|
@@ -18,11 +18,59 @@
|
|
|
#include <linux/asn1_decoder.h>
|
|
|
#include <keys/asymmetric-subtype.h>
|
|
|
#include <keys/asymmetric-parser.h>
|
|
|
+#include <keys/system_keyring.h>
|
|
|
#include <crypto/hash.h>
|
|
|
#include "asymmetric_keys.h"
|
|
|
#include "public_key.h"
|
|
|
#include "x509_parser.h"
|
|
|
|
|
|
+/*
|
|
|
+ * Find a key in the given keyring by issuer and authority.
|
|
|
+ */
|
|
|
+static struct key *x509_request_asymmetric_key(
|
|
|
+ struct key *keyring,
|
|
|
+ const char *signer, size_t signer_len,
|
|
|
+ const char *authority, size_t auth_len)
|
|
|
+{
|
|
|
+ key_ref_t key;
|
|
|
+ char *id;
|
|
|
+
|
|
|
+ /* Construct an identifier. */
|
|
|
+ id = kmalloc(signer_len + 2 + auth_len + 1, GFP_KERNEL);
|
|
|
+ if (!id)
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
+
|
|
|
+ memcpy(id, signer, signer_len);
|
|
|
+ id[signer_len + 0] = ':';
|
|
|
+ id[signer_len + 1] = ' ';
|
|
|
+ memcpy(id + signer_len + 2, authority, auth_len);
|
|
|
+ id[signer_len + 2 + auth_len] = 0;
|
|
|
+
|
|
|
+ pr_debug("Look up: \"%s\"\n", id);
|
|
|
+
|
|
|
+ key = keyring_search(make_key_ref(keyring, 1),
|
|
|
+ &key_type_asymmetric, id);
|
|
|
+ if (IS_ERR(key))
|
|
|
+ pr_debug("Request for module key '%s' err %ld\n",
|
|
|
+ id, PTR_ERR(key));
|
|
|
+ kfree(id);
|
|
|
+
|
|
|
+ if (IS_ERR(key)) {
|
|
|
+ switch (PTR_ERR(key)) {
|
|
|
+ /* Hide some search errors */
|
|
|
+ case -EACCES:
|
|
|
+ case -ENOTDIR:
|
|
|
+ case -EAGAIN:
|
|
|
+ return ERR_PTR(-ENOKEY);
|
|
|
+ default:
|
|
|
+ return ERR_CAST(key);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ pr_devel("<==%s() = 0 [%x]\n", __func__, key_serial(key_ref_to_ptr(key)));
|
|
|
+ return key_ref_to_ptr(key);
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Set up the signature parameters in an X.509 certificate. This involves
|
|
|
* digesting the signed data and extracting the signature.
|
|
@@ -102,6 +150,33 @@ int x509_check_signature(const struct public_key *pub,
|
|
|
}
|
|
|
EXPORT_SYMBOL_GPL(x509_check_signature);
|
|
|
|
|
|
+/*
|
|
|
+ * Check the new certificate against the ones in the trust keyring. If one of
|
|
|
+ * those is the signing key and validates the new certificate, then mark the
|
|
|
+ * new certificate as being trusted.
|
|
|
+ *
|
|
|
+ * Return 0 if the new certificate was successfully validated, 1 if we couldn't
|
|
|
+ * find a matching parent certificate in the trusted list and an error if there
|
|
|
+ * is a matching certificate but the signature check fails.
|
|
|
+ */
|
|
|
+static int x509_validate_trust(struct x509_certificate *cert,
|
|
|
+ struct key *trust_keyring)
|
|
|
+{
|
|
|
+ const struct public_key *pk;
|
|
|
+ struct key *key;
|
|
|
+ int ret = 1;
|
|
|
+
|
|
|
+ key = x509_request_asymmetric_key(trust_keyring,
|
|
|
+ cert->issuer, strlen(cert->issuer),
|
|
|
+ cert->authority,
|
|
|
+ strlen(cert->authority));
|
|
|
+ if (!IS_ERR(key)) {
|
|
|
+ pk = key->payload.data;
|
|
|
+ ret = x509_check_signature(pk, cert);
|
|
|
+ }
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Attempt to parse a data blob for a key as an X509 certificate.
|
|
|
*/
|
|
@@ -155,9 +230,13 @@ static int x509_key_preparse(struct key_preparsed_payload *prep)
|
|
|
/* Check the signature on the key if it appears to be self-signed */
|
|
|
if (!cert->authority ||
|
|
|
strcmp(cert->fingerprint, cert->authority) == 0) {
|
|
|
- ret = x509_check_signature(cert->pub, cert);
|
|
|
+ ret = x509_check_signature(cert->pub, cert); /* self-signed */
|
|
|
if (ret < 0)
|
|
|
goto error_free_cert;
|
|
|
+ } else {
|
|
|
+ ret = x509_validate_trust(cert, system_trusted_keyring);
|
|
|
+ if (!ret)
|
|
|
+ prep->trusted = 1;
|
|
|
}
|
|
|
|
|
|
/* Propose a description */
|