
+#define RPS_INVERT		0x04000000	// Test for negated semaphores.
+#define RPS_DEBI		0x00000002	// DEBI done
+
+#define RPS_SIG0		0x00200000	// RPS semaphore 0 (used by ADC).
+#define RPS_SIG1		0x00400000	// RPS semaphore 1 (used by DAC).
+#define RPS_SIG2		0x00800000	// RPS semaphore 2 (not used).
+#define RPS_GPIO2		0x00080000	// RPS GPIO2
+#define RPS_GPIO3		0x00100000	// RPS GPIO3
+
+#define RPS_SIGADC		RPS_SIG0	// Trigger/status for ADC's RPS program.
+#define RPS_SIGDAC		RPS_SIG1	// Trigger/status for DAC's RPS program.
+
+// RPS clock parameters.
+#define RPSCLK_SCALAR		8	// This is apparent ratio of PCI/RPS clks (undocumented!!).
+#define RPSCLK_PER_US		( 33 / RPSCLK_SCALAR )	// Number of RPS clocks in one microsecond.
+
+// Event counter source addresses.
+#define SBA_RPS_A0		0x27	// Time of RPS0 busy, in PCI clocks.
+
+// GPIO constants.
+#define GPIO_BASE		0x10004000	// GPIO 0,2,3 = inputs, GPIO3 = IRQ; GPIO1 = out.
+#define GPIO1_LO		0x00000000	// GPIO1 set to LOW.
+#define GPIO1_HI		0x00001000	// GPIO1 set to HIGH.
+
+// Primary Status Register (PSR) constants.
+#define PSR_DEBI_E		0x00040000	// DEBI event flag.
+#define PSR_DEBI_S		0x00080000	// DEBI status flag.
+#define PSR_A2_IN		0x00008000	// Audio output DMA2 protection address reached.
+#define PSR_AFOU		0x00000800	// Audio FIFO under/overflow detected.
+#define PSR_GPIO2		0x00000020	// GPIO2 input pin: 0=AdcBusy, 1=AdcIdle.
+#define PSR_EC0S		0x00000001	// Event counter 0 threshold reached.
+
+// Secondary Status Register (SSR) constants.
+#define SSR_AF2_OUT		0x00000200	// Audio 2 output FIFO under/overflow detected.
+
+// Master Control Register 1 (MC1) constants.
+#define MC1_SOFT_RESET		0x80000000	// Invoke 7146 soft reset.
+#define MC1_SHUTDOWN		0x3FFF0000	// Shut down all MC1-controlled enables.
+
+#define MC1_ERPS1		0x2000	// enab/disable RPS task 1.
+#define MC1_ERPS0		0x1000	// enab/disable RPS task 0.
+#define MC1_DEBI		0x0800	// enab/disable DEBI pins.
+#define MC1_AUDIO		0x0200	// enab/disable audio port pins.
+#define MC1_I2C			0x0100	// enab/disable I2C interface.
+#define MC1_A2OUT		0x0008	// enab/disable transfer on A2 out.
+#define MC1_A2IN		0x0004	// enab/disable transfer on A2 in.
+#define MC1_A1IN		0x0001	// enab/disable transfer on A1 in.
+
+// Master Control Register 2 (MC2) constants.
+#define MC2_UPLD_DEBIq		0x00020002	// Upload DEBI registers.
+#define MC2_UPLD_IICq		0x00010001	// Upload I2C registers.
+#define MC2_RPSSIG2_ONq		0x20002000	// Assert RPS_SIG2.
+#define MC2_RPSSIG1_ONq		0x10001000	// Assert RPS_SIG1.
+#define MC2_RPSSIG0_ONq		0x08000800	// Assert RPS_SIG0.
+#define MC2_UPLD_DEBI_MASKq	0x00000002	// Upload DEBI mask.
+#define MC2_UPLD_IIC_MASKq	0x00000001	// Upload I2C mask.
+#define MC2_RPSSIG2_MASKq	0x00002000	// RPS_SIG2 bit mask.
+#define MC2_RPSSIG1_MASKq	0x00001000	// RPS_SIG1 bit mask.
+#define MC2_RPSSIG0_MASKq	0x00000800	// RPS_SIG0 bit mask.
+
+#define MC2_DELAYTRIG_4USq	MC2_RPSSIG1_ON
+#define MC2_DELAYBUSY_4USq	MC2_RPSSIG1_MASK
+
+#define	MC2_DELAYTRIG_6USq	MC2_RPSSIG2_ON
+#define MC2_DELAYBUSY_6USq	MC2_RPSSIG2_MASK
+
+#define MC2_UPLD_DEBI		0x0002	// Upload DEBI.
+#define MC2_UPLD_IIC		0x0001	// Upload I2C.
+#define MC2_RPSSIG2		0x2000	// RPS signal 2 (not used).
+#define MC2_RPSSIG1		0x1000	// RPS signal 1 (DAC RPS busy).
+#define MC2_RPSSIG0		0x0800	// RPS signal 0 (ADC RPS busy).
+
+#define MC2_ADC_RPS		MC2_RPSSIG0	// ADC RPS busy.
+#define MC2_DAC_RPS		MC2_RPSSIG1	// DAC RPS busy.
+
+///////////////////oldies///////////
+#define MC2_UPLD_DEBIQ		0x00020002	// Upload DEBI registers.
+#define MC2_UPLD_IICQ		0x00010001	// Upload I2C registers.
+////////////////////////////////////////
+
+// PCI BUS (SAA7146) REGISTER ADDRESS OFFSETS ////////////////////////
+#define P_PCI_BT_A		0x004C	// Audio DMA
+						// burst/threshold
+						// control.
+#define P_DEBICFG               0x007C	// DEBI configuration.
+#define P_DEBICMD               0x0080	// DEBI command.
+#define P_DEBIPAGE              0x0084	// DEBI page.
+#define P_DEBIAD                0x0088	// DEBI target address.
+#define P_I2CCTRL               0x008C	// I2C control.
+#define P_I2CSTAT               0x0090	// I2C status.
+#define P_BASEA2_IN		0x00AC	// Audio input 2 base
+						// physical DMAbuf
+						// address.
+#define P_PROTA2_IN		0x00B0	// Audio input 2
+						// physical DMAbuf
+						// protection address.
+#define P_PAGEA2_IN		0x00B4	// Audio input 2
+						// paging attributes.
+#define P_BASEA2_OUT		0x00B8	// Audio output 2 base
+						// physical DMAbuf
+						// address.
+#define P_PROTA2_OUT		0x00BC	// Audio output 2
+						// physical DMAbuf
+						// protection address.
+#define P_PAGEA2_OUT		0x00C0	// Audio output 2
+						// paging attributes.
+#define P_RPSPAGE0              0x00C4	// RPS0 page.
+#define P_RPSPAGE1              0x00C8	// RPS1 page.
+#define P_RPS0_TOUT		0x00D4	// RPS0 time-out.
+#define P_RPS1_TOUT		0x00D8	// RPS1 time-out.
+#define P_IER                   0x00DC	// Interrupt enable.
+#define P_GPIO                  0x00E0	// General-purpose I/O.
+#define P_EC1SSR		0x00E4	// Event counter set 1
+						// source select.
+#define P_ECT1R			0x00EC	// Event counter
+						// threshold set 1.
+#define P_ACON1                 0x00F4	// Audio control 1.
+#define P_ACON2                 0x00F8	// Audio control 2.
+#define P_MC1                   0x00FC	// Master control 1.
+#define P_MC2                   0x0100	// Master control 2.
+#define P_RPSADDR0              0x0104	// RPS0 instruction pointer.
+#define P_RPSADDR1              0x0108	// RPS1 instruction pointer.
+#define P_ISR                   0x010C	// Interrupt status.
+#define P_PSR                   0x0110	// Primary status.
+#define P_SSR                   0x0114	// Secondary status.
+#define P_EC1R			0x0118	// Event counter set 1.
+#define P_ADP4			0x0138	// Logical audio DMA
+						// pointer of audio
+						// input FIFO A2_IN.
+#define P_FB_BUFFER1            0x0144	// Audio feedback buffer 1.
+#define P_FB_BUFFER2            0x0148	// Audio feedback buffer 2.
+#define P_TSL1                  0x0180	// Audio time slot list 1.
+#define P_TSL2                  0x01C0	// Audio time slot list 2.
+
+// LOCAL BUS (GATE ARRAY) REGISTER ADDRESS OFFSETS /////////////////
+// Analog I/O registers:
+#define LP_DACPOL		0x0082	//  Write DAC polarity.
+#define LP_GSEL			0x0084	//  Write ADC gain.
+#define LP_ISEL			0x0086	//  Write ADC channel select.
+// Digital I/O (write only):
+#define LP_WRINTSELA		0x0042	//  Write A interrupt enable.
+#define LP_WREDGSELA		0x0044	//  Write A edge selection.
+#define LP_WRCAPSELA		0x0046	//  Write A capture enable.
+#define LP_WRDOUTA		0x0048	//  Write A digital output.
+#define LP_WRINTSELB		0x0052	//  Write B interrupt enable.
+#define LP_WREDGSELB		0x0054	//  Write B edge selection.
+#define LP_WRCAPSELB		0x0056	//  Write B capture enable.
+#define LP_WRDOUTB		0x0058	//  Write B digital output.
+#define LP_WRINTSELC		0x0062	//  Write C interrupt enable.
+#define LP_WREDGSELC		0x0064	//  Write C edge selection.
+#define LP_WRCAPSELC		0x0066	//  Write C capture enable.
+#define LP_WRDOUTC		0x0068	//  Write C digital output.
+
+// Digital I/O (read only):
+#define LP_RDDINA		0x0040	//  Read digital input.
+#define LP_RDCAPFLGA		0x0048	//  Read edges captured.
+#define LP_RDINTSELA		0x004A	//  Read interrupt
+						//  enable register.
+#define LP_RDEDGSELA		0x004C	//  Read edge
+						//  selection
+						//  register.
+#define LP_RDCAPSELA		0x004E	//  Read capture
+						//  enable register.
+#define LP_RDDINB		0x0050	//  Read digital input.
+#define LP_RDCAPFLGB		0x0058	//  Read edges captured.
+#define LP_RDINTSELB		0x005A	//  Read interrupt
+						//  enable register.
+#define LP_RDEDGSELB		0x005C	//  Read edge
+						//  selection
+						//  register.
+#define LP_RDCAPSELB		0x005E	//  Read capture
+						//  enable register.
+#define LP_RDDINC		0x0060	//  Read digital input.
+#define LP_RDCAPFLGC		0x0068	//  Read edges captured.
+#define LP_RDINTSELC		0x006A	//  Read interrupt
+						//  enable register.
+#define LP_RDEDGSELC		0x006C	//  Read edge
+						//  selection
+						//  register.
+#define LP_RDCAPSELC		0x006E	//  Read capture
+						//  enable register.
+// Counter Registers (read/write):
+#define LP_CR0A			0x0000	//  0A setup register.
+#define LP_CR0B			0x0002	//  0B setup register.
+#define LP_CR1A			0x0004	//  1A setup register.
+#define LP_CR1B			0x0006	//  1B setup register.
+#define LP_CR2A			0x0008	//  2A setup register.
+#define LP_CR2B			0x000A	//  2B setup register.
+// Counter PreLoad (write) and Latch (read) Registers:
+#define	LP_CNTR0ALSW		0x000C	//  0A lsw.
+#define	LP_CNTR0AMSW		0x000E	//  0A msw.
+#define	LP_CNTR0BLSW		0x0010	//  0B lsw.
+#define	LP_CNTR0BMSW		0x0012	//  0B msw.
+#define	LP_CNTR1ALSW		0x0014	//  1A lsw.
+#define	LP_CNTR1AMSW		0x0016	//  1A msw.
+#define	LP_CNTR1BLSW		0x0018	//  1B lsw.
+#define	LP_CNTR1BMSW		0x001A	//  1B msw.
+#define	LP_CNTR2ALSW		0x001C	//  2A lsw.
+#define	LP_CNTR2AMSW		0x001E	//  2A msw.
+#define	LP_CNTR2BLSW		0x0020	//  2B lsw.
+#define	LP_CNTR2BMSW		0x0022	//  2B msw.
+// Miscellaneous Registers (read/write):
+#define LP_MISC1		0x0088	//  Read/write Misc1.
+#define LP_WRMISC2		0x0090	//  Write Misc2.
+#define LP_RDMISC2		0x0082	//  Read Misc2.
+
+// Bit masks for MISC1 register that are the same for reads and writes.
+#define MISC1_WENABLE		0x8000	// enab writes to
+						// MISC2 (except Clear
+						// Watchdog bit).
+#define MISC1_WDISABLE		0x0000	// Disable writes to MISC2.
+#define MISC1_EDCAP		0x1000	// enab edge capture
+						// on DIO chans
+						// specified by
+						// LP_WRCAPSELx.
+#define MISC1_NOEDCAP		0x0000	// Disable edge
+						// capture on
+						// specified DIO
+						// chans.
+
+// Bit masks for MISC1 register reads.
+#define RDMISC1_WDTIMEOUT	0x4000	// Watchdog timer timed out.
+
+// Bit masks for MISC2 register writes.
+#define WRMISC2_WDCLEAR		0x8000	// Reset watchdog
+						// timer to zero.
+#define WRMISC2_CHARGE_ENABLE	0x4000	// enab battery
+						// trickle charging.
+
+// Bit masks for MISC2 register that are the same for reads and writes.
+#define MISC2_BATT_ENABLE	0x0008	// Backup battery enable.
+#define MISC2_WDENABLE		0x0004	// Watchdog timer enable.
+#define MISC2_WDPERIOD_MASK	0x0003	// Watchdog interval
+						// select mask.
+
+// Bit masks for ACON1 register.
+#define A2_RUN			0x40000000	// Run A2 based on TSL2.
+#define A1_RUN			0x20000000	// Run A1 based on TSL1.
+#define A1_SWAP			0x00200000	// Use big-endian for A1.
+#define A2_SWAP			0x00100000	// Use big-endian for A2.
+#define WS_MODES		0x00019999	// WS0 = TSL1 trigger
+						// input, WS1-WS4 =
+						// CS* outputs.
+
+#if PLATFORM == INTEL		// Base ACON1 config:
+						// always run A1 based
+						// on TSL1.
+#define ACON1_BASE		( WS_MODES | A1_RUN )
+#elif PLATFORM == MOTOROLA
+#define ACON1_BASE		( WS_MODES | A1_RUN | A1_SWAP | A2_SWAP )
+#endif
+
+#define ACON1_ADCSTART		ACON1_BASE	// Start ADC: run A1
+						// based on TSL1.
+#define ACON1_DACSTART		( ACON1_BASE | A2_RUN )	// Start
+							// transmit to
+							// DAC: run A2
+							// based on
+							// TSL2.
+#define ACON1_DACSTOP		ACON1_BASE	// Halt A2.
+
+// Bit masks for ACON2 register.
+#define A1_CLKSRC_BCLK1		0x00000000	// A1 bit rate = BCLK1 (ADC).
+#define A2_CLKSRC_X1		0x00800000	// A2 bit rate = ACLK/1 (DACs).
+#define A2_CLKSRC_X2		0x00C00000	// A2 bit rate = ACLK/2 (DACs).
+#define A2_CLKSRC_X4		0x01400000	// A2 bit rate = ACLK/4 (DACs).
+#define INVERT_BCLK2		0x00100000	// Invert BCLK2 (DACs).
+#define BCLK2_OE		0x00040000	// enab BCLK2 (DACs).
+#define ACON2_XORMASK		0x000C0000	// XOR mask for ACON2
+						// active-low bits.
+
+#define ACON2_INIT		( ACON2_XORMASK ^ ( A1_CLKSRC_BCLK1 | A2_CLKSRC_X2 | INVERT_BCLK2 | BCLK2_OE ) )
+
+// Bit masks for timeslot records.
+#define WS1		     	0x40000000	// WS output to assert.
+#define WS2		     	0x20000000
+#define WS3		     	0x10000000
+#define WS4		     	0x08000000
+#define RSD1			0x01000000	// Shift A1 data in on SD1.
+#define SDW_A1			0x00800000	// Store rcv'd char at
+						// next char slot of
+						// DWORD1 buffer.
+#define SIB_A1			0x00400000	// Store rcv'd char at
+						// next char slot of
+						// FB1 buffer.
+#define SF_A1			0x00200000	// Write unsigned long
+						// buffer to input
+						// FIFO.
+
+//Select parallel-to-serial converter's data source:
+#define XFIFO_0			0x00000000	//   Data fifo byte 0.
+#define XFIFO_1			0x00000010	//   Data fifo byte 1.
+#define XFIFO_2			0x00000020	//   Data fifo byte 2.
+#define XFIFO_3			0x00000030	//   Data fifo byte 3.
+#define XFB0			0x00000040	//   FB_BUFFER byte 0.
+#define XFB1			0x00000050	//   FB_BUFFER byte 1.
+#define XFB2			0x00000060	//   FB_BUFFER byte 2.
+#define XFB3			0x00000070	//   FB_BUFFER byte 3.
+#define SIB_A2			0x00000200	// Store next dword
+						// from A2's input
+						// shifter to FB2
+						// buffer.
+#define SF_A2			0x00000100	// Store next dword
+						// from A2's input
+						// shifter to its
+						// input fifo.
+#define LF_A2			0x00000080	// Load next dword
+						// from A2's output
+						// fifo into its
+						// output dword
+						// buffer.
+#define XSD2			0x00000008	// Shift data out on SD2.
+#define RSD3			0x00001800	// Shift data in on SD3.
+#define RSD2			0x00001000	// Shift data in on SD2.
+#define LOW_A2			0x00000002	// Drive last SD low
+						// for 7 clks, then
+						// tri-state.
+#define EOS		     	0x00000001	// End of superframe.
+
+//////////////////////
+
+// I2C configuration constants.
+#define I2C_CLKSEL		0x0400	// I2C bit rate =
+						// PCIclk/480 = 68.75
+						// KHz.
+#define I2C_BITRATE		68.75	// I2C bus data bit
+						// rate (determined by
+						// I2C_CLKSEL) in KHz.
+#define I2C_WRTIME		15.0	// Worst case time,in
+						// msec, for EEPROM
+						// internal write op.
+
+// I2C manifest constants.
+
+// Max retries to wait for EEPROM write.
+#define I2C_RETRIES		( I2C_WRTIME * I2C_BITRATE / 9.0 )
+#define I2C_ERR			0x0002	// I2C control/status
+						// flag ERROR.
+#define I2C_BUSY		0x0001	// I2C control/status
+						// flag BUSY.
+#define I2C_ABORT		0x0080	// I2C status flag ABORT.
+#define I2C_ATTRSTART		0x3	// I2C attribute START.
+#define I2C_ATTRCONT		0x2	// I2C attribute CONT.
+#define I2C_ATTRSTOP		0x1	// I2C attribute STOP.
+#define I2C_ATTRNOP		0x0	// I2C attribute NOP.
+
+// I2C read command  | EEPROM address.
+#define I2CR			( devpriv->I2CAdrs | 1 )
+
+// I2C write command | EEPROM address.
+#define I2CW			( devpriv->I2CAdrs )
+
+// Code macros used for constructing I2C command bytes.
+#define I2C_B2(ATTR,VAL)	( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
+#define I2C_B1(ATTR,VAL)	( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
+#define I2C_B0(ATTR,VAL)	( ( (ATTR) << 2 ) | ( (VAL) <<  8 ) )
+
+////////////////////////////////////////////////////////
+//oldest
+#define P_DEBICFGq              0x007C	// DEBI configuration.
+#define P_DEBICMDq              0x0080	// DEBI command.
+#define P_DEBIPAGEq             0x0084	// DEBI page.
+#define P_DEBIADq               0x0088	// DEBI target address.
+
+#define DEBI_CFG_TOQ		0x03C00000	// timeout (15 PCI cycles)
+#define DEBI_CFG_FASTQ		0x10000000	// fast mode enable
+#define DEBI_CFG_16Q		0x00080000	// 16-bit access enable
+#define DEBI_CFG_INCQ		0x00040000	// enable address increment
+#define DEBI_CFG_TIMEROFFQ	0x00010000	// disable timer
+#define DEBI_CMD_RDQ		0x00050000	// read immediate 2 bytes
+#define DEBI_CMD_WRQ		0x00040000	// write immediate 2 bytes
+#define DEBI_PAGE_DISABLEQ	0x00000000	// paging disable
+
+///////////////////////////////////////////
+// DEBI command constants.
+#define DEBI_CMD_SIZE16		( 2 << 17 )	// Transfer size is
+						// always 2 bytes.
+#define DEBI_CMD_READ		0x00010000	// Read operation.
+#define DEBI_CMD_WRITE		0x00000000	// Write operation.
+
+// Read immediate 2 bytes.
+#define DEBI_CMD_RDWORD		( DEBI_CMD_READ  | DEBI_CMD_SIZE16 )
+
+// Write immediate 2 bytes.
+#define DEBI_CMD_WRWORD		( DEBI_CMD_WRITE | DEBI_CMD_SIZE16 )
+
+// DEBI configuration constants.
+#define DEBI_CFG_XIRQ_EN	0x80000000	// enab external
+						// interrupt on GPIO3.
+#define DEBI_CFG_XRESUME	0x40000000	// Resume block
+						// transfer when XIRQ
+						// deasserted.
+#define DEBI_CFG_FAST		0x10000000	// Fast mode enable.
+
+// 4-bit field that specifies DEBI timeout value in PCI clock cycles:
+#define DEBI_CFG_TOUT_BIT	22	//   Finish DEBI cycle after
+					//   this many clocks.
+
+// 2-bit field that specifies Endian byte lane steering:
+#define DEBI_CFG_SWAP_NONE	0x00000000	//   Straight - don't
+						//   swap any bytes
+						//   (Intel).
+#define DEBI_CFG_SWAP_2		0x00100000	//   2-byte swap (Motorola).
+#define DEBI_CFG_SWAP_4		0x00200000	//   4-byte swap.
+#define DEBI_CFG_16		0x00080000	// Slave is able to
+						// serve 16-bit
+						// cycles.
+
+#define DEBI_CFG_SLAVE16	0x00080000	// Slave is able to
+						// serve 16-bit
+						// cycles.
+#define DEBI_CFG_INC		0x00040000	// enab address
+						// increment for block
+						// transfers.
+#define DEBI_CFG_INTEL		0x00020000	// Intel style local bus.
+#define DEBI_CFG_TIMEROFF	0x00010000	// Disable timer.
+
+#if PLATFORM == INTEL
+
+#define DEBI_TOUT		7	// Wait 7 PCI clocks
+						// (212 ns) before
+						// polling RDY.
+
+// Intel byte lane steering (pass through all byte lanes).
+#define DEBI_SWAP		DEBI_CFG_SWAP_NONE
+
+#elif PLATFORM == MOTOROLA
+
+#define DEBI_TOUT		15	// Wait 15 PCI clocks (454 ns)
+					// maximum before timing out.
+#define DEBI_SWAP		DEBI_CFG_SWAP_2	// Motorola byte lane steering.
+
+#endif
+
+// DEBI page table constants.
+#define DEBI_PAGE_DISABLE	0x00000000	// Paging disable.
+
+///////////////////EXTRA FROM OTHER SANSORAY  * .h////////
+
+// LoadSrc values:
+#define LOADSRC_INDX		0	// Preload core in response to
+					// Index.
+#define LOADSRC_OVER		1	// Preload core in response to
+					// Overflow.
+#define LOADSRCB_OVERA		2	// Preload B core in response
+					// to A Overflow.
+#define LOADSRC_NONE		3	// Never preload core.
+
+// IntSrc values:
+#define INTSRC_NONE 		0	// Interrupts disabled.
+#define INTSRC_OVER 		1	// Interrupt on Overflow.
+#define INTSRC_INDX 		2	// Interrupt on Index.
+#define INTSRC_BOTH 		3	// Interrupt on Index or Overflow.
+
+// LatchSrc values:
+#define LATCHSRC_AB_READ	0	// Latch on read.
+#define LATCHSRC_A_INDXA	1	// Latch A on A Index.
+#define LATCHSRC_B_INDXB	2	// Latch B on B Index.
+#define LATCHSRC_B_OVERA	3	// Latch B on A Overflow.
+
+// IndxSrc values:
+#define INDXSRC_HARD		0	// Hardware or software index.
+#define INDXSRC_SOFT		1	// Software index only.
+
+// IndxPol values:
+#define INDXPOL_POS 		0	// Index input is active high.
+#define INDXPOL_NEG 		1	// Index input is active low.
+
+// ClkSrc values:
+#define CLKSRC_COUNTER		0	// Counter mode.
+#define CLKSRC_TIMER		2	// Timer mode.
+#define CLKSRC_EXTENDER		3	// Extender mode.
+
+// ClkPol values:
+#define CLKPOL_POS		0	// Counter/Extender clock is
+					// active high.
+#define CLKPOL_NEG		1	// Counter/Extender clock is
+					// active low.
+#define CNTDIR_UP		0	// Timer counts up.
+#define CNTDIR_DOWN 		1	// Timer counts down.
+
+// ClkEnab values:
+#define CLKENAB_ALWAYS		0	// Clock always enabled.
+#define CLKENAB_INDEX		1	// Clock is enabled by index.
+
+// ClkMult values:
+#define CLKMULT_4X 		0	// 4x clock multiplier.
+#define CLKMULT_2X 		1	// 2x clock multiplier.
+#define CLKMULT_1X 		2	// 1x clock multiplier.
+
+// Bit Field positions in COUNTER_SETUP structure:
+#define BF_LOADSRC		9	// Preload trigger.
+#define BF_INDXSRC		7	// Index source.
+#define BF_INDXPOL		6	// Index polarity.
+#define BF_CLKSRC		4	// Clock source.
+#define BF_CLKPOL		3	// Clock polarity/count direction.
+#define BF_CLKMULT		1	// Clock multiplier.
+#define BF_CLKENAB		0	// Clock enable.
+
+// Enumerated counter operating modes specified by ClkSrc bit field in
+// a COUNTER_SETUP.
+
+#define CLKSRC_COUNTER		0	// Counter: ENC_C clock, ENC_D
+					// direction.
+#define CLKSRC_TIMER		2	// Timer: SYS_C clock,
+					// direction specified by
+					// ClkPol.
+#define CLKSRC_EXTENDER		3	// Extender: OVR_A clock,
+					// ENC_D direction.
+
+// Enumerated counter clock multipliers.
+
+#define MULT_X0			0x0003	// Supports no multipliers;
+					// fixed physical multiplier =
+					// 3.
+#define MULT_X1			0x0002	// Supports multiplier x1;
+					// fixed physical multiplier =
+					// 2.
+#define MULT_X2			0x0001	// Supports multipliers x1,
+					// x2; physical multipliers =
+					// 1 or 2.
+#define MULT_X4			0x0000	// Supports multipliers x1,
+					// x2, x4; physical
+					// multipliers = 0, 1 or 2.
+
+// Sanity-check limits for parameters.
+
+#define NUM_COUNTERS		6	// Maximum valid counter
+					// logical channel number.
+#define NUM_INTSOURCES		4
+#define NUM_LATCHSOURCES	4
+#define NUM_CLKMULTS		4
+#define NUM_CLKSOURCES		4
+#define NUM_CLKPOLS		2
+#define NUM_INDEXPOLS		2
+#define NUM_INDEXSOURCES	2
+#define NUM_LOADTRIGS		4
+
+// Bit field positions in CRA and CRB counter control registers.
+
+// Bit field positions in CRA:
+#define CRABIT_INDXSRC_B	14	//   B index source.
+#define CRABIT_CLKSRC_B		12	//   B clock source.
+#define CRABIT_INDXPOL_A	11	//   A index polarity.
+#define CRABIT_LOADSRC_A	 9	//   A preload trigger.
+#define CRABIT_CLKMULT_A	 7	//   A clock multiplier.
+#define CRABIT_INTSRC_A		 5	//   A interrupt source.
+#define CRABIT_CLKPOL_A		 4	//   A clock polarity.
+#define CRABIT_INDXSRC_A	 2	//   A index source.
+#define CRABIT_CLKSRC_A		 0	//   A clock source.
+
+// Bit field positions in CRB:
+#define CRBBIT_INTRESETCMD	15	//   Interrupt reset command.
+#define CRBBIT_INTRESET_B	14	//   B interrupt reset enable.
+#define CRBBIT_INTRESET_A	13	//   A interrupt reset enable.
+#define CRBBIT_CLKENAB_A	12	//   A clock enable.
+#define CRBBIT_INTSRC_B		10	//   B interrupt source.
+#define CRBBIT_LATCHSRC		 8	//   A/B latch source.
+#define CRBBIT_LOADSRC_B	 6	//   B preload trigger.
+#define CRBBIT_CLKMULT_B	 3	//   B clock multiplier.
+#define CRBBIT_CLKENAB_B	 2	//   B clock enable.
+#define CRBBIT_INDXPOL_B	 1	//   B index polarity.
+#define CRBBIT_CLKPOL_B		 0	//   B clock polarity.
+
+// Bit field masks for CRA and CRB.
+
+#define CRAMSK_INDXSRC_B	( (uint16_t)( 3 << CRABIT_INDXSRC_B) )
+#define CRAMSK_CLKSRC_B		( (uint16_t)( 3 << CRABIT_CLKSRC_B) )
+#define CRAMSK_INDXPOL_A	( (uint16_t)( 1 << CRABIT_INDXPOL_A) )
+#define CRAMSK_LOADSRC_A	( (uint16_t)( 3 << CRABIT_LOADSRC_A) )
+#define CRAMSK_CLKMULT_A	( (uint16_t)( 3 << CRABIT_CLKMULT_A) )
+#define CRAMSK_INTSRC_A		( (uint16_t)( 3 << CRABIT_INTSRC_A) )
+#define CRAMSK_CLKPOL_A		( (uint16_t)( 3 << CRABIT_CLKPOL_A) )
+#define CRAMSK_INDXSRC_A	( (uint16_t)( 3 << CRABIT_INDXSRC_A) )
+#define CRAMSK_CLKSRC_A		( (uint16_t)( 3 << CRABIT_CLKSRC_A) )
+
+#define CRBMSK_INTRESETCMD	( (uint16_t)( 1 << CRBBIT_INTRESETCMD) )
+#define CRBMSK_INTRESET_B	( (uint16_t)( 1 << CRBBIT_INTRESET_B) )
+#define CRBMSK_INTRESET_A	( (uint16_t)( 1 << CRBBIT_INTRESET_A) )
+#define CRBMSK_CLKENAB_A	( (uint16_t)( 1 << CRBBIT_CLKENAB_A) )
+#define CRBMSK_INTSRC_B		( (uint16_t)( 3 << CRBBIT_INTSRC_B) )
+#define CRBMSK_LATCHSRC		( (uint16_t)( 3 << CRBBIT_LATCHSRC) )
+#define CRBMSK_LOADSRC_B	( (uint16_t)( 3 << CRBBIT_LOADSRC_B) )
+#define CRBMSK_CLKMULT_B	( (uint16_t)( 3 << CRBBIT_CLKMULT_B) )
+#define CRBMSK_CLKENAB_B	( (uint16_t)( 1 << CRBBIT_CLKENAB_B) )
+#define CRBMSK_INDXPOL_B	( (uint16_t)( 1 << CRBBIT_INDXPOL_B) )
+#define CRBMSK_CLKPOL_B		( (uint16_t)( 1 << CRBBIT_CLKPOL_B) )
+
+#define CRBMSK_INTCTRL		( CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A | CRBMSK_INTRESET_B )	// Interrupt reset control bits.
+
+// Bit field positions for standardized SETUP structure.
+
+#define STDBIT_INTSRC		13
+#define STDBIT_LATCHSRC		11
+#define STDBIT_LOADSRC		 9
+#define STDBIT_INDXSRC		 7
+#define STDBIT_INDXPOL		 6
+#define STDBIT_CLKSRC		 4
+#define STDBIT_CLKPOL		 3
+#define STDBIT_CLKMULT		 1
+#define STDBIT_CLKENAB		 0
+
+// Bit field masks for standardized SETUP structure.
+
+#define STDMSK_INTSRC		( (uint16_t)( 3 << STDBIT_INTSRC   ) )
+#define STDMSK_LATCHSRC		( (uint16_t)( 3 << STDBIT_LATCHSRC ) )
+#define STDMSK_LOADSRC		( (uint16_t)( 3 << STDBIT_LOADSRC  ) )
+#define STDMSK_INDXSRC		( (uint16_t)( 1 << STDBIT_INDXSRC  ) )
+#define STDMSK_INDXPOL		( (uint16_t)( 1 << STDBIT_INDXPOL  ) )
+#define STDMSK_CLKSRC		( (uint16_t)( 3 << STDBIT_CLKSRC   ) )
+#define STDMSK_CLKPOL		( (uint16_t)( 1 << STDBIT_CLKPOL   ) )
+#define STDMSK_CLKMULT		( (uint16_t)( 3 << STDBIT_CLKMULT  ) )
+#define STDMSK_CLKENAB		( (uint16_t)( 1 << STDBIT_CLKENAB  ) )
+
+//////////////////////////////////////////////////////////
+
+/* typedef struct indexCounter */
+/* { */
+/*   unsigned int ao; */
+/*   unsigned int ai; */
+/*   unsigned int digout; */
+/*   unsigned int digin; */
+/*   unsigned int enc; */
+/* }CallCounter; */
+
+typedef struct bufferDMA {
+	dma_addr_t PhysicalBase;
+	void *LogicalBase;
+	uint32_t DMAHandle;
+} DMABUF;