|
@@ -46,6 +46,7 @@
|
|
|
#include <linux/suspend.h>
|
|
|
#include <linux/slab.h>
|
|
|
#include <linux/swapops.h>
|
|
|
+#include <linux/hugetlb.h>
|
|
|
#include "internal.h"
|
|
|
|
|
|
int sysctl_memory_failure_early_kill __read_mostly = 0;
|
|
@@ -690,17 +691,29 @@ static int me_swapcache_clean(struct page *p, unsigned long pfn)
|
|
|
/*
|
|
|
* Huge pages. Needs work.
|
|
|
* Issues:
|
|
|
- * No rmap support so we cannot find the original mapper. In theory could walk
|
|
|
- * all MMs and look for the mappings, but that would be non atomic and racy.
|
|
|
- * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
|
|
|
- * like just walking the current process and hoping it has it mapped (that
|
|
|
- * should be usually true for the common "shared database cache" case)
|
|
|
- * Should handle free huge pages and dequeue them too, but this needs to
|
|
|
- * handle huge page accounting correctly.
|
|
|
+ * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
|
|
|
+ * To narrow down kill region to one page, we need to break up pmd.
|
|
|
+ * - To support soft-offlining for hugepage, we need to support hugepage
|
|
|
+ * migration.
|
|
|
*/
|
|
|
static int me_huge_page(struct page *p, unsigned long pfn)
|
|
|
{
|
|
|
- return FAILED;
|
|
|
+ struct page *hpage = compound_head(p);
|
|
|
+ /*
|
|
|
+ * We can safely recover from error on free or reserved (i.e.
|
|
|
+ * not in-use) hugepage by dequeuing it from freelist.
|
|
|
+ * To check whether a hugepage is in-use or not, we can't use
|
|
|
+ * page->lru because it can be used in other hugepage operations,
|
|
|
+ * such as __unmap_hugepage_range() and gather_surplus_pages().
|
|
|
+ * So instead we use page_mapping() and PageAnon().
|
|
|
+ * We assume that this function is called with page lock held,
|
|
|
+ * so there is no race between isolation and mapping/unmapping.
|
|
|
+ */
|
|
|
+ if (!(page_mapping(hpage) || PageAnon(hpage))) {
|
|
|
+ __isolate_hwpoisoned_huge_page(hpage);
|
|
|
+ return RECOVERED;
|
|
|
+ }
|
|
|
+ return DELAYED;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -838,6 +851,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
|
|
|
int ret;
|
|
|
int i;
|
|
|
int kill = 1;
|
|
|
+ struct page *hpage = compound_head(p);
|
|
|
|
|
|
if (PageReserved(p) || PageSlab(p))
|
|
|
return SWAP_SUCCESS;
|
|
@@ -846,10 +860,10 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
|
|
|
* This check implies we don't kill processes if their pages
|
|
|
* are in the swap cache early. Those are always late kills.
|
|
|
*/
|
|
|
- if (!page_mapped(p))
|
|
|
+ if (!page_mapped(hpage))
|
|
|
return SWAP_SUCCESS;
|
|
|
|
|
|
- if (PageCompound(p) || PageKsm(p))
|
|
|
+ if (PageKsm(p))
|
|
|
return SWAP_FAIL;
|
|
|
|
|
|
if (PageSwapCache(p)) {
|
|
@@ -864,10 +878,11 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
|
|
|
* XXX: the dirty test could be racy: set_page_dirty() may not always
|
|
|
* be called inside page lock (it's recommended but not enforced).
|
|
|
*/
|
|
|
- mapping = page_mapping(p);
|
|
|
- if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
|
|
|
- if (page_mkclean(p)) {
|
|
|
- SetPageDirty(p);
|
|
|
+ mapping = page_mapping(hpage);
|
|
|
+ if (!PageDirty(hpage) && mapping &&
|
|
|
+ mapping_cap_writeback_dirty(mapping)) {
|
|
|
+ if (page_mkclean(hpage)) {
|
|
|
+ SetPageDirty(hpage);
|
|
|
} else {
|
|
|
kill = 0;
|
|
|
ttu |= TTU_IGNORE_HWPOISON;
|
|
@@ -886,14 +901,14 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
|
|
|
* there's nothing that can be done.
|
|
|
*/
|
|
|
if (kill)
|
|
|
- collect_procs(p, &tokill);
|
|
|
+ collect_procs(hpage, &tokill);
|
|
|
|
|
|
/*
|
|
|
* try_to_unmap can fail temporarily due to races.
|
|
|
* Try a few times (RED-PEN better strategy?)
|
|
|
*/
|
|
|
for (i = 0; i < N_UNMAP_TRIES; i++) {
|
|
|
- ret = try_to_unmap(p, ttu);
|
|
|
+ ret = try_to_unmap(hpage, ttu);
|
|
|
if (ret == SWAP_SUCCESS)
|
|
|
break;
|
|
|
pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
|
|
@@ -901,7 +916,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
|
|
|
|
|
|
if (ret != SWAP_SUCCESS)
|
|
|
printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
|
|
|
- pfn, page_mapcount(p));
|
|
|
+ pfn, page_mapcount(hpage));
|
|
|
|
|
|
/*
|
|
|
* Now that the dirty bit has been propagated to the
|
|
@@ -912,17 +927,35 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
|
|
|
* use a more force-full uncatchable kill to prevent
|
|
|
* any accesses to the poisoned memory.
|
|
|
*/
|
|
|
- kill_procs_ao(&tokill, !!PageDirty(p), trapno,
|
|
|
+ kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
|
|
|
ret != SWAP_SUCCESS, pfn);
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
+static void set_page_hwpoison_huge_page(struct page *hpage)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ int nr_pages = 1 << compound_order(hpage);
|
|
|
+ for (i = 0; i < nr_pages; i++)
|
|
|
+ SetPageHWPoison(hpage + i);
|
|
|
+}
|
|
|
+
|
|
|
+static void clear_page_hwpoison_huge_page(struct page *hpage)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ int nr_pages = 1 << compound_order(hpage);
|
|
|
+ for (i = 0; i < nr_pages; i++)
|
|
|
+ ClearPageHWPoison(hpage + i);
|
|
|
+}
|
|
|
+
|
|
|
int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
{
|
|
|
struct page_state *ps;
|
|
|
struct page *p;
|
|
|
+ struct page *hpage;
|
|
|
int res;
|
|
|
+ unsigned int nr_pages;
|
|
|
|
|
|
if (!sysctl_memory_failure_recovery)
|
|
|
panic("Memory failure from trap %d on page %lx", trapno, pfn);
|
|
@@ -935,12 +968,14 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
}
|
|
|
|
|
|
p = pfn_to_page(pfn);
|
|
|
+ hpage = compound_head(p);
|
|
|
if (TestSetPageHWPoison(p)) {
|
|
|
printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
- atomic_long_add(1, &mce_bad_pages);
|
|
|
+ nr_pages = 1 << compound_order(hpage);
|
|
|
+ atomic_long_add(nr_pages, &mce_bad_pages);
|
|
|
|
|
|
/*
|
|
|
* We need/can do nothing about count=0 pages.
|
|
@@ -954,7 +989,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
* that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
|
|
|
*/
|
|
|
if (!(flags & MF_COUNT_INCREASED) &&
|
|
|
- !get_page_unless_zero(compound_head(p))) {
|
|
|
+ !get_page_unless_zero(hpage)) {
|
|
|
if (is_free_buddy_page(p)) {
|
|
|
action_result(pfn, "free buddy", DELAYED);
|
|
|
return 0;
|
|
@@ -972,9 +1007,9 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
* The check (unnecessarily) ignores LRU pages being isolated and
|
|
|
* walked by the page reclaim code, however that's not a big loss.
|
|
|
*/
|
|
|
- if (!PageLRU(p))
|
|
|
+ if (!PageLRU(p) && !PageHuge(p))
|
|
|
shake_page(p, 0);
|
|
|
- if (!PageLRU(p)) {
|
|
|
+ if (!PageLRU(p) && !PageHuge(p)) {
|
|
|
/*
|
|
|
* shake_page could have turned it free.
|
|
|
*/
|
|
@@ -992,7 +1027,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
* It's very difficult to mess with pages currently under IO
|
|
|
* and in many cases impossible, so we just avoid it here.
|
|
|
*/
|
|
|
- lock_page_nosync(p);
|
|
|
+ lock_page_nosync(hpage);
|
|
|
|
|
|
/*
|
|
|
* unpoison always clear PG_hwpoison inside page lock
|
|
@@ -1004,11 +1039,31 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
}
|
|
|
if (hwpoison_filter(p)) {
|
|
|
if (TestClearPageHWPoison(p))
|
|
|
- atomic_long_dec(&mce_bad_pages);
|
|
|
- unlock_page(p);
|
|
|
- put_page(p);
|
|
|
+ atomic_long_sub(nr_pages, &mce_bad_pages);
|
|
|
+ unlock_page(hpage);
|
|
|
+ put_page(hpage);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * For error on the tail page, we should set PG_hwpoison
|
|
|
+ * on the head page to show that the hugepage is hwpoisoned
|
|
|
+ */
|
|
|
+ if (PageTail(p) && TestSetPageHWPoison(hpage)) {
|
|
|
+ action_result(pfn, "hugepage already hardware poisoned",
|
|
|
+ IGNORED);
|
|
|
+ unlock_page(hpage);
|
|
|
+ put_page(hpage);
|
|
|
return 0;
|
|
|
}
|
|
|
+ /*
|
|
|
+ * Set PG_hwpoison on all pages in an error hugepage,
|
|
|
+ * because containment is done in hugepage unit for now.
|
|
|
+ * Since we have done TestSetPageHWPoison() for the head page with
|
|
|
+ * page lock held, we can safely set PG_hwpoison bits on tail pages.
|
|
|
+ */
|
|
|
+ if (PageHuge(p))
|
|
|
+ set_page_hwpoison_huge_page(hpage);
|
|
|
|
|
|
wait_on_page_writeback(p);
|
|
|
|
|
@@ -1039,7 +1094,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags)
|
|
|
}
|
|
|
}
|
|
|
out:
|
|
|
- unlock_page(p);
|
|
|
+ unlock_page(hpage);
|
|
|
return res;
|
|
|
}
|
|
|
EXPORT_SYMBOL_GPL(__memory_failure);
|
|
@@ -1083,6 +1138,7 @@ int unpoison_memory(unsigned long pfn)
|
|
|
struct page *page;
|
|
|
struct page *p;
|
|
|
int freeit = 0;
|
|
|
+ unsigned int nr_pages;
|
|
|
|
|
|
if (!pfn_valid(pfn))
|
|
|
return -ENXIO;
|
|
@@ -1095,9 +1151,11 @@ int unpoison_memory(unsigned long pfn)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+ nr_pages = 1 << compound_order(page);
|
|
|
+
|
|
|
if (!get_page_unless_zero(page)) {
|
|
|
if (TestClearPageHWPoison(p))
|
|
|
- atomic_long_dec(&mce_bad_pages);
|
|
|
+ atomic_long_sub(nr_pages, &mce_bad_pages);
|
|
|
pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
|
|
|
return 0;
|
|
|
}
|
|
@@ -1109,11 +1167,13 @@ int unpoison_memory(unsigned long pfn)
|
|
|
* the PG_hwpoison page will be caught and isolated on the entrance to
|
|
|
* the free buddy page pool.
|
|
|
*/
|
|
|
- if (TestClearPageHWPoison(p)) {
|
|
|
+ if (TestClearPageHWPoison(page)) {
|
|
|
pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
|
|
|
- atomic_long_dec(&mce_bad_pages);
|
|
|
+ atomic_long_sub(nr_pages, &mce_bad_pages);
|
|
|
freeit = 1;
|
|
|
}
|
|
|
+ if (PageHuge(p))
|
|
|
+ clear_page_hwpoison_huge_page(page);
|
|
|
unlock_page(page);
|
|
|
|
|
|
put_page(page);
|