|
@@ -506,34 +506,47 @@ void account_idle_ticks(unsigned long ticks)
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
- * Perform (stime * rtime) / total with reduced chances
|
|
|
- * of multiplication overflows by using smaller factors
|
|
|
- * like quotient and remainders of divisions between
|
|
|
- * rtime and total.
|
|
|
+ * Perform (stime * rtime) / total, but avoid multiplication overflow by
|
|
|
+ * loosing precision when the numbers are big.
|
|
|
*/
|
|
|
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
|
|
|
{
|
|
|
- u64 rem, res, scaled;
|
|
|
+ u64 scaled;
|
|
|
|
|
|
- if (rtime >= total) {
|
|
|
- /*
|
|
|
- * Scale up to rtime / total then add
|
|
|
- * the remainder scaled to stime / total.
|
|
|
- */
|
|
|
- res = div64_u64_rem(rtime, total, &rem);
|
|
|
- scaled = stime * res;
|
|
|
- scaled += div64_u64(stime * rem, total);
|
|
|
- } else {
|
|
|
- /*
|
|
|
- * Same in reverse: scale down to total / rtime
|
|
|
- * then substract that result scaled to
|
|
|
- * to the remaining part.
|
|
|
- */
|
|
|
- res = div64_u64_rem(total, rtime, &rem);
|
|
|
- scaled = div64_u64(stime, res);
|
|
|
- scaled -= div64_u64(scaled * rem, total);
|
|
|
+ for (;;) {
|
|
|
+ /* Make sure "rtime" is the bigger of stime/rtime */
|
|
|
+ if (stime > rtime) {
|
|
|
+ u64 tmp = rtime; rtime = stime; stime = tmp;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Make sure 'total' fits in 32 bits */
|
|
|
+ if (total >> 32)
|
|
|
+ goto drop_precision;
|
|
|
+
|
|
|
+ /* Does rtime (and thus stime) fit in 32 bits? */
|
|
|
+ if (!(rtime >> 32))
|
|
|
+ break;
|
|
|
+
|
|
|
+ /* Can we just balance rtime/stime rather than dropping bits? */
|
|
|
+ if (stime >> 31)
|
|
|
+ goto drop_precision;
|
|
|
+
|
|
|
+ /* We can grow stime and shrink rtime and try to make them both fit */
|
|
|
+ stime <<= 1;
|
|
|
+ rtime >>= 1;
|
|
|
+ continue;
|
|
|
+
|
|
|
+drop_precision:
|
|
|
+ /* We drop from rtime, it has more bits than stime */
|
|
|
+ rtime >>= 1;
|
|
|
+ total >>= 1;
|
|
|
}
|
|
|
|
|
|
+ /*
|
|
|
+ * Make sure gcc understands that this is a 32x32->64 multiply,
|
|
|
+ * followed by a 64/32->64 divide.
|
|
|
+ */
|
|
|
+ scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
|
|
|
return (__force cputime_t) scaled;
|
|
|
}
|
|
|
|
|
@@ -545,7 +558,7 @@ static void cputime_adjust(struct task_cputime *curr,
|
|
|
struct cputime *prev,
|
|
|
cputime_t *ut, cputime_t *st)
|
|
|
{
|
|
|
- cputime_t rtime, stime, total;
|
|
|
+ cputime_t rtime, stime, utime, total;
|
|
|
|
|
|
if (vtime_accounting_enabled()) {
|
|
|
*ut = curr->utime;
|
|
@@ -568,13 +581,21 @@ static void cputime_adjust(struct task_cputime *curr,
|
|
|
*/
|
|
|
rtime = nsecs_to_cputime(curr->sum_exec_runtime);
|
|
|
|
|
|
- if (!rtime) {
|
|
|
- stime = 0;
|
|
|
- } else if (!total) {
|
|
|
- stime = rtime;
|
|
|
- } else {
|
|
|
+ /*
|
|
|
+ * Update userspace visible utime/stime values only if actual execution
|
|
|
+ * time is bigger than already exported. Note that can happen, that we
|
|
|
+ * provided bigger values due to scaling inaccuracy on big numbers.
|
|
|
+ */
|
|
|
+ if (prev->stime + prev->utime >= rtime)
|
|
|
+ goto out;
|
|
|
+
|
|
|
+ if (total) {
|
|
|
stime = scale_stime((__force u64)stime,
|
|
|
(__force u64)rtime, (__force u64)total);
|
|
|
+ utime = rtime - stime;
|
|
|
+ } else {
|
|
|
+ stime = rtime;
|
|
|
+ utime = 0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -583,8 +604,9 @@ static void cputime_adjust(struct task_cputime *curr,
|
|
|
* Let's enforce monotonicity.
|
|
|
*/
|
|
|
prev->stime = max(prev->stime, stime);
|
|
|
- prev->utime = max(prev->utime, rtime - prev->stime);
|
|
|
+ prev->utime = max(prev->utime, utime);
|
|
|
|
|
|
+out:
|
|
|
*ut = prev->utime;
|
|
|
*st = prev->stime;
|
|
|
}
|