|
@@ -49,6 +49,24 @@ static void update_rt_migration(struct rq *rq)
|
|
|
rq->rt.overloaded = 0;
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
+static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
+ plist_node_init(&p->pushable_tasks, p->prio);
|
|
|
+ plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
+}
|
|
|
+
|
|
|
+static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
|
|
|
+}
|
|
|
+
|
|
|
+#else
|
|
|
+
|
|
|
+#define enqueue_pushable_task(rq, p) do { } while (0)
|
|
|
+#define dequeue_pushable_task(rq, p) do { } while (0)
|
|
|
+
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
|
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
|
|
@@ -108,7 +126,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
if (rt_se && !on_rt_rq(rt_se))
|
|
|
enqueue_rt_entity(rt_se);
|
|
|
- if (rt_rq->highest_prio < curr->prio)
|
|
|
+ if (rt_rq->highest_prio.curr < curr->prio)
|
|
|
resched_task(curr);
|
|
|
}
|
|
|
}
|
|
@@ -473,7 +491,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
|
|
|
struct rt_rq *rt_rq = group_rt_rq(rt_se);
|
|
|
|
|
|
if (rt_rq)
|
|
|
- return rt_rq->highest_prio;
|
|
|
+ return rt_rq->highest_prio.curr;
|
|
|
#endif
|
|
|
|
|
|
return rt_task_of(rt_se)->prio;
|
|
@@ -547,33 +565,64 @@ static void update_curr_rt(struct rq *rq)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
+
|
|
|
+static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
|
|
|
+
|
|
|
+static inline int next_prio(struct rq *rq)
|
|
|
+{
|
|
|
+ struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
|
|
|
+
|
|
|
+ if (next && rt_prio(next->prio))
|
|
|
+ return next->prio;
|
|
|
+ else
|
|
|
+ return MAX_RT_PRIO;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
static inline
|
|
|
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
{
|
|
|
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
|
|
- rt_rq->rt_nr_running++;
|
|
|
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
- if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
|
|
|
+ int prio = rt_se_prio(rt_se);
|
|
|
#ifdef CONFIG_SMP
|
|
|
- struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
+ struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
#endif
|
|
|
|
|
|
- rt_rq->highest_prio = rt_se_prio(rt_se);
|
|
|
+ WARN_ON(!rt_prio(prio));
|
|
|
+ rt_rq->rt_nr_running++;
|
|
|
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
+ if (prio < rt_rq->highest_prio.curr) {
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If the new task is higher in priority than anything on the
|
|
|
+ * run-queue, we have a new high that must be published to
|
|
|
+ * the world. We also know that the previous high becomes
|
|
|
+ * our next-highest.
|
|
|
+ */
|
|
|
+ rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
|
|
|
+ rt_rq->highest_prio.curr = prio;
|
|
|
#ifdef CONFIG_SMP
|
|
|
if (rq->online)
|
|
|
- cpupri_set(&rq->rd->cpupri, rq->cpu,
|
|
|
- rt_se_prio(rt_se));
|
|
|
+ cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
|
|
|
#endif
|
|
|
- }
|
|
|
+ } else if (prio == rt_rq->highest_prio.curr)
|
|
|
+ /*
|
|
|
+ * If the next task is equal in priority to the highest on
|
|
|
+ * the run-queue, then we implicitly know that the next highest
|
|
|
+ * task cannot be any lower than current
|
|
|
+ */
|
|
|
+ rt_rq->highest_prio.next = prio;
|
|
|
+ else if (prio < rt_rq->highest_prio.next)
|
|
|
+ /*
|
|
|
+ * Otherwise, we need to recompute next-highest
|
|
|
+ */
|
|
|
+ rt_rq->highest_prio.next = next_prio(rq);
|
|
|
#endif
|
|
|
#ifdef CONFIG_SMP
|
|
|
- if (rt_se->nr_cpus_allowed > 1) {
|
|
|
- struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
-
|
|
|
+ if (rt_se->nr_cpus_allowed > 1)
|
|
|
rq->rt.rt_nr_migratory++;
|
|
|
- }
|
|
|
|
|
|
- update_rt_migration(rq_of_rt_rq(rt_rq));
|
|
|
+ update_rt_migration(rq);
|
|
|
#endif
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
if (rt_se_boosted(rt_se))
|
|
@@ -590,7 +639,8 @@ static inline
|
|
|
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
{
|
|
|
#ifdef CONFIG_SMP
|
|
|
- int highest_prio = rt_rq->highest_prio;
|
|
|
+ struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
+ int highest_prio = rt_rq->highest_prio.curr;
|
|
|
#endif
|
|
|
|
|
|
WARN_ON(!rt_prio(rt_se_prio(rt_se)));
|
|
@@ -598,33 +648,34 @@ void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
|
|
|
rt_rq->rt_nr_running--;
|
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
|
if (rt_rq->rt_nr_running) {
|
|
|
- struct rt_prio_array *array;
|
|
|
+ int prio = rt_se_prio(rt_se);
|
|
|
|
|
|
- WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
|
|
|
- if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
|
|
|
- /* recalculate */
|
|
|
- array = &rt_rq->active;
|
|
|
- rt_rq->highest_prio =
|
|
|
+ WARN_ON(prio < rt_rq->highest_prio.curr);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * This may have been our highest or next-highest priority
|
|
|
+ * task and therefore we may have some recomputation to do
|
|
|
+ */
|
|
|
+ if (prio == rt_rq->highest_prio.curr) {
|
|
|
+ struct rt_prio_array *array = &rt_rq->active;
|
|
|
+
|
|
|
+ rt_rq->highest_prio.curr =
|
|
|
sched_find_first_bit(array->bitmap);
|
|
|
- } /* otherwise leave rq->highest prio alone */
|
|
|
+ }
|
|
|
+
|
|
|
+ if (prio <= rt_rq->highest_prio.next)
|
|
|
+ rt_rq->highest_prio.next = next_prio(rq);
|
|
|
} else
|
|
|
- rt_rq->highest_prio = MAX_RT_PRIO;
|
|
|
+ rt_rq->highest_prio.curr = MAX_RT_PRIO;
|
|
|
#endif
|
|
|
#ifdef CONFIG_SMP
|
|
|
- if (rt_se->nr_cpus_allowed > 1) {
|
|
|
- struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
+ if (rt_se->nr_cpus_allowed > 1)
|
|
|
rq->rt.rt_nr_migratory--;
|
|
|
- }
|
|
|
|
|
|
- if (rt_rq->highest_prio != highest_prio) {
|
|
|
- struct rq *rq = rq_of_rt_rq(rt_rq);
|
|
|
+ if (rq->online && rt_rq->highest_prio.curr != highest_prio)
|
|
|
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
|
|
|
|
|
|
- if (rq->online)
|
|
|
- cpupri_set(&rq->rd->cpupri, rq->cpu,
|
|
|
- rt_rq->highest_prio);
|
|
|
- }
|
|
|
-
|
|
|
- update_rt_migration(rq_of_rt_rq(rt_rq));
|
|
|
+ update_rt_migration(rq);
|
|
|
#endif /* CONFIG_SMP */
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
|
if (rt_se_boosted(rt_se))
|
|
@@ -718,6 +769,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
|
|
|
|
|
|
enqueue_rt_entity(rt_se);
|
|
|
|
|
|
+ if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
|
|
|
+ enqueue_pushable_task(rq, p);
|
|
|
+
|
|
|
inc_cpu_load(rq, p->se.load.weight);
|
|
|
}
|
|
|
|
|
@@ -728,6 +782,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
|
|
|
update_curr_rt(rq);
|
|
|
dequeue_rt_entity(rt_se);
|
|
|
|
|
|
+ dequeue_pushable_task(rq, p);
|
|
|
+
|
|
|
dec_cpu_load(rq, p->se.load.weight);
|
|
|
}
|
|
|
|
|
@@ -878,7 +934,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
|
|
|
return next;
|
|
|
}
|
|
|
|
|
|
-static struct task_struct *pick_next_task_rt(struct rq *rq)
|
|
|
+static struct task_struct *_pick_next_task_rt(struct rq *rq)
|
|
|
{
|
|
|
struct sched_rt_entity *rt_se;
|
|
|
struct task_struct *p;
|
|
@@ -900,6 +956,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq)
|
|
|
|
|
|
p = rt_task_of(rt_se);
|
|
|
p->se.exec_start = rq->clock;
|
|
|
+
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *pick_next_task_rt(struct rq *rq)
|
|
|
+{
|
|
|
+ struct task_struct *p = _pick_next_task_rt(rq);
|
|
|
+
|
|
|
+ /* The running task is never eligible for pushing */
|
|
|
+ if (p)
|
|
|
+ dequeue_pushable_task(rq, p);
|
|
|
+
|
|
|
return p;
|
|
|
}
|
|
|
|
|
@@ -907,6 +975,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
|
|
|
{
|
|
|
update_curr_rt(rq);
|
|
|
p->se.exec_start = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The previous task needs to be made eligible for pushing
|
|
|
+ * if it is still active
|
|
|
+ */
|
|
|
+ if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
|
|
|
+ enqueue_pushable_task(rq, p);
|
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
@@ -1072,7 +1147,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
|
|
|
}
|
|
|
|
|
|
/* If this rq is still suitable use it. */
|
|
|
- if (lowest_rq->rt.highest_prio > task->prio)
|
|
|
+ if (lowest_rq->rt.highest_prio.curr > task->prio)
|
|
|
break;
|
|
|
|
|
|
/* try again */
|
|
@@ -1083,6 +1158,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
|
|
|
return lowest_rq;
|
|
|
}
|
|
|
|
|
|
+static inline int has_pushable_tasks(struct rq *rq)
|
|
|
+{
|
|
|
+ return !plist_head_empty(&rq->rt.pushable_tasks);
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *pick_next_pushable_task(struct rq *rq)
|
|
|
+{
|
|
|
+ struct task_struct *p;
|
|
|
+
|
|
|
+ if (!has_pushable_tasks(rq))
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ p = plist_first_entry(&rq->rt.pushable_tasks,
|
|
|
+ struct task_struct, pushable_tasks);
|
|
|
+
|
|
|
+ BUG_ON(rq->cpu != task_cpu(p));
|
|
|
+ BUG_ON(task_current(rq, p));
|
|
|
+ BUG_ON(p->rt.nr_cpus_allowed <= 1);
|
|
|
+
|
|
|
+ BUG_ON(!p->se.on_rq);
|
|
|
+ BUG_ON(!rt_task(p));
|
|
|
+
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* If the current CPU has more than one RT task, see if the non
|
|
|
* running task can migrate over to a CPU that is running a task
|
|
@@ -1092,13 +1192,11 @@ static int push_rt_task(struct rq *rq)
|
|
|
{
|
|
|
struct task_struct *next_task;
|
|
|
struct rq *lowest_rq;
|
|
|
- int ret = 0;
|
|
|
- int paranoid = RT_MAX_TRIES;
|
|
|
|
|
|
if (!rq->rt.overloaded)
|
|
|
return 0;
|
|
|
|
|
|
- next_task = pick_next_highest_task_rt(rq, -1);
|
|
|
+ next_task = pick_next_pushable_task(rq);
|
|
|
if (!next_task)
|
|
|
return 0;
|
|
|
|
|
@@ -1127,16 +1225,34 @@ static int push_rt_task(struct rq *rq)
|
|
|
struct task_struct *task;
|
|
|
/*
|
|
|
* find lock_lowest_rq releases rq->lock
|
|
|
- * so it is possible that next_task has changed.
|
|
|
- * If it has, then try again.
|
|
|
+ * so it is possible that next_task has migrated.
|
|
|
+ *
|
|
|
+ * We need to make sure that the task is still on the same
|
|
|
+ * run-queue and is also still the next task eligible for
|
|
|
+ * pushing.
|
|
|
*/
|
|
|
- task = pick_next_highest_task_rt(rq, -1);
|
|
|
- if (unlikely(task != next_task) && task && paranoid--) {
|
|
|
- put_task_struct(next_task);
|
|
|
- next_task = task;
|
|
|
- goto retry;
|
|
|
+ task = pick_next_pushable_task(rq);
|
|
|
+ if (task_cpu(next_task) == rq->cpu && task == next_task) {
|
|
|
+ /*
|
|
|
+ * If we get here, the task hasnt moved at all, but
|
|
|
+ * it has failed to push. We will not try again,
|
|
|
+ * since the other cpus will pull from us when they
|
|
|
+ * are ready.
|
|
|
+ */
|
|
|
+ dequeue_pushable_task(rq, next_task);
|
|
|
+ goto out;
|
|
|
}
|
|
|
- goto out;
|
|
|
+
|
|
|
+ if (!task)
|
|
|
+ /* No more tasks, just exit */
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Something has shifted, try again.
|
|
|
+ */
|
|
|
+ put_task_struct(next_task);
|
|
|
+ next_task = task;
|
|
|
+ goto retry;
|
|
|
}
|
|
|
|
|
|
deactivate_task(rq, next_task, 0);
|
|
@@ -1147,23 +1263,12 @@ static int push_rt_task(struct rq *rq)
|
|
|
|
|
|
double_unlock_balance(rq, lowest_rq);
|
|
|
|
|
|
- ret = 1;
|
|
|
out:
|
|
|
put_task_struct(next_task);
|
|
|
|
|
|
- return ret;
|
|
|
+ return 1;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * TODO: Currently we just use the second highest prio task on
|
|
|
- * the queue, and stop when it can't migrate (or there's
|
|
|
- * no more RT tasks). There may be a case where a lower
|
|
|
- * priority RT task has a different affinity than the
|
|
|
- * higher RT task. In this case the lower RT task could
|
|
|
- * possibly be able to migrate where as the higher priority
|
|
|
- * RT task could not. We currently ignore this issue.
|
|
|
- * Enhancements are welcome!
|
|
|
- */
|
|
|
static void push_rt_tasks(struct rq *rq)
|
|
|
{
|
|
|
/* push_rt_task will return true if it moved an RT */
|
|
@@ -1174,33 +1279,35 @@ static void push_rt_tasks(struct rq *rq)
|
|
|
static int pull_rt_task(struct rq *this_rq)
|
|
|
{
|
|
|
int this_cpu = this_rq->cpu, ret = 0, cpu;
|
|
|
- struct task_struct *p, *next;
|
|
|
+ struct task_struct *p;
|
|
|
struct rq *src_rq;
|
|
|
|
|
|
if (likely(!rt_overloaded(this_rq)))
|
|
|
return 0;
|
|
|
|
|
|
- next = pick_next_task_rt(this_rq);
|
|
|
-
|
|
|
for_each_cpu(cpu, this_rq->rd->rto_mask) {
|
|
|
if (this_cpu == cpu)
|
|
|
continue;
|
|
|
|
|
|
src_rq = cpu_rq(cpu);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Don't bother taking the src_rq->lock if the next highest
|
|
|
+ * task is known to be lower-priority than our current task.
|
|
|
+ * This may look racy, but if this value is about to go
|
|
|
+ * logically higher, the src_rq will push this task away.
|
|
|
+ * And if its going logically lower, we do not care
|
|
|
+ */
|
|
|
+ if (src_rq->rt.highest_prio.next >=
|
|
|
+ this_rq->rt.highest_prio.curr)
|
|
|
+ continue;
|
|
|
+
|
|
|
/*
|
|
|
* We can potentially drop this_rq's lock in
|
|
|
* double_lock_balance, and another CPU could
|
|
|
- * steal our next task - hence we must cause
|
|
|
- * the caller to recalculate the next task
|
|
|
- * in that case:
|
|
|
+ * alter this_rq
|
|
|
*/
|
|
|
- if (double_lock_balance(this_rq, src_rq)) {
|
|
|
- struct task_struct *old_next = next;
|
|
|
-
|
|
|
- next = pick_next_task_rt(this_rq);
|
|
|
- if (next != old_next)
|
|
|
- ret = 1;
|
|
|
- }
|
|
|
+ double_lock_balance(this_rq, src_rq);
|
|
|
|
|
|
/*
|
|
|
* Are there still pullable RT tasks?
|
|
@@ -1214,7 +1321,7 @@ static int pull_rt_task(struct rq *this_rq)
|
|
|
* Do we have an RT task that preempts
|
|
|
* the to-be-scheduled task?
|
|
|
*/
|
|
|
- if (p && (!next || (p->prio < next->prio))) {
|
|
|
+ if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
|
|
|
WARN_ON(p == src_rq->curr);
|
|
|
WARN_ON(!p->se.on_rq);
|
|
|
|
|
@@ -1224,12 +1331,9 @@ static int pull_rt_task(struct rq *this_rq)
|
|
|
* This is just that p is wakeing up and hasn't
|
|
|
* had a chance to schedule. We only pull
|
|
|
* p if it is lower in priority than the
|
|
|
- * current task on the run queue or
|
|
|
- * this_rq next task is lower in prio than
|
|
|
- * the current task on that rq.
|
|
|
+ * current task on the run queue
|
|
|
*/
|
|
|
- if (p->prio < src_rq->curr->prio ||
|
|
|
- (next && next->prio < src_rq->curr->prio))
|
|
|
+ if (p->prio < src_rq->curr->prio)
|
|
|
goto skip;
|
|
|
|
|
|
ret = 1;
|
|
@@ -1242,13 +1346,7 @@ static int pull_rt_task(struct rq *this_rq)
|
|
|
* case there's an even higher prio task
|
|
|
* in another runqueue. (low likelyhood
|
|
|
* but possible)
|
|
|
- *
|
|
|
- * Update next so that we won't pick a task
|
|
|
- * on another cpu with a priority lower (or equal)
|
|
|
- * than the one we just picked.
|
|
|
*/
|
|
|
- next = p;
|
|
|
-
|
|
|
}
|
|
|
skip:
|
|
|
double_unlock_balance(this_rq, src_rq);
|
|
@@ -1260,24 +1358,27 @@ static int pull_rt_task(struct rq *this_rq)
|
|
|
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
|
|
|
{
|
|
|
/* Try to pull RT tasks here if we lower this rq's prio */
|
|
|
- if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
|
|
|
+ if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
|
|
|
pull_rt_task(rq);
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * assumes rq->lock is held
|
|
|
+ */
|
|
|
+static int needs_post_schedule_rt(struct rq *rq)
|
|
|
+{
|
|
|
+ return has_pushable_tasks(rq);
|
|
|
+}
|
|
|
+
|
|
|
static void post_schedule_rt(struct rq *rq)
|
|
|
{
|
|
|
/*
|
|
|
- * If we have more than one rt_task queued, then
|
|
|
- * see if we can push the other rt_tasks off to other CPUS.
|
|
|
- * Note we may release the rq lock, and since
|
|
|
- * the lock was owned by prev, we need to release it
|
|
|
- * first via finish_lock_switch and then reaquire it here.
|
|
|
+ * This is only called if needs_post_schedule_rt() indicates that
|
|
|
+ * we need to push tasks away
|
|
|
*/
|
|
|
- if (unlikely(rq->rt.overloaded)) {
|
|
|
- spin_lock_irq(&rq->lock);
|
|
|
- push_rt_tasks(rq);
|
|
|
- spin_unlock_irq(&rq->lock);
|
|
|
- }
|
|
|
+ spin_lock_irq(&rq->lock);
|
|
|
+ push_rt_tasks(rq);
|
|
|
+ spin_unlock_irq(&rq->lock);
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1288,7 +1389,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
|
|
|
{
|
|
|
if (!task_running(rq, p) &&
|
|
|
!test_tsk_need_resched(rq->curr) &&
|
|
|
- rq->rt.overloaded)
|
|
|
+ has_pushable_tasks(rq) &&
|
|
|
+ p->rt.nr_cpus_allowed > 1)
|
|
|
push_rt_tasks(rq);
|
|
|
}
|
|
|
|
|
@@ -1324,6 +1426,24 @@ static void set_cpus_allowed_rt(struct task_struct *p,
|
|
|
if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
|
|
|
struct rq *rq = task_rq(p);
|
|
|
|
|
|
+ if (!task_current(rq, p)) {
|
|
|
+ /*
|
|
|
+ * Make sure we dequeue this task from the pushable list
|
|
|
+ * before going further. It will either remain off of
|
|
|
+ * the list because we are no longer pushable, or it
|
|
|
+ * will be requeued.
|
|
|
+ */
|
|
|
+ if (p->rt.nr_cpus_allowed > 1)
|
|
|
+ dequeue_pushable_task(rq, p);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Requeue if our weight is changing and still > 1
|
|
|
+ */
|
|
|
+ if (weight > 1)
|
|
|
+ enqueue_pushable_task(rq, p);
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
|
|
|
rq->rt.rt_nr_migratory++;
|
|
|
} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
|
|
@@ -1346,7 +1466,7 @@ static void rq_online_rt(struct rq *rq)
|
|
|
|
|
|
__enable_runtime(rq);
|
|
|
|
|
|
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
|
|
|
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
|
|
|
}
|
|
|
|
|
|
/* Assumes rq->lock is held */
|
|
@@ -1438,7 +1558,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p,
|
|
|
* can release the rq lock and p could migrate.
|
|
|
* Only reschedule if p is still on the same runqueue.
|
|
|
*/
|
|
|
- if (p->prio > rq->rt.highest_prio && rq->curr == p)
|
|
|
+ if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
|
|
|
resched_task(p);
|
|
|
#else
|
|
|
/* For UP simply resched on drop of prio */
|
|
@@ -1509,6 +1629,9 @@ static void set_curr_task_rt(struct rq *rq)
|
|
|
struct task_struct *p = rq->curr;
|
|
|
|
|
|
p->se.exec_start = rq->clock;
|
|
|
+
|
|
|
+ /* The running task is never eligible for pushing */
|
|
|
+ dequeue_pushable_task(rq, p);
|
|
|
}
|
|
|
|
|
|
static const struct sched_class rt_sched_class = {
|
|
@@ -1531,6 +1654,7 @@ static const struct sched_class rt_sched_class = {
|
|
|
.rq_online = rq_online_rt,
|
|
|
.rq_offline = rq_offline_rt,
|
|
|
.pre_schedule = pre_schedule_rt,
|
|
|
+ .needs_post_schedule = needs_post_schedule_rt,
|
|
|
.post_schedule = post_schedule_rt,
|
|
|
.task_wake_up = task_wake_up_rt,
|
|
|
.switched_from = switched_from_rt,
|