|
@@ -22,8 +22,10 @@
|
|
#include <linux/init.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mm.h>
|
|
|
|
+#include <asm/byteorder.h>
|
|
#include <asm/scatterlist.h>
|
|
#include <asm/scatterlist.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/crypto.h>
|
|
|
|
+#include <linux/types.h>
|
|
|
|
|
|
#define TEA_KEY_SIZE 16
|
|
#define TEA_KEY_SIZE 16
|
|
#define TEA_BLOCK_SIZE 8
|
|
#define TEA_BLOCK_SIZE 8
|
|
@@ -35,9 +37,6 @@
|
|
#define XTEA_ROUNDS 32
|
|
#define XTEA_ROUNDS 32
|
|
#define XTEA_DELTA 0x9e3779b9
|
|
#define XTEA_DELTA 0x9e3779b9
|
|
|
|
|
|
-#define u32_in(x) le32_to_cpu(*(const __le32 *)(x))
|
|
|
|
-#define u32_out(to, from) (*(__le32 *)(to) = cpu_to_le32(from))
|
|
|
|
-
|
|
|
|
struct tea_ctx {
|
|
struct tea_ctx {
|
|
u32 KEY[4];
|
|
u32 KEY[4];
|
|
};
|
|
};
|
|
@@ -49,8 +48,8 @@ struct xtea_ctx {
|
|
static int tea_setkey(void *ctx_arg, const u8 *in_key,
|
|
static int tea_setkey(void *ctx_arg, const u8 *in_key,
|
|
unsigned int key_len, u32 *flags)
|
|
unsigned int key_len, u32 *flags)
|
|
{
|
|
{
|
|
-
|
|
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *key = (const __le32 *)in_key;
|
|
|
|
|
|
if (key_len != 16)
|
|
if (key_len != 16)
|
|
{
|
|
{
|
|
@@ -58,10 +57,10 @@ static int tea_setkey(void *ctx_arg, const u8 *in_key,
|
|
return -EINVAL;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
|
|
- ctx->KEY[0] = u32_in (in_key);
|
|
|
|
- ctx->KEY[1] = u32_in (in_key + 4);
|
|
|
|
- ctx->KEY[2] = u32_in (in_key + 8);
|
|
|
|
- ctx->KEY[3] = u32_in (in_key + 12);
|
|
|
|
|
|
+ ctx->KEY[0] = le32_to_cpu(key[0]);
|
|
|
|
+ ctx->KEY[1] = le32_to_cpu(key[1]);
|
|
|
|
+ ctx->KEY[2] = le32_to_cpu(key[2]);
|
|
|
|
+ ctx->KEY[3] = le32_to_cpu(key[3]);
|
|
|
|
|
|
return 0;
|
|
return 0;
|
|
|
|
|
|
@@ -73,9 +72,11 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
u32 k0, k1, k2, k3;
|
|
u32 k0, k1, k2, k3;
|
|
|
|
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *in = (const __le32 *)src;
|
|
|
|
+ __le32 *out = (__le32 *)dst;
|
|
|
|
|
|
- y = u32_in (src);
|
|
|
|
- z = u32_in (src + 4);
|
|
|
|
|
|
+ y = le32_to_cpu(in[0]);
|
|
|
|
+ z = le32_to_cpu(in[1]);
|
|
|
|
|
|
k0 = ctx->KEY[0];
|
|
k0 = ctx->KEY[0];
|
|
k1 = ctx->KEY[1];
|
|
k1 = ctx->KEY[1];
|
|
@@ -90,19 +91,20 @@ static void tea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
|
|
z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
|
|
}
|
|
}
|
|
|
|
|
|
- u32_out (dst, y);
|
|
|
|
- u32_out (dst + 4, z);
|
|
|
|
|
|
+ out[0] = cpu_to_le32(y);
|
|
|
|
+ out[1] = cpu_to_le32(z);
|
|
}
|
|
}
|
|
|
|
|
|
static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
{
|
|
{
|
|
u32 y, z, n, sum;
|
|
u32 y, z, n, sum;
|
|
u32 k0, k1, k2, k3;
|
|
u32 k0, k1, k2, k3;
|
|
-
|
|
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *in = (const __le32 *)src;
|
|
|
|
+ __le32 *out = (__le32 *)dst;
|
|
|
|
|
|
- y = u32_in (src);
|
|
|
|
- z = u32_in (src + 4);
|
|
|
|
|
|
+ y = le32_to_cpu(in[0]);
|
|
|
|
+ z = le32_to_cpu(in[1]);
|
|
|
|
|
|
k0 = ctx->KEY[0];
|
|
k0 = ctx->KEY[0];
|
|
k1 = ctx->KEY[1];
|
|
k1 = ctx->KEY[1];
|
|
@@ -119,16 +121,15 @@ static void tea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
sum -= TEA_DELTA;
|
|
sum -= TEA_DELTA;
|
|
}
|
|
}
|
|
|
|
|
|
- u32_out (dst, y);
|
|
|
|
- u32_out (dst + 4, z);
|
|
|
|
-
|
|
|
|
|
|
+ out[0] = cpu_to_le32(y);
|
|
|
|
+ out[1] = cpu_to_le32(z);
|
|
}
|
|
}
|
|
|
|
|
|
static int xtea_setkey(void *ctx_arg, const u8 *in_key,
|
|
static int xtea_setkey(void *ctx_arg, const u8 *in_key,
|
|
unsigned int key_len, u32 *flags)
|
|
unsigned int key_len, u32 *flags)
|
|
{
|
|
{
|
|
-
|
|
|
|
struct xtea_ctx *ctx = ctx_arg;
|
|
struct xtea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *key = (const __le32 *)in_key;
|
|
|
|
|
|
if (key_len != 16)
|
|
if (key_len != 16)
|
|
{
|
|
{
|
|
@@ -136,10 +137,10 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
|
|
return -EINVAL;
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
|
|
- ctx->KEY[0] = u32_in (in_key);
|
|
|
|
- ctx->KEY[1] = u32_in (in_key + 4);
|
|
|
|
- ctx->KEY[2] = u32_in (in_key + 8);
|
|
|
|
- ctx->KEY[3] = u32_in (in_key + 12);
|
|
|
|
|
|
+ ctx->KEY[0] = le32_to_cpu(key[0]);
|
|
|
|
+ ctx->KEY[1] = le32_to_cpu(key[1]);
|
|
|
|
+ ctx->KEY[2] = le32_to_cpu(key[2]);
|
|
|
|
+ ctx->KEY[3] = le32_to_cpu(key[3]);
|
|
|
|
|
|
return 0;
|
|
return 0;
|
|
|
|
|
|
@@ -147,14 +148,15 @@ static int xtea_setkey(void *ctx_arg, const u8 *in_key,
|
|
|
|
|
|
static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
{
|
|
{
|
|
-
|
|
|
|
u32 y, z, sum = 0;
|
|
u32 y, z, sum = 0;
|
|
u32 limit = XTEA_DELTA * XTEA_ROUNDS;
|
|
u32 limit = XTEA_DELTA * XTEA_ROUNDS;
|
|
|
|
|
|
struct xtea_ctx *ctx = ctx_arg;
|
|
struct xtea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *in = (const __le32 *)src;
|
|
|
|
+ __le32 *out = (__le32 *)dst;
|
|
|
|
|
|
- y = u32_in (src);
|
|
|
|
- z = u32_in (src + 4);
|
|
|
|
|
|
+ y = le32_to_cpu(in[0]);
|
|
|
|
+ z = le32_to_cpu(in[1]);
|
|
|
|
|
|
while (sum != limit) {
|
|
while (sum != limit) {
|
|
y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
|
|
y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]);
|
|
@@ -162,19 +164,19 @@ static void xtea_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
|
|
z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]);
|
|
}
|
|
}
|
|
|
|
|
|
- u32_out (dst, y);
|
|
|
|
- u32_out (dst + 4, z);
|
|
|
|
-
|
|
|
|
|
|
+ out[0] = cpu_to_le32(y);
|
|
|
|
+ out[1] = cpu_to_le32(z);
|
|
}
|
|
}
|
|
|
|
|
|
static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
{
|
|
{
|
|
-
|
|
|
|
u32 y, z, sum;
|
|
u32 y, z, sum;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *in = (const __le32 *)src;
|
|
|
|
+ __le32 *out = (__le32 *)dst;
|
|
|
|
|
|
- y = u32_in (src);
|
|
|
|
- z = u32_in (src + 4);
|
|
|
|
|
|
+ y = le32_to_cpu(in[0]);
|
|
|
|
+ z = le32_to_cpu(in[1]);
|
|
|
|
|
|
sum = XTEA_DELTA * XTEA_ROUNDS;
|
|
sum = XTEA_DELTA * XTEA_ROUNDS;
|
|
|
|
|
|
@@ -184,22 +186,22 @@ static void xtea_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
|
|
y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
|
|
}
|
|
}
|
|
|
|
|
|
- u32_out (dst, y);
|
|
|
|
- u32_out (dst + 4, z);
|
|
|
|
-
|
|
|
|
|
|
+ out[0] = cpu_to_le32(y);
|
|
|
|
+ out[1] = cpu_to_le32(z);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
{
|
|
{
|
|
-
|
|
|
|
u32 y, z, sum = 0;
|
|
u32 y, z, sum = 0;
|
|
u32 limit = XTEA_DELTA * XTEA_ROUNDS;
|
|
u32 limit = XTEA_DELTA * XTEA_ROUNDS;
|
|
|
|
|
|
struct xtea_ctx *ctx = ctx_arg;
|
|
struct xtea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *in = (const __le32 *)src;
|
|
|
|
+ __le32 *out = (__le32 *)dst;
|
|
|
|
|
|
- y = u32_in (src);
|
|
|
|
- z = u32_in (src + 4);
|
|
|
|
|
|
+ y = le32_to_cpu(in[0]);
|
|
|
|
+ z = le32_to_cpu(in[1]);
|
|
|
|
|
|
while (sum != limit) {
|
|
while (sum != limit) {
|
|
y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
|
|
y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
|
|
@@ -207,19 +209,19 @@ static void xeta_encrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
|
|
z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
|
|
}
|
|
}
|
|
|
|
|
|
- u32_out (dst, y);
|
|
|
|
- u32_out (dst + 4, z);
|
|
|
|
-
|
|
|
|
|
|
+ out[0] = cpu_to_le32(y);
|
|
|
|
+ out[1] = cpu_to_le32(z);
|
|
}
|
|
}
|
|
|
|
|
|
static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
{
|
|
{
|
|
-
|
|
|
|
u32 y, z, sum;
|
|
u32 y, z, sum;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
struct tea_ctx *ctx = ctx_arg;
|
|
|
|
+ const __le32 *in = (const __le32 *)src;
|
|
|
|
+ __le32 *out = (__le32 *)dst;
|
|
|
|
|
|
- y = u32_in (src);
|
|
|
|
- z = u32_in (src + 4);
|
|
|
|
|
|
+ y = le32_to_cpu(in[0]);
|
|
|
|
+ z = le32_to_cpu(in[1]);
|
|
|
|
|
|
sum = XTEA_DELTA * XTEA_ROUNDS;
|
|
sum = XTEA_DELTA * XTEA_ROUNDS;
|
|
|
|
|
|
@@ -229,9 +231,8 @@ static void xeta_decrypt(void *ctx_arg, u8 *dst, const u8 *src)
|
|
y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
|
|
y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
|
|
}
|
|
}
|
|
|
|
|
|
- u32_out (dst, y);
|
|
|
|
- u32_out (dst + 4, z);
|
|
|
|
-
|
|
|
|
|
|
+ out[0] = cpu_to_le32(y);
|
|
|
|
+ out[1] = cpu_to_le32(z);
|
|
}
|
|
}
|
|
|
|
|
|
static struct crypto_alg tea_alg = {
|
|
static struct crypto_alg tea_alg = {
|